organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-(4a,8-Di­methyl-7-oxodeca­hydro­naphthalen-2-yl)acrylate

aLaboratoire de Chimie Bioorganique et Analytique, URAC 22, BP 146, FSTM, Université Hassan II, Mohammedia-Casablanca 20810 Mohammedia, Morocco, bLaboratoire de Chimie Biomoleculaire, Substances Naturelles et Réactivite, URAC16, Université Cadi Ayyad, Faculté des Sciences Semlalia, BP 2390, Bd My Abdellah, 40000 Marrakech, Morocco, and cLaboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse Cedex 04, France
*Correspondence e-mail: mberraho@yahoo.fr

(Received 13 June 2012; accepted 27 June 2012; online 7 July 2012)

The title compound, C16H24O3, was isolated from the aerial part of Inula Viscosa­ (L) Aiton [or Dittrichia Viscosa­ (L) Greuter]. The mol­ecule contains two fused (trans) six-membered rings which both exibit a chair conformation. In the crystal, mol­ecules are linked into chains along [100] by weak C—H⋯O hydrogen bonds involving the methyl and carbonyl groups.

Related literature

For the synthesis of the title compound, see: Barrero et al. (2009[Barrero, A. F., Herrador, M. M., Arteaga, J. & Catala' n, V. (2009). Eur. J. Org. Chem. pp. 3589-3594.]). For the medicinal inter­est in Inula Viscosa­ (L) Aiton [or Dittrichia Viscosa­ (L) Greuter], see: Shtacher & Kasshman (1970[Shtacher, G. & Kasshman, Y. (1970). J. Med. Chem. 13, 1221-1223.]); Bohlmann et al. (1977[Bohlmann, F., Czerson, H. & Schoneweib, S. (1977). Chem. Ber. 110, 1330-1334.]); Chiappini et al. (1982[Chiappini, I., Fardella, G., Menghini, A. & Rossi, C. (1982). Planta Med. 44, 159-161.]). For the pharmacological inter­est, see: Azoulay et al. (1986[Azoulay, P., Reynier, J. P., Balansard, G., Gasquet, M. & Timon-David, P. (1986). Pharm. Acta Helv. 61, 345-352.]); Bohlmann et al. (1977[Bohlmann, F., Czerson, H. & Schoneweib, S. (1977). Chem. Ber. 110, 1330-1334.]); Ceccherelli et al. (1988[Ceccherelli, P., Curini, M. & Marcotullio, M. C. (1988). J. Nat. Prod. 51, 1006-1009.]). For background to phytochemical studies of plants, see: Geissman & Toribio (1967[Geissman, T. A. & Toribio, F. P. (1967). Phytochemistry, 6, 1563-1567.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C16H24O3

  • Mr = 264.35

  • Tetragonal, P 41 21 2

  • a = 7.3359 (1) Å

  • c = 54.7419 (13) Å

  • V = 2945.96 (9) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.64 mm−1

  • T = 180 K

  • 0.48 × 0.24 × 0.18 mm

Data collection
  • Agilent Xcalibur Eos Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.737, Tmax = 1.000

  • 11562 measured reflections

  • 2319 independent reflections

  • 2286 reflections with I > 2σ(I)

  • Rint = 0.027

  • θmax = 62.0°

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.107

  • S = 1.22

  • 2319 reflections

  • 176 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14B⋯O2i 0.96 2.54 3.113 (3) 118
Symmetry code: (i) y+1, x, -z.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.])and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The Inula Viscosa (L) is widespread in Mediterranean area and extends to the Atlantic cost of Morocco. It is a well known medicinal plant (Shtacher & Kasshman, 1970; Chiappini et al., 1982) and has some pharmacological activities (Azoulay et al., 1986). This plant has been the subject of chemical investigation in terms of isolating sesquiterpene lactones (Bohlmann et al., 1977), sesquiterpene acids (Ceccherelli et al., 1988; Geissman & Toribio, 1967). The ilicic acid is one of the main components of the dichloromethane extract of the Inula Viscosa (L) Aiton or Dittrichia Viscosa (L) Greuter]. In order to prepare products with high added value, that can be used in the pharmacologycal industry, we have studied the reactivity of this acid. Thus, from this acid, we have prepared by the method of Barrero et al. (2009), 2-(4a,8-Dimethyl-1, 2,3,4,4a,5,6,7- octahydro naphthalen-2-yl)-acrylic acid methyl ester. The epoxidation of the latter compound by metachloroperbenzoic acid (mCPBA), followed by the opening of the epoxide obtained by Bi(OTf)3 leads to the title compound (I) with a yield of 70%. The cristal structure of (I) is determined herin. The molecule is built up from two fused six-membered rings. The molecular structure of (I),Fig.1, shows the two rings to adopt a perfect chair conformation as indicated by Cremer & Pople (1975) puckering parameters Q(T)= 0.580 (2) Å and spherical polar angle θ = 180.0 (2)° with φ = 120 (9)° for the first ring (C1,C2··· C8A) and Q(T)= 0.572 (2) Å with a spherical polar angle θ = 175.9 (2)° and φ = 139 (3)° for the second ring (C4A, C5···C8A)(Cremer and Pople,1975). Molecules are linked by intermolecular C—H···O hydrogen bonds (Table 1) involving O2 and H14B atoms and propagating into three dimensional network.

Related literature top

For the synthesis of the title compound, see: Barrero et al. (2009). For the medicinal interest in Inula Viscosa (L) Aiton [or Dittrichia Viscosa (L) Greuter], see: Shtacher & Kasshman (1970); Bohlmann et al. (1977); Chiappini et al. (1982). For the pharmacological interest, see: Azoulay et al. (1986); Bohlmann et al. (1977); Ceccherelli et al. (1988). For background to phytochemical studies of plants, see: Geissman & Toribio (1967). For conformational analysis, see: Cremer & Pople (1975).

Experimental top

To 2 g (8 mmol) of 2-(4a,8-Dimethyl-1,2,3,4,4a,5,6,7-octahydro-naphthalen-2-yl)- acrylic acid methyl ester dissolved in 50 ml of dichloromethane was added one equivalent of m-chloroperbenzoic acid at 70%. The reaction mixture was stirred at room temperature for 3 h, then treated three times with a solution of sodium bisulfite at 10%. The organic layer was then washed with distilled water three times until neutralization, dried over sodium sulfate, filtered and concentrated under reduced pressure. The residue obtained was chromatographed on silica gel eluting with hexane/ ethyl acetate (98/2) to give quantitatively the corresponding epoxide. 1 g (3.78 mmol) of this epoxyde is dissolved with 5% of boron trifluoride etherate (BF3.Et2O) in 20 ml of dichloromethane. The reaction mixture was left stirring for a period of half an hour and then treated with 20 ml of a solution of sodium bicarbonate to 10%. The organic layer was dried filtered and concentrated under reduced pressure. Chromatography on silica gel, eluting with hexane/ethyl acetate (98/2) of the residue obtained, allowed us to obtain 700 mg (2.64 mmol)of the title compound which was recrystallized in dichloromethane.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å(aromatic), 0.96 Å (methyl), 0.97 Å (methylene), 0.98 Å (methine) with Uiso(H) = 1.2Ueq (aromatic, methylene, methine) or Uiso(H) = 1.5Ueq (methyl). In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and any references to the Flack parameter were removed.

Structure description top

The Inula Viscosa (L) is widespread in Mediterranean area and extends to the Atlantic cost of Morocco. It is a well known medicinal plant (Shtacher & Kasshman, 1970; Chiappini et al., 1982) and has some pharmacological activities (Azoulay et al., 1986). This plant has been the subject of chemical investigation in terms of isolating sesquiterpene lactones (Bohlmann et al., 1977), sesquiterpene acids (Ceccherelli et al., 1988; Geissman & Toribio, 1967). The ilicic acid is one of the main components of the dichloromethane extract of the Inula Viscosa (L) Aiton or Dittrichia Viscosa (L) Greuter]. In order to prepare products with high added value, that can be used in the pharmacologycal industry, we have studied the reactivity of this acid. Thus, from this acid, we have prepared by the method of Barrero et al. (2009), 2-(4a,8-Dimethyl-1, 2,3,4,4a,5,6,7- octahydro naphthalen-2-yl)-acrylic acid methyl ester. The epoxidation of the latter compound by metachloroperbenzoic acid (mCPBA), followed by the opening of the epoxide obtained by Bi(OTf)3 leads to the title compound (I) with a yield of 70%. The cristal structure of (I) is determined herin. The molecule is built up from two fused six-membered rings. The molecular structure of (I),Fig.1, shows the two rings to adopt a perfect chair conformation as indicated by Cremer & Pople (1975) puckering parameters Q(T)= 0.580 (2) Å and spherical polar angle θ = 180.0 (2)° with φ = 120 (9)° for the first ring (C1,C2··· C8A) and Q(T)= 0.572 (2) Å with a spherical polar angle θ = 175.9 (2)° and φ = 139 (3)° for the second ring (C4A, C5···C8A)(Cremer and Pople,1975). Molecules are linked by intermolecular C—H···O hydrogen bonds (Table 1) involving O2 and H14B atoms and propagating into three dimensional network.

For the synthesis of the title compound, see: Barrero et al. (2009). For the medicinal interest in Inula Viscosa (L) Aiton [or Dittrichia Viscosa (L) Greuter], see: Shtacher & Kasshman (1970); Bohlmann et al. (1977); Chiappini et al. (1982). For the pharmacological interest, see: Azoulay et al. (1986); Bohlmann et al. (1977); Ceccherelli et al. (1988). For background to phytochemical studies of plants, see: Geissman & Toribio (1967). For conformational analysis, see: Cremer & Pople (1975).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997)and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability. level. H atoms are represented as small spheres of arbitrary radii.
Methyl 2-(4a,8-Dimethyl-7-oxodecahydronaphthalen-2-yl)acrylate top
Crystal data top
C16H24O3Dx = 1.192 Mg m3
Mr = 264.35Cu Kα radiation, λ = 1.54184 Å
Tetragonal, P41212Cell parameters from 6272 reflections
Hall symbol: P 4abw 2nwθ = 3.2–61.9°
a = 7.3359 (1) ŵ = 0.64 mm1
c = 54.7419 (13) ÅT = 180 K
V = 2945.96 (9) Å3Box, colorless
Z = 80.48 × 0.24 × 0.18 mm
F(000) = 1152
Data collection top
Agilent Xcalibur Eos Gemini ultra
diffractometer
2319 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2286 reflections with I > 2σ(I)
Miror monochromatorRint = 0.027
Detector resolution: 16.1978 pixels mm-1θmax = 62.0°, θmin = 3.2°
ω scanh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 78
Tmin = 0.737, Tmax = 1.000l = 6162
11562 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0378P)2 + 1.4663P]
where P = (Fo2 + 2Fc2)/3
S = 1.22(Δ/σ)max < 0.001
2319 reflectionsΔρmax = 0.15 e Å3
176 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0079 (4)
Crystal data top
C16H24O3Z = 8
Mr = 264.35Cu Kα radiation
Tetragonal, P41212µ = 0.64 mm1
a = 7.3359 (1) ÅT = 180 K
c = 54.7419 (13) Å0.48 × 0.24 × 0.18 mm
V = 2945.96 (9) Å3
Data collection top
Agilent Xcalibur Eos Gemini ultra
diffractometer
2319 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2286 reflections with I > 2σ(I)
Tmin = 0.737, Tmax = 1.000Rint = 0.027
11562 measured reflectionsθmax = 62.0°
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.22Δρmax = 0.15 e Å3
2319 reflectionsΔρmin = 0.13 e Å3
176 parameters
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlisPro (Agilent Technologies, 2010)

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0927 (3)0.8703 (3)0.07690 (4)0.0245 (5)
H1A1.20830.84720.08490.029*
H1B1.03110.96710.08570.029*
C21.1272 (3)0.9311 (3)0.05053 (4)0.0261 (5)
H21.19130.83130.04230.031*
C30.9461 (3)0.9583 (4)0.03717 (4)0.0342 (6)
H3A0.88081.05940.04450.041*
H3B0.96990.98870.02020.041*
C40.8288 (3)0.7880 (4)0.03835 (4)0.0368 (6)
H4A0.88970.69050.02960.044*
H4B0.71390.81180.03020.044*
C4A0.7903 (3)0.7247 (3)0.06465 (4)0.0293 (5)
C50.6931 (4)0.5403 (4)0.06370 (4)0.0413 (6)
H5A0.76210.45830.05330.050*
H5B0.57390.55670.05640.050*
C60.6696 (4)0.4520 (4)0.08907 (4)0.0406 (6)
H6A0.58580.52400.09880.049*
H6B0.61880.33070.08730.049*
C70.8502 (3)0.4407 (3)0.10176 (4)0.0300 (5)
C80.9541 (3)0.6181 (3)0.10379 (3)0.0265 (5)
H80.87890.70320.11320.032*
C8A0.9762 (3)0.6979 (3)0.07764 (4)0.0234 (5)
H8A1.04230.60590.06820.028*
C91.2453 (3)1.0976 (3)0.04836 (4)0.0247 (5)
C101.3641 (3)1.1046 (3)0.02623 (4)0.0286 (5)
C110.6688 (3)0.8646 (4)0.07742 (4)0.0395 (6)
H11A0.56020.88340.06800.059*
H11B0.73340.97780.07900.059*
H11C0.63640.82050.09330.059*
C121.1327 (3)0.5938 (3)0.11736 (4)0.0354 (6)
H12A1.11110.52910.13230.053*
H12B1.18390.71120.12100.053*
H12C1.21610.52570.10740.053*
C131.2460 (3)1.2350 (3)0.06410 (4)0.0344 (6)
H13A1.32051.33550.06130.041*
H13B1.17211.23080.07790.041*
C141.5954 (4)1.2590 (4)0.00496 (4)0.0429 (7)
H14A1.67421.15450.00510.064*
H14B1.66731.36800.00620.064*
H14C1.52711.26110.01000.064*
O10.9105 (2)0.2973 (2)0.10919 (3)0.0385 (4)
O21.3651 (3)0.9897 (3)0.01066 (3)0.0601 (6)
O31.4716 (2)1.2492 (2)0.02541 (3)0.0393 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0237 (12)0.0234 (12)0.0265 (10)0.0016 (9)0.0015 (9)0.0006 (9)
C20.0271 (13)0.0245 (12)0.0267 (10)0.0025 (9)0.0026 (9)0.0036 (9)
C30.0344 (14)0.0428 (15)0.0254 (10)0.0081 (11)0.0019 (10)0.0071 (10)
C40.0315 (14)0.0503 (16)0.0287 (11)0.0116 (12)0.0069 (10)0.0017 (11)
C4A0.0221 (12)0.0352 (13)0.0307 (11)0.0037 (10)0.0012 (9)0.0018 (10)
C50.0332 (15)0.0448 (16)0.0459 (14)0.0175 (12)0.0064 (11)0.0034 (12)
C60.0326 (15)0.0385 (15)0.0507 (14)0.0120 (12)0.0002 (11)0.0078 (12)
C70.0321 (13)0.0284 (13)0.0297 (10)0.0008 (11)0.0103 (9)0.0010 (10)
C80.0272 (12)0.0267 (12)0.0256 (10)0.0021 (10)0.0031 (9)0.0001 (9)
C8A0.0225 (11)0.0218 (12)0.0257 (10)0.0006 (9)0.0022 (8)0.0025 (8)
C90.0242 (12)0.0223 (12)0.0275 (10)0.0004 (10)0.0007 (8)0.0010 (9)
C100.0312 (13)0.0230 (12)0.0316 (11)0.0036 (10)0.0012 (9)0.0016 (9)
C110.0239 (13)0.0462 (16)0.0483 (14)0.0076 (12)0.0026 (11)0.0121 (12)
C120.0369 (14)0.0326 (14)0.0367 (12)0.0039 (11)0.0062 (10)0.0078 (10)
C130.0333 (13)0.0310 (13)0.0389 (12)0.0066 (11)0.0098 (10)0.0038 (11)
C140.0352 (14)0.0504 (17)0.0430 (14)0.0076 (13)0.0161 (11)0.0028 (12)
O10.0422 (11)0.0254 (10)0.0479 (9)0.0015 (8)0.0084 (8)0.0057 (7)
O20.0819 (16)0.0494 (12)0.0490 (10)0.0310 (11)0.0323 (10)0.0215 (10)
O30.0392 (10)0.0375 (10)0.0411 (9)0.0152 (8)0.0162 (7)0.0061 (7)
Geometric parameters (Å, º) top
C1—C8A1.527 (3)C7—O11.211 (3)
C1—C21.532 (3)C7—C81.512 (3)
C1—H1A0.9700C8—C121.517 (3)
C1—H1B0.9700C8—C8A1.555 (3)
C2—C91.502 (3)C8—H80.9800
C2—C31.529 (3)C8A—H8A0.9800
C2—H20.9800C9—C131.326 (3)
C3—C41.519 (3)C9—C101.493 (3)
C3—H3A0.9700C10—O21.199 (3)
C3—H3B0.9700C10—O31.322 (3)
C4—C4A1.539 (3)C11—H11A0.9600
C4—H4A0.9700C11—H11B0.9600
C4—H4B0.9700C11—H11C0.9600
C4A—C111.529 (3)C12—H12A0.9600
C4A—C51.530 (3)C12—H12B0.9600
C4A—C8A1.551 (3)C12—H12C0.9600
C5—C61.542 (3)C13—H13A0.9300
C5—H5A0.9700C13—H13B0.9300
C5—H5B0.9700C14—O31.443 (3)
C6—C71.498 (3)C14—H14A0.9600
C6—H6A0.9700C14—H14B0.9600
C6—H6B0.9700C14—H14C0.9600
C8A—C1—C2111.03 (17)O1—C7—C8122.6 (2)
C8A—C1—H1A109.4C6—C7—C8115.6 (2)
C2—C1—H1A109.4C7—C8—C12111.72 (19)
C8A—C1—H1B109.4C7—C8—C8A107.99 (17)
C2—C1—H1B109.4C12—C8—C8A113.89 (18)
H1A—C1—H1B108.0C7—C8—H8107.7
C9—C2—C3110.93 (19)C12—C8—H8107.7
C9—C2—C1114.00 (17)C8A—C8—H8107.7
C3—C2—C1110.20 (18)C1—C8A—C4A112.01 (17)
C9—C2—H2107.1C1—C8A—C8113.25 (17)
C3—C2—H2107.1C4A—C8A—C8112.22 (17)
C1—C2—H2107.1C1—C8A—H8A106.2
C4—C3—C2111.4 (2)C4A—C8A—H8A106.2
C4—C3—H3A109.4C8—C8A—H8A106.2
C2—C3—H3A109.4C13—C9—C10119.9 (2)
C4—C3—H3B109.4C13—C9—C2124.7 (2)
C2—C3—H3B109.4C10—C9—C2115.42 (18)
H3A—C3—H3B108.0O2—C10—O3122.4 (2)
C3—C4—C4A113.09 (18)O2—C10—C9123.8 (2)
C3—C4—H4A109.0O3—C10—C9113.80 (18)
C4A—C4—H4A109.0C4A—C11—H11A109.5
C3—C4—H4B109.0C4A—C11—H11B109.5
C4A—C4—H4B109.0H11A—C11—H11B109.5
H4A—C4—H4B107.8C4A—C11—H11C109.5
C11—C4A—C5109.7 (2)H11A—C11—H11C109.5
C11—C4A—C4109.4 (2)H11B—C11—H11C109.5
C5—C4A—C4108.70 (19)C8—C12—H12A109.5
C11—C4A—C8A112.85 (18)C8—C12—H12B109.5
C5—C4A—C8A108.26 (19)H12A—C12—H12B109.5
C4—C4A—C8A107.80 (18)C8—C12—H12C109.5
C4A—C5—C6113.1 (2)H12A—C12—H12C109.5
C4A—C5—H5A109.0H12B—C12—H12C109.5
C6—C5—H5A109.0C9—C13—H13A120.0
C4A—C5—H5B109.0C9—C13—H13B120.0
C6—C5—H5B109.0H13A—C13—H13B120.0
H5A—C5—H5B107.8O3—C14—H14A109.5
C7—C6—C5110.0 (2)O3—C14—H14B109.5
C7—C6—H6A109.7H14A—C14—H14B109.5
C5—C6—H6A109.7O3—C14—H14C109.5
C7—C6—H6B109.7H14A—C14—H14C109.5
C5—C6—H6B109.7H14B—C14—H14C109.5
H6A—C6—H6B108.2C10—O3—C14116.22 (19)
O1—C7—C6121.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···O2i0.962.543.113 (3)118
Symmetry code: (i) y+1, x, z.

Experimental details

Crystal data
Chemical formulaC16H24O3
Mr264.35
Crystal system, space groupTetragonal, P41212
Temperature (K)180
a, c (Å)7.3359 (1), 54.7419 (13)
V3)2945.96 (9)
Z8
Radiation typeCu Kα
µ (mm1)0.64
Crystal size (mm)0.48 × 0.24 × 0.18
Data collection
DiffractometerAgilent Xcalibur Eos Gemini ultra
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.737, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11562, 2319, 2286
Rint0.027
θmax (°)62.0
(sin θ/λ)max1)0.573
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.107, 1.22
No. of reflections2319
No. of parameters176
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.13

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997)and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···O2i0.962.543.113 (3)118
Symmetry code: (i) y+1, x, z.
 

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAzoulay, P., Reynier, J. P., Balansard, G., Gasquet, M. & Timon-David, P. (1986). Pharm. Acta Helv. 61, 345–352.  CAS PubMed Web of Science Google Scholar
First citationBarrero, A. F., Herrador, M. M., Arteaga, J. & Catala' n, V. (2009). Eur. J. Org. Chem. pp. 3589–3594.  Web of Science CrossRef Google Scholar
First citationBohlmann, F., Czerson, H. & Schoneweib, S. (1977). Chem. Ber. 110, 1330–1334.  CrossRef CAS Web of Science Google Scholar
First citationCeccherelli, P., Curini, M. & Marcotullio, M. C. (1988). J. Nat. Prod. 51, 1006–1009.  CrossRef CAS PubMed Web of Science Google Scholar
First citationChiappini, I., Fardella, G., Menghini, A. & Rossi, C. (1982). Planta Med. 44, 159–161.  CrossRef PubMed CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGeissman, T. A. & Toribio, F. P. (1967). Phytochemistry, 6, 1563–1567.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShtacher, G. & Kasshman, Y. (1970). J. Med. Chem. 13, 1221–1223.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds