organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-4-tert-Butyl-2-(1,2,3,4-tetra­hydro­isoquinolin-3-yl)-1,3-thia­zole

aSchool of Pharmacy and Pharmacology, University of KwaZulu-Natal, Durban 4000, South Africa, and bSchool of Chemistry, University of KwaZulu-Natal, Durban 4000, South Africa
*Correspondence e-mail: maguireg@ukzn.ac.za

(Received 25 May 2012; accepted 11 July 2012; online 18 July 2012)

In the title compound, C16H20N2S, a potential tetra­hydro­isoquinoline (TIQ) thia­zole ligand, the N-containing six-membered ring of the TIQ unit adopts a half-chair conformation. There are four mol­ecules in the asymmetric unit. No classical hydrogen bonds or ππ inter­actions were found in the crystal structure.

Related literature

For reactions associated with tetra­hydro­isoquinoline ligands, see: Chakka et al. (2010[Chakka, S. K., Andersson, P. G., Maguire, G. E. M., Kruger, H. G. & Govender, T. (2010). Eur. J. Org. Chem. pp. 972-980.]); Naicker et al. (2010[Naicker, T., Petzold, K., Singh, T., Arvidsson, P. I., Kruger, H. G., Maguire, G. E. M. & Govender, T. (2010). Tetrahedron Asymmetry, 21, 2859-2867.]); Kawthekar et al. (2010[Kawthekar, R. B., Chakka, S. K., Francis, V., Andersson, P. G., Kruger, H. G., Maguire, G. E. M. & Govender, T. (2010). Tetrahedron Asymmetry, 21, 846-852.]); Peters et al. (2010[Peters, B. K., Chakka, S. K., Naicker, T., Maguire, G. E. M., Kruger, H. G., Andersson, P. G. & Govender, T. (2010). Tetrahedron Asymmetry, 21, 679-687.]); Pawar et al. (2012[Pawar, S., Chakka, S. K., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2012). S. Afr. J. Chem. 65, 23-29.]). For related structures, see: Aubry et al. (2006[Aubry, S., Pellet-Rostaing, S., Faure, R. & Lemaire, M. (2006). J. Heterocycl. Chem. 43, 139-148.]); Naicker et al. (2011a[Naicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011a). Acta Cryst. E67, o67.],b[Naicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011b). Acta Cryst. E67, o1403.]); Pawar et al. (2011[Pawar, S., Katharigatta, V., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011). Acta Cryst. E67, o2722.]).

[Scheme 1]

Experimental

Crystal data
  • C16H20N2S

  • Mr = 272.40

  • Monoclinic, P 21

  • a = 10.0534 (9) Å

  • b = 13.0076 (12) Å

  • c = 23.808 (2) Å

  • β = 102.076 (1)°

  • V = 3044.5 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 173 K

  • 0.18 × 0.16 × 0.08 mm

Data collection
  • Bruker Kappa DUO APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.984

  • 39811 measured reflections

  • 15130 independent reflections

  • 12021 reflections with I > 2σ(I)

  • Rint = 0.035

  • Standard reflections: ?

Refinement
  • R[F2 > 2σ(F2)] = 0.092

  • wR(F2) = 0.299

  • S = 1.04

  • 15130 reflections

  • 710 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.99 e Å−3

  • Δρmin = −0.76 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 7172 Friedel pairs

  • Flack parameter: 0.04 (13)

Data collection: SAINT (Bruker, 2006[Bruker (2006). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT; data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

We have recently reported a range of tetrahydroisoquinoline (TIQ) structures that have been employed as ligands for catalysis of a number of reactions, Chakka et al. 2010, Naicker et al., 2010, Kawthekar et al., 2010 and Peters et al., 2010. The title compound is from a new family of TIQ thiazole derivatives that we have tested for catalytic activity in the Henry reaction, (Pawar et al., 2012).

The absolute stereochemistry was confirmed to be S at the C9 position from two-dimensional NMR spectroscopy experiments (Aubry et al., 2006), (Fig. 1). From the crystal structure it is evident that the N-containing six membered ring assumes a half chair conformation [Q = 0.493 (6) Å, θ = 49.5 (7)° and φ = 322.8 (9)°]. This is similar to our previously reported structures which also assume this conformation (Naicker et al., 2011a,b and Pawar et al. 2011). The torsion angle for C1A—N1A—C9A—C10A is -170.1 (5)°; C1B—N1B—C9B—C10B is -173.4 (5)°; C1C—N1C—C9C—C10C is -170.5 (5)° and C1D—N1D—C9D—C10D is -169.1 (5)°. For the plain formed by the atoms C1—C2—C7—C8—C9—N1 the maximum displacement from planarity for N1A is 0.446 Å and for C9A 0.299 Å; N1B is 0.384 Å and for C9B 0.296 Å; N1C is 0.427 Å and for C9C 0.258 Å and N1D is 0.286 Å and for C9D 0.473 Å. There are no hydrogen bonding or ππ interactions in the crystal lattice.

Related literature top

For reactions associated with tetrahydroisoquinoline ligands, see: Chakka et al. (2010); Naicker et al. (2010); Kawthekar et al. (2010); Peters et al. (2010); Pawar et al. (2012). For related structures and elucidation, see: Aubry et al. (2006); Naicker et al. (2011a,b); Pawar et al. (2011).

Experimental top

The N-protected thiazole (3 mmol) was dissolved in THF (15 ml), to this 12 M HCl (15 ml) was added slowly and the reaction mixture was stirred at room temperature for 2 h. The reaction was monitored by TLC using EtOAc/Hexane (20:80, Rf = 0.5). After this time the THF was evaporated under vacuum. Aqueous saturated NaHCO3 solution, was then slowly poured into the mixture which was then extracted with CH2Cl2 (3 x 30 ml). The combined organic layers waere dried over MgSO4. The solvent was then evaporated under reduced pressure. The residue was purified by column chromatography on silica gel (deactivated with 5% Et3N) with Et3N/EtOAc/Hexane (5/8/100) as the eluent to afford the TIQ thiazole as a yellow solid (0.27 g, yield 95%).

Recrystallization from mixture of hexane and dichloromethane at room temperature afforded colourless crystals suitable for X-ray analysis.

Refinement top

The crystal was twinned. When the structure was attempted to be refined with a P21/c space group the R factor rose to 20%. All hydrogen atoms, except H1A, H1B, H1C and H1D, were positioned geometrically with C—H distances ranging from 0.95 Å to 0.99 Å and refined as riding on their parent atoms with Uiso (H) = 1.2 - 1.5 Ueq (C). The positions of H1A, H1B, H1C and H1D were located in difference electron density maps and refined with bond length constraints [d(N—H) = 0.97 (2) Å] and Uiso = 1.5 Ueq (N).

Structure description top

We have recently reported a range of tetrahydroisoquinoline (TIQ) structures that have been employed as ligands for catalysis of a number of reactions, Chakka et al. 2010, Naicker et al., 2010, Kawthekar et al., 2010 and Peters et al., 2010. The title compound is from a new family of TIQ thiazole derivatives that we have tested for catalytic activity in the Henry reaction, (Pawar et al., 2012).

The absolute stereochemistry was confirmed to be S at the C9 position from two-dimensional NMR spectroscopy experiments (Aubry et al., 2006), (Fig. 1). From the crystal structure it is evident that the N-containing six membered ring assumes a half chair conformation [Q = 0.493 (6) Å, θ = 49.5 (7)° and φ = 322.8 (9)°]. This is similar to our previously reported structures which also assume this conformation (Naicker et al., 2011a,b and Pawar et al. 2011). The torsion angle for C1A—N1A—C9A—C10A is -170.1 (5)°; C1B—N1B—C9B—C10B is -173.4 (5)°; C1C—N1C—C9C—C10C is -170.5 (5)° and C1D—N1D—C9D—C10D is -169.1 (5)°. For the plain formed by the atoms C1—C2—C7—C8—C9—N1 the maximum displacement from planarity for N1A is 0.446 Å and for C9A 0.299 Å; N1B is 0.384 Å and for C9B 0.296 Å; N1C is 0.427 Å and for C9C 0.258 Å and N1D is 0.286 Å and for C9D 0.473 Å. There are no hydrogen bonding or ππ interactions in the crystal lattice.

For reactions associated with tetrahydroisoquinoline ligands, see: Chakka et al. (2010); Naicker et al. (2010); Kawthekar et al. (2010); Peters et al. (2010); Pawar et al. (2012). For related structures and elucidation, see: Aubry et al. (2006); Naicker et al. (2011a,b); Pawar et al. (2011).

Computing details top

Data collection: SAINT (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The crystal structure of the title compound with atomic numbering. Displacement ellipsoids are drawn at 50% probability.
(S)-4-tert-Butyl-2-(1,2,3,4-tetrahydroisoquinolin-3-yl)- 1,3-thiazole top
Crystal data top
C16H20N2SF(000) = 1168
Mr = 272.40Dx = 1.189 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.0534 (9) ÅCell parameters from 39811 reflections
b = 13.0076 (12) Åθ = 1.6–28.4°
c = 23.808 (2) ŵ = 0.20 mm1
β = 102.076 (1)°T = 173 K
V = 3044.5 (5) Å3Block, colourless
Z = 80.18 × 0.16 × 0.08 mm
Data collection top
Bruker Kappa DUO APEXII
diffractometer
15130 independent reflections
Radiation source: fine-focus sealed tube12021 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
0.5° φ scans and ω scansθmax = 28.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1313
Tmin = 0.965, Tmax = 0.984k = 1717
39811 measured reflectionsl = 3131
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.092H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.299 w = 1/[σ2(Fo2) + (0.193P)2 + 3.4647P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
15130 reflectionsΔρmax = 0.99 e Å3
710 parametersΔρmin = 0.76 e Å3
5 restraintsAbsolute structure: Flack (1983), 7172 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (13)
Crystal data top
C16H20N2SV = 3044.5 (5) Å3
Mr = 272.40Z = 8
Monoclinic, P21Mo Kα radiation
a = 10.0534 (9) ŵ = 0.20 mm1
b = 13.0076 (12) ÅT = 173 K
c = 23.808 (2) Å0.18 × 0.16 × 0.08 mm
β = 102.076 (1)°
Data collection top
Bruker Kappa DUO APEXII
diffractometer
15130 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
12021 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.984Rint = 0.035
39811 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.092H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.299Δρmax = 0.99 e Å3
S = 1.04Δρmin = 0.76 e Å3
15130 reflectionsAbsolute structure: Flack (1983), 7172 Friedel pairs
710 parametersAbsolute structure parameter: 0.04 (13)
5 restraints
Special details top

Experimental. Half sphere of data collected using the Bruker SAINT software package. Crystal to detector distance = 30 mm; combination of φ and ω scans of 0.5°, 30 s per °, 2 iterations.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.09853 (14)0.61309 (11)0.11586 (7)0.0419 (3)
N1A0.3267 (5)0.6150 (4)0.2152 (2)0.0378 (10)
H1A0.264 (6)0.604 (7)0.240 (3)0.057*
N2A0.1638 (5)0.4234 (3)0.11006 (19)0.0329 (9)
C1A0.4608 (7)0.6376 (5)0.2515 (3)0.0489 (15)
H1A10.44940.68930.28060.059*
H1A20.51930.66830.22730.059*
C2A0.5322 (6)0.5450 (5)0.2818 (2)0.0422 (13)
C3A0.6510 (7)0.5576 (7)0.3254 (3)0.0562 (18)
H3A0.68370.62480.33610.067*
C4A0.7189 (8)0.4742 (8)0.3521 (3)0.068 (2)
H4A0.79850.48460.38100.082*
C5A0.6754 (7)0.3759 (7)0.3382 (3)0.0571 (18)
H5A0.72310.31910.35800.068*
C6A0.5607 (6)0.3594 (5)0.2949 (3)0.0449 (14)
H6A0.53090.29140.28450.054*
C7A0.4889 (6)0.4442 (5)0.2665 (2)0.0367 (11)
C8A0.3660 (5)0.4250 (4)0.2192 (2)0.0333 (10)
H8A10.28680.40790.23600.040*
H8A20.38370.36610.19540.040*
C9A0.3349 (5)0.5207 (4)0.1816 (2)0.0280 (9)
H9A0.41070.52990.16080.034*
C10A0.2059 (5)0.5086 (4)0.1376 (2)0.0278 (9)
C11A0.0054 (6)0.5346 (5)0.0667 (3)0.0424 (13)
H11A0.08690.55610.04150.051*
C12A0.0464 (5)0.4374 (4)0.0691 (2)0.0351 (11)
C13A0.0077 (5)0.3479 (5)0.0315 (3)0.0403 (12)
C14A0.0372 (8)0.2563 (6)0.0695 (3)0.0591 (18)
H14A0.04140.24570.10110.089*
H14B0.05380.19380.04610.089*
H14C0.11760.27210.08520.089*
C15A0.1035 (7)0.3142 (6)0.0002 (3)0.0547 (17)
H15A0.12560.37130.02310.082*
H15B0.07100.25550.02480.082*
H15C0.18500.29410.02840.082*
C16A0.1361 (8)0.3772 (8)0.0118 (4)0.072 (2)
H16A0.20150.40850.00840.107*
H16B0.17620.31560.03220.107*
H16C0.11320.42660.03940.107*
S1B0.60664 (15)0.34925 (11)0.11989 (6)0.0400 (3)
N1B0.8906 (6)0.3639 (4)0.2019 (2)0.0462 (12)
H1B0.940 (7)0.380 (7)0.171 (3)0.069*
N2B0.6586 (5)0.5416 (4)0.1216 (2)0.0374 (10)
C1B0.9826 (6)0.3481 (5)0.2572 (3)0.0439 (13)
H1B11.05520.30000.25190.053*
H1B20.93130.31480.28350.053*
C2B1.0472 (6)0.4433 (5)0.2851 (2)0.0364 (11)
C3B1.1645 (7)0.4370 (6)0.3293 (3)0.0519 (16)
H3B1.20130.37160.34180.062*
C4B1.2274 (7)0.5265 (8)0.3551 (3)0.062 (2)
H4B1.30740.52200.38440.074*
C5B1.1729 (8)0.6196 (7)0.3377 (3)0.0611 (19)
H5B1.21600.67990.35530.073*
C6B1.0559 (7)0.6296 (5)0.2950 (3)0.0478 (14)
H6B1.01850.69550.28410.057*
C7B0.9939 (5)0.5401 (4)0.2681 (2)0.0343 (11)
C8B0.8711 (6)0.5515 (4)0.2204 (2)0.0374 (11)
H8B10.89940.58030.18620.045*
H8B20.80710.60060.23230.045*
C9B0.7984 (6)0.4497 (4)0.2043 (3)0.0390 (12)
H9B0.74810.43330.23520.047*
C10B0.6936 (5)0.4573 (4)0.1491 (2)0.0346 (11)
C11B0.5115 (6)0.4238 (5)0.0688 (3)0.0420 (12)
H11B0.43970.39870.03950.050*
C12B0.5500 (5)0.5239 (4)0.0745 (2)0.0313 (10)
C13B0.4973 (5)0.6145 (5)0.0360 (3)0.0401 (12)
C14B0.6112 (7)0.6504 (6)0.0065 (3)0.0520 (17)
H14D0.57750.70640.02030.078*
H14E0.64020.59290.01470.078*
H14F0.68860.67480.03550.078*
C15B0.3705 (7)0.5821 (7)0.0092 (4)0.064 (2)
H15D0.29560.56700.01010.097*
H15E0.39170.52070.02950.097*
H15F0.34390.63820.03670.097*
C16B0.4602 (7)0.7032 (5)0.0722 (3)0.0516 (16)
H16D0.44280.76540.04850.077*
H16E0.53560.71580.10490.077*
H16F0.37830.68520.08630.077*
S1C0.49001 (18)1.13218 (11)0.37976 (7)0.0457 (4)
N1C0.6940 (6)1.1111 (4)0.2993 (2)0.0506 (13)
H1C0.746 (8)1.109 (8)0.3381 (15)0.076*
N2C0.5430 (5)0.9411 (4)0.3832 (2)0.0380 (10)
C1C0.7239 (7)1.1284 (5)0.2438 (3)0.0494 (15)
H1C10.79981.17830.24790.059*
H1C20.64341.16040.21880.059*
C2C0.7620 (6)1.0332 (5)0.2141 (3)0.0415 (12)
C3C0.8347 (7)1.0409 (8)0.1699 (3)0.060 (2)
H3C0.86081.10640.15820.072*
C4C0.8679 (8)0.9533 (8)0.1435 (3)0.066 (2)
H4C0.91690.95830.11350.079*
C5C0.8294 (8)0.8560 (8)0.1607 (3)0.064 (2)
H5C0.85320.79560.14270.077*
C6C0.7578 (7)0.8487 (6)0.2034 (3)0.0528 (15)
H6C0.73050.78300.21440.063*
C7C0.7244 (6)0.9369 (5)0.2312 (2)0.0385 (12)
C8C0.6495 (6)0.9268 (5)0.2803 (2)0.0382 (12)
H8C10.57150.87950.26860.046*
H8C20.71160.89630.31400.046*
C9C0.5986 (6)1.0286 (5)0.2972 (3)0.0412 (12)
H9C0.51751.04690.26670.049*
C10C0.5504 (5)1.0230 (4)0.3527 (3)0.0366 (11)
C11C0.4493 (6)1.0600 (5)0.4341 (3)0.0406 (12)
H11C0.40641.08620.46310.049*
C12C0.4867 (5)0.9611 (4)0.4301 (2)0.0344 (11)
C13C0.4733 (6)0.8751 (5)0.4722 (3)0.0422 (13)
C14C0.4029 (8)0.7853 (6)0.4391 (4)0.0607 (19)
H14G0.39690.72870.46560.091*
H14H0.45480.76290.41080.091*
H14I0.31120.80570.41940.091*
C15C0.6172 (7)0.8470 (6)0.5036 (3)0.0574 (18)
H15G0.61260.79730.53410.086*
H15H0.66460.90900.52040.086*
H15I0.66660.81650.47630.086*
C16C0.3907 (9)0.9113 (7)0.5163 (3)0.065 (2)
H16G0.30370.93990.49600.098*
H16H0.44210.96420.54100.098*
H16I0.37390.85280.53980.098*
S1D0.98789 (17)0.88108 (13)0.38079 (7)0.0479 (4)
N1D1.1117 (5)0.8850 (4)0.2825 (2)0.0367 (9)
H1D1.023 (4)0.882 (6)0.257 (2)0.055*
N2D1.0684 (5)1.0679 (4)0.3918 (2)0.0388 (10)
C1D1.2058 (7)0.8614 (5)0.2455 (3)0.0449 (14)
H1D11.16190.81130.21610.054*
H1D21.28710.82770.26900.054*
C2D1.2522 (5)0.9536 (4)0.2152 (2)0.0353 (11)
C3D1.3220 (7)0.9387 (6)0.1714 (3)0.0480 (14)
H3D1.34180.87080.16090.058*
C4D1.3641 (8)1.0233 (7)0.1421 (3)0.0600 (19)
H4D1.41271.01270.11240.072*
C5D1.3343 (7)1.1189 (7)0.1569 (3)0.0601 (19)
H5D1.36121.17620.13710.072*
C6D1.2647 (6)1.1354 (5)0.2008 (3)0.0419 (12)
H6D1.24391.20350.21050.050*
C7D1.2251 (5)1.0524 (4)0.2309 (2)0.0329 (10)
C8D1.1525 (5)1.0723 (4)0.2792 (2)0.0319 (10)
H8D11.05651.09080.26320.038*
H8D21.19611.13050.30290.038*
C9D1.1581 (5)0.9752 (4)0.3170 (2)0.0303 (10)
H9D1.25510.96350.33660.036*
C10D1.0758 (5)0.9858 (4)0.3624 (2)0.0323 (10)
C11D0.9375 (6)0.9549 (6)0.4329 (3)0.0507 (16)
H11D0.88150.93170.45790.061*
C12D0.9900 (6)1.0518 (5)0.4328 (2)0.0390 (12)
C13D0.9748 (6)1.1356 (6)0.4738 (2)0.0447 (14)
C14D0.9180 (17)1.2287 (8)0.4417 (4)0.124 (6)
H14J0.87671.27290.46670.186*
H14K0.84881.20850.40810.186*
H14L0.99111.26630.42910.186*
C15D1.1122 (8)1.1564 (7)0.5130 (4)0.065 (2)
H15J1.14321.09460.53540.098*
H15K1.10361.21320.53900.098*
H15L1.17831.17480.48970.098*
C16D0.8815 (11)1.1057 (10)0.5137 (5)0.094 (4)
H16J0.79381.08260.49100.141*
H16K0.86711.16540.53690.141*
H16L0.92321.05000.53910.141*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0386 (7)0.0278 (6)0.0569 (8)0.0050 (5)0.0043 (6)0.0021 (6)
N1A0.037 (2)0.029 (2)0.045 (2)0.0051 (18)0.0034 (18)0.012 (2)
N2A0.039 (2)0.0227 (19)0.034 (2)0.0043 (16)0.0005 (17)0.0028 (16)
C1A0.048 (3)0.033 (3)0.059 (4)0.004 (2)0.003 (3)0.016 (3)
C2A0.033 (3)0.056 (4)0.035 (3)0.007 (2)0.002 (2)0.015 (3)
C3A0.048 (3)0.076 (5)0.040 (3)0.003 (3)0.002 (3)0.023 (3)
C4A0.055 (4)0.099 (7)0.043 (4)0.001 (4)0.005 (3)0.012 (4)
C5A0.051 (4)0.076 (5)0.041 (3)0.015 (4)0.002 (3)0.009 (3)
C6A0.046 (3)0.050 (4)0.038 (3)0.006 (3)0.005 (2)0.005 (3)
C7A0.037 (3)0.041 (3)0.033 (3)0.005 (2)0.011 (2)0.006 (2)
C8A0.032 (2)0.030 (2)0.038 (3)0.0001 (19)0.006 (2)0.001 (2)
C9A0.027 (2)0.024 (2)0.034 (2)0.0040 (16)0.0069 (18)0.0049 (18)
C10A0.026 (2)0.025 (2)0.033 (2)0.0010 (17)0.0089 (18)0.0025 (18)
C11A0.030 (3)0.045 (3)0.045 (3)0.000 (2)0.007 (2)0.007 (3)
C12A0.032 (2)0.037 (3)0.038 (3)0.007 (2)0.011 (2)0.005 (2)
C13A0.029 (2)0.041 (3)0.046 (3)0.003 (2)0.003 (2)0.009 (3)
C14A0.066 (4)0.055 (4)0.060 (4)0.020 (3)0.022 (3)0.013 (3)
C15A0.047 (3)0.068 (5)0.051 (4)0.008 (3)0.015 (3)0.021 (3)
C16A0.047 (4)0.076 (6)0.076 (5)0.005 (4)0.022 (4)0.010 (4)
S1B0.0400 (7)0.0309 (6)0.0465 (8)0.0035 (5)0.0027 (6)0.0004 (6)
N1B0.046 (3)0.039 (3)0.048 (3)0.009 (2)0.004 (2)0.005 (2)
N2B0.029 (2)0.033 (2)0.044 (2)0.0066 (18)0.0050 (18)0.002 (2)
C1B0.043 (3)0.031 (3)0.051 (3)0.007 (2)0.004 (2)0.006 (2)
C2B0.035 (3)0.042 (3)0.033 (3)0.000 (2)0.008 (2)0.004 (2)
C3B0.048 (3)0.064 (4)0.037 (3)0.005 (3)0.006 (3)0.005 (3)
C4B0.048 (4)0.104 (7)0.029 (3)0.009 (4)0.003 (3)0.006 (4)
C5B0.066 (4)0.075 (5)0.038 (3)0.024 (4)0.000 (3)0.017 (3)
C6B0.055 (3)0.044 (3)0.042 (3)0.017 (3)0.006 (3)0.009 (3)
C7B0.035 (3)0.034 (3)0.033 (3)0.006 (2)0.004 (2)0.001 (2)
C8B0.042 (3)0.033 (3)0.036 (3)0.001 (2)0.003 (2)0.002 (2)
C9B0.040 (3)0.032 (3)0.043 (3)0.001 (2)0.001 (2)0.002 (2)
C10B0.035 (3)0.028 (2)0.039 (3)0.003 (2)0.004 (2)0.001 (2)
C11B0.037 (3)0.041 (3)0.044 (3)0.002 (2)0.001 (2)0.002 (2)
C12B0.022 (2)0.039 (3)0.031 (2)0.0030 (18)0.0011 (17)0.002 (2)
C13B0.031 (2)0.044 (3)0.045 (3)0.002 (2)0.010 (2)0.009 (3)
C14B0.048 (3)0.061 (4)0.050 (4)0.002 (3)0.015 (3)0.026 (3)
C15B0.044 (4)0.064 (5)0.074 (5)0.002 (3)0.015 (3)0.017 (4)
C16B0.045 (3)0.042 (3)0.066 (4)0.017 (3)0.008 (3)0.016 (3)
S1C0.0636 (9)0.0291 (7)0.0477 (8)0.0017 (6)0.0190 (7)0.0010 (6)
N1C0.059 (3)0.042 (3)0.052 (3)0.017 (3)0.015 (2)0.007 (2)
N2C0.037 (2)0.028 (2)0.053 (3)0.0032 (18)0.019 (2)0.002 (2)
C1C0.065 (4)0.035 (3)0.053 (3)0.013 (3)0.024 (3)0.000 (3)
C2C0.043 (3)0.045 (3)0.036 (3)0.005 (2)0.008 (2)0.000 (2)
C3C0.048 (4)0.090 (6)0.043 (3)0.017 (4)0.010 (3)0.009 (4)
C4C0.056 (4)0.112 (7)0.031 (3)0.015 (4)0.016 (3)0.008 (4)
C5C0.061 (4)0.081 (6)0.053 (4)0.004 (4)0.017 (3)0.019 (4)
C6C0.054 (4)0.055 (4)0.046 (3)0.000 (3)0.005 (3)0.009 (3)
C7C0.036 (3)0.045 (3)0.032 (3)0.009 (2)0.001 (2)0.002 (2)
C8C0.037 (3)0.038 (3)0.040 (3)0.005 (2)0.010 (2)0.001 (2)
C9C0.045 (3)0.031 (3)0.048 (3)0.000 (2)0.013 (2)0.000 (2)
C10C0.034 (3)0.029 (3)0.048 (3)0.0045 (19)0.013 (2)0.008 (2)
C11C0.048 (3)0.038 (3)0.041 (3)0.004 (2)0.019 (2)0.003 (2)
C12C0.029 (2)0.038 (3)0.035 (3)0.003 (2)0.0045 (19)0.002 (2)
C13C0.042 (3)0.043 (3)0.044 (3)0.000 (2)0.014 (2)0.010 (3)
C14C0.066 (4)0.053 (4)0.070 (5)0.015 (3)0.029 (4)0.006 (4)
C15C0.046 (3)0.053 (4)0.071 (5)0.001 (3)0.008 (3)0.023 (4)
C16C0.071 (5)0.082 (6)0.051 (4)0.006 (4)0.033 (4)0.011 (4)
S1D0.0509 (8)0.0453 (8)0.0521 (9)0.0110 (7)0.0211 (7)0.0024 (7)
N1D0.046 (2)0.024 (2)0.043 (2)0.0009 (18)0.016 (2)0.0039 (18)
N2D0.042 (2)0.039 (3)0.040 (2)0.0067 (19)0.018 (2)0.002 (2)
C1D0.062 (4)0.033 (3)0.044 (3)0.002 (2)0.021 (3)0.004 (2)
C2D0.034 (2)0.032 (3)0.039 (3)0.001 (2)0.006 (2)0.001 (2)
C3D0.054 (3)0.047 (3)0.044 (3)0.002 (3)0.011 (3)0.007 (3)
C4D0.070 (5)0.076 (5)0.040 (3)0.012 (4)0.026 (3)0.002 (3)
C5D0.052 (4)0.082 (5)0.048 (4)0.014 (4)0.015 (3)0.020 (4)
C6D0.044 (3)0.036 (3)0.045 (3)0.004 (2)0.007 (2)0.006 (2)
C7D0.030 (2)0.037 (3)0.032 (2)0.0058 (19)0.0069 (19)0.001 (2)
C8D0.038 (3)0.027 (2)0.030 (2)0.0027 (19)0.006 (2)0.0019 (19)
C9D0.028 (2)0.033 (2)0.031 (2)0.0029 (18)0.0077 (18)0.0021 (19)
C10D0.033 (2)0.037 (3)0.028 (2)0.0022 (19)0.0070 (19)0.001 (2)
C11D0.033 (3)0.068 (5)0.052 (4)0.013 (3)0.012 (2)0.002 (3)
C12D0.032 (2)0.050 (3)0.037 (3)0.002 (2)0.010 (2)0.006 (2)
C13D0.039 (3)0.060 (4)0.037 (3)0.010 (3)0.013 (2)0.007 (3)
C14D0.221 (15)0.068 (6)0.070 (6)0.094 (9)0.000 (7)0.006 (5)
C15D0.061 (4)0.059 (4)0.070 (5)0.007 (3)0.002 (4)0.028 (4)
C16D0.084 (6)0.106 (8)0.111 (8)0.029 (6)0.064 (6)0.045 (7)
Geometric parameters (Å, º) top
S1A—C11A1.731 (6)S1C—C11C1.715 (6)
S1A—C10A1.745 (5)S1C—C10C1.722 (6)
N1A—C1A1.470 (7)N1C—C9C1.433 (8)
N1A—C9A1.476 (6)N1C—C1C1.434 (8)
N1A—H1A0.97 (2)N1C—H1C0.96 (2)
N2A—C10A1.312 (6)N2C—C10C1.301 (8)
N2A—C12A1.376 (7)N2C—C12C1.377 (7)
C1A—C2A1.507 (9)C1C—C2C1.515 (9)
C1A—H1A10.9900C1C—H1C10.9900
C1A—H1A20.9900C1C—H1C20.9900
C2A—C7A1.405 (9)C2C—C7C1.394 (8)
C2A—C3A1.418 (8)C2C—C3C1.404 (9)
C3A—C4A1.366 (12)C3C—C4C1.376 (13)
C3A—H3A0.9500C3C—H3C0.9500
C4A—C5A1.369 (13)C4C—C5C1.409 (14)
C4A—H4A0.9500C4C—H4C0.9500
C5A—C6A1.394 (9)C5C—C6C1.366 (10)
C5A—H5A0.9500C5C—H5C0.9500
C6A—C7A1.411 (8)C6C—C7C1.400 (9)
C6A—H6A0.9500C6C—H6C0.9500
C7A—C8A1.508 (7)C7C—C8C1.522 (8)
C8A—C9A1.526 (7)C8C—C9C1.506 (8)
C8A—H8A10.9900C8C—H8C10.9900
C8A—H8A20.9900C8C—H8C20.9900
C9A—C10A1.495 (7)C9C—C10C1.500 (8)
C9A—H9A1.0000C9C—H9C1.0000
C11A—C12A1.364 (9)C11C—C12C1.349 (8)
C11A—H11A0.9500C11C—H11C0.9500
C12A—C13A1.500 (8)C12C—C13C1.527 (8)
C13A—C16A1.521 (9)C13C—C14C1.501 (10)
C13A—C15A1.531 (9)C13C—C15C1.527 (9)
C13A—C14A1.562 (10)C13C—C16C1.540 (9)
C14A—H14A0.9800C14C—H14G0.9800
C14A—H14B0.9800C14C—H14H0.9800
C14A—H14C0.9800C14C—H14I0.9800
C15A—H15A0.9800C15C—H15G0.9800
C15A—H15B0.9800C15C—H15H0.9800
C15A—H15C0.9800C15C—H15I0.9800
C16A—H16A0.9800C16C—H16G0.9800
C16A—H16B0.9800C16C—H16H0.9800
C16A—H16C0.9800C16C—H16I0.9800
S1B—C11B1.688 (6)S1D—C11D1.726 (7)
S1B—C10B1.723 (5)S1D—C10D1.729 (6)
N1B—C1B1.457 (7)N1D—C9D1.451 (7)
N1B—C9B1.460 (7)N1D—C1D1.454 (7)
N1B—H1B0.99 (2)N1D—H1D0.97 (2)
N2B—C10B1.288 (7)N2D—C10D1.287 (7)
N2B—C12B1.410 (6)N2D—C12D1.392 (7)
C1B—C2B1.489 (8)C1D—C2D1.523 (8)
C1B—H1B10.9900C1D—H1D10.9900
C1B—H1B20.9900C1D—H1D20.9900
C2B—C7B1.395 (8)C2D—C7D1.382 (8)
C2B—C3B1.408 (8)C2D—C3D1.387 (8)
C3B—C4B1.404 (12)C3D—C4D1.414 (11)
C3B—H3B0.9500C3D—H3D0.9500
C4B—C5B1.358 (13)C4D—C5D1.344 (13)
C4B—H4B0.9500C4D—H4D0.9500
C5B—C6B1.391 (10)C5D—C6D1.392 (9)
C5B—H5B0.9500C5D—H5D0.9500
C6B—C7B1.409 (8)C6D—C7D1.398 (8)
C6B—H6B0.9500C6D—H6D0.9500
C7B—C8B1.500 (7)C7D—C8D1.507 (7)
C8B—C9B1.522 (8)C8D—C9D1.544 (7)
C8B—H8B10.9900C8D—H8D10.9900
C8B—H8B20.9900C8D—H8D20.9900
C9B—C10B1.505 (7)C9D—C10D1.501 (7)
C9B—H9B1.0000C9D—H9D1.0000
C11B—C12B1.358 (8)C11D—C12D1.366 (10)
C11B—H11B0.9500C11D—H11D0.9500
C12B—C13B1.519 (8)C12D—C13D1.493 (8)
C13B—C16B1.533 (9)C13D—C14D1.480 (11)
C13B—C14B1.536 (8)C13D—C16D1.520 (10)
C13B—C15B1.544 (9)C13D—C15D1.521 (10)
C14B—H14D0.9800C14D—H14J0.9800
C14B—H14E0.9800C14D—H14K0.9800
C14B—H14F0.9800C14D—H14L0.9800
C15B—H15D0.9800C15D—H15J0.9800
C15B—H15E0.9800C15D—H15K0.9800
C15B—H15F0.9800C15D—H15L0.9800
C16B—H16D0.9800C16D—H16J0.9800
C16B—H16E0.9800C16D—H16K0.9800
C16B—H16F0.9800C16D—H16L0.9800
C11A—S1A—C10A89.4 (3)C11C—S1C—C10C89.4 (3)
C1A—N1A—C9A109.7 (4)C9C—N1C—C1C110.7 (5)
C1A—N1A—H1A108 (4)C9C—N1C—H1C104 (6)
C9A—N1A—H1A109 (5)C1C—N1C—H1C136 (5)
C10A—N2A—C12A112.5 (4)C10C—N2C—C12C112.3 (5)
N1A—C1A—C2A114.1 (5)N1C—C1C—C2C115.1 (5)
N1A—C1A—H1A1108.7N1C—C1C—H1C1108.5
C2A—C1A—H1A1108.7C2C—C1C—H1C1108.5
N1A—C1A—H1A2108.7N1C—C1C—H1C2108.5
C2A—C1A—H1A2108.7C2C—C1C—H1C2108.5
H1A1—C1A—H1A2107.6H1C1—C1C—H1C2107.5
C7A—C2A—C3A117.8 (6)C7C—C2C—C3C119.9 (7)
C7A—C2A—C1A122.0 (5)C7C—C2C—C1C119.2 (5)
C3A—C2A—C1A120.1 (6)C3C—C2C—C1C120.9 (6)
C4A—C3A—C2A120.7 (7)C4C—C3C—C2C119.8 (8)
C4A—C3A—H3A119.6C4C—C3C—H3C120.1
C2A—C3A—H3A119.6C2C—C3C—H3C120.1
C3A—C4A—C5A121.7 (7)C3C—C4C—C5C120.2 (6)
C3A—C4A—H4A119.1C3C—C4C—H4C119.9
C5A—C4A—H4A119.1C5C—C4C—H4C119.9
C4A—C5A—C6A119.7 (7)C6C—C5C—C4C120.0 (8)
C4A—C5A—H5A120.2C6C—C5C—H5C120.0
C6A—C5A—H5A120.2C4C—C5C—H5C120.0
C5A—C6A—C7A119.7 (7)C5C—C6C—C7C120.7 (7)
C5A—C6A—H6A120.1C5C—C6C—H6C119.7
C7A—C6A—H6A120.1C7C—C6C—H6C119.7
C2A—C7A—C6A120.3 (5)C2C—C7C—C6C119.4 (6)
C2A—C7A—C8A120.6 (5)C2C—C7C—C8C120.7 (6)
C6A—C7A—C8A119.0 (5)C6C—C7C—C8C119.9 (6)
C7A—C8A—C9A109.7 (4)C9C—C8C—C7C112.3 (5)
C7A—C8A—H8A1109.7C9C—C8C—H8C1109.1
C9A—C8A—H8A1109.7C7C—C8C—H8C1109.1
C7A—C8A—H8A2109.7C9C—C8C—H8C2109.1
C9A—C8A—H8A2109.7C7C—C8C—H8C2109.1
H8A1—C8A—H8A2108.2H8C1—C8C—H8C2107.9
N1A—C9A—C10A109.2 (4)N1C—C9C—C10C110.1 (5)
N1A—C9A—C8A112.9 (4)N1C—C9C—C8C113.9 (5)
C10A—C9A—C8A111.4 (4)C10C—C9C—C8C112.5 (5)
N1A—C9A—H9A107.7N1C—C9C—H9C106.6
C10A—C9A—H9A107.7C10C—C9C—H9C106.6
C8A—C9A—H9A107.7C8C—C9C—H9C106.6
N2A—C10A—C9A125.5 (4)N2C—C10C—C9C126.8 (5)
N2A—C10A—S1A113.2 (4)N2C—C10C—S1C113.5 (4)
C9A—C10A—S1A121.2 (4)C9C—C10C—S1C119.6 (4)
C12A—C11A—S1A110.3 (4)C12C—C11C—S1C110.8 (4)
C12A—C11A—H11A124.9C12C—C11C—H11C124.6
S1A—C11A—H11A124.9S1C—C11C—H11C124.6
C11A—C12A—N2A114.6 (5)C11C—C12C—N2C113.9 (5)
C11A—C12A—C13A127.3 (5)C11C—C12C—C13C126.0 (5)
N2A—C12A—C13A118.1 (5)N2C—C12C—C13C120.1 (5)
C12A—C13A—C16A111.1 (6)C14C—C13C—C12C108.8 (5)
C12A—C13A—C15A107.6 (5)C14C—C13C—C15C111.3 (6)
C16A—C13A—C15A110.2 (6)C12C—C13C—C15C106.9 (5)
C12A—C13A—C14A109.5 (5)C14C—C13C—C16C109.5 (6)
C16A—C13A—C14A110.3 (6)C12C—C13C—C16C110.9 (6)
C15A—C13A—C14A108.1 (6)C15C—C13C—C16C109.3 (6)
C13A—C14A—H14A109.5C13C—C14C—H14G109.5
C13A—C14A—H14B109.5C13C—C14C—H14H109.5
H14A—C14A—H14B109.5H14G—C14C—H14H109.5
C13A—C14A—H14C109.5C13C—C14C—H14I109.5
H14A—C14A—H14C109.5H14G—C14C—H14I109.5
H14B—C14A—H14C109.5H14H—C14C—H14I109.5
C13A—C15A—H15A109.5C13C—C15C—H15G109.5
C13A—C15A—H15B109.5C13C—C15C—H15H109.5
H15A—C15A—H15B109.5H15G—C15C—H15H109.5
C13A—C15A—H15C109.5C13C—C15C—H15I109.5
H15A—C15A—H15C109.5H15G—C15C—H15I109.5
H15B—C15A—H15C109.5H15H—C15C—H15I109.5
C13A—C16A—H16A109.5C13C—C16C—H16G109.5
C13A—C16A—H16B109.5C13C—C16C—H16H109.5
H16A—C16A—H16B109.5H16G—C16C—H16H109.5
C13A—C16A—H16C109.5C13C—C16C—H16I109.5
H16A—C16A—H16C109.5H16G—C16C—H16I109.5
H16B—C16A—H16C109.5H16H—C16C—H16I109.5
C11B—S1B—C10B89.2 (3)C11D—S1D—C10D89.1 (3)
C1B—N1B—C9B111.2 (5)C9D—N1D—C1D109.9 (4)
C1B—N1B—H1B112 (5)C9D—N1D—H1D122 (5)
C9B—N1B—H1B107 (5)C1D—N1D—H1D104 (4)
C10B—N2B—C12B110.4 (5)C10D—N2D—C12D111.1 (5)
N1B—C1B—C2B114.9 (5)N1D—C1D—C2D115.0 (5)
N1B—C1B—H1B1108.5N1D—C1D—H1D1108.5
C2B—C1B—H1B1108.5C2D—C1D—H1D1108.5
N1B—C1B—H1B2108.5N1D—C1D—H1D2108.5
C2B—C1B—H1B2108.5C2D—C1D—H1D2108.5
H1B1—C1B—H1B2107.5H1D1—C1D—H1D2107.5
C7B—C2B—C3B118.7 (6)C7D—C2D—C3D119.6 (5)
C7B—C2B—C1B121.1 (5)C7D—C2D—C1D120.5 (5)
C3B—C2B—C1B120.2 (6)C3D—C2D—C1D120.0 (5)
C4B—C3B—C2B120.5 (7)C2D—C3D—C4D120.9 (6)
C4B—C3B—H3B119.7C2D—C3D—H3D119.6
C2B—C3B—H3B119.7C4D—C3D—H3D119.6
C5B—C4B—C3B119.4 (6)C5D—C4D—C3D119.0 (6)
C5B—C4B—H4B120.3C5D—C4D—H4D120.5
C3B—C4B—H4B120.3C3D—C4D—H4D120.5
C4B—C5B—C6B122.1 (7)C4D—C5D—C6D120.9 (7)
C4B—C5B—H5B118.9C4D—C5D—H5D119.5
C6B—C5B—H5B118.9C6D—C5D—H5D119.5
C5B—C6B—C7B118.7 (7)C5D—C6D—C7D120.6 (6)
C5B—C6B—H6B120.6C5D—C6D—H6D119.7
C7B—C6B—H6B120.6C7D—C6D—H6D119.7
C2B—C7B—C6B120.5 (5)C2D—C7D—C6D119.0 (5)
C2B—C7B—C8B120.9 (5)C2D—C7D—C8D121.3 (5)
C6B—C7B—C8B118.6 (5)C6D—C7D—C8D119.6 (5)
C7B—C8B—C9B112.4 (5)C7D—C8D—C9D109.8 (4)
C7B—C8B—H8B1109.1C7D—C8D—H8D1109.7
C9B—C8B—H8B1109.1C9D—C8D—H8D1109.7
C7B—C8B—H8B2109.1C7D—C8D—H8D2109.7
C9B—C8B—H8B2109.1C9D—C8D—H8D2109.7
H8B1—C8B—H8B2107.8H8D1—C8D—H8D2108.2
N1B—C9B—C10B110.5 (5)N1D—C9D—C10D108.8 (4)
N1B—C9B—C8B113.5 (5)N1D—C9D—C8D111.3 (4)
C10B—C9B—C8B112.0 (5)C10D—C9D—C8D112.7 (4)
N1B—C9B—H9B106.8N1D—C9D—H9D108.0
C10B—C9B—H9B106.8C10D—C9D—H9D108.0
C8B—C9B—H9B106.8C8D—C9D—H9D108.0
N2B—C10B—C9B124.5 (5)N2D—C10D—C9D124.9 (5)
N2B—C10B—S1B115.3 (4)N2D—C10D—S1D115.2 (4)
C9B—C10B—S1B120.1 (4)C9D—C10D—S1D119.8 (4)
C12B—C11B—S1B111.8 (4)C12D—C11D—S1D109.9 (5)
C12B—C11B—H11B124.1C12D—C11D—H11D125.1
S1B—C11B—H11B124.1S1D—C11D—H11D125.1
C11B—C12B—N2B113.2 (5)C11D—C12D—N2D114.6 (5)
C11B—C12B—C13B128.8 (5)C11D—C12D—C13D125.4 (6)
N2B—C12B—C13B117.9 (5)N2D—C12D—C13D119.9 (5)
C12B—C13B—C16B109.8 (5)C14D—C13D—C12D110.0 (6)
C12B—C13B—C14B108.3 (5)C14D—C13D—C16D108.1 (9)
C16B—C13B—C14B108.7 (6)C12D—C13D—C16D112.6 (7)
C12B—C13B—C15B110.0 (5)C14D—C13D—C15D111.9 (9)
C16B—C13B—C15B109.5 (6)C12D—C13D—C15D109.1 (5)
C14B—C13B—C15B110.5 (6)C16D—C13D—C15D105.2 (6)
C13B—C14B—H14D109.5C13D—C14D—H14J109.5
C13B—C14B—H14E109.5C13D—C14D—H14K109.5
H14D—C14B—H14E109.5H14J—C14D—H14K109.5
C13B—C14B—H14F109.5C13D—C14D—H14L109.5
H14D—C14B—H14F109.5H14J—C14D—H14L109.5
H14E—C14B—H14F109.5H14K—C14D—H14L109.5
C13B—C15B—H15D109.5C13D—C15D—H15J109.5
C13B—C15B—H15E109.5C13D—C15D—H15K109.5
H15D—C15B—H15E109.5H15J—C15D—H15K109.5
C13B—C15B—H15F109.5C13D—C15D—H15L109.5
H15D—C15B—H15F109.5H15J—C15D—H15L109.5
H15E—C15B—H15F109.5H15K—C15D—H15L109.5
C13B—C16B—H16D109.5C13D—C16D—H16J109.5
C13B—C16B—H16E109.5C13D—C16D—H16K109.5
H16D—C16B—H16E109.5H16J—C16D—H16K109.5
C13B—C16B—H16F109.5C13D—C16D—H16L109.5
H16D—C16B—H16F109.5H16J—C16D—H16L109.5
H16E—C16B—H16F109.5H16K—C16D—H16L109.5
C9A—N1A—C1A—C2A44.2 (7)C9C—N1C—C1C—C2C49.9 (8)
N1A—C1A—C2A—C7A13.9 (9)N1C—C1C—C2C—C7C20.6 (9)
N1A—C1A—C2A—C3A169.5 (6)N1C—C1C—C2C—C3C159.2 (6)
C7A—C2A—C3A—C4A1.3 (10)C7C—C2C—C3C—C4C0.3 (10)
C1A—C2A—C3A—C4A178.1 (7)C1C—C2C—C3C—C4C179.9 (7)
C2A—C3A—C4A—C5A0.3 (13)C2C—C3C—C4C—C5C0.1 (11)
C3A—C4A—C5A—C6A1.5 (13)C3C—C4C—C5C—C6C0.6 (12)
C4A—C5A—C6A—C7A1.2 (11)C4C—C5C—C6C—C7C1.3 (11)
C3A—C2A—C7A—C6A1.5 (9)C3C—C2C—C7C—C6C0.9 (9)
C1A—C2A—C7A—C6A178.3 (6)C1C—C2C—C7C—C6C179.2 (6)
C3A—C2A—C7A—C8A178.0 (5)C3C—C2C—C7C—C8C178.0 (6)
C1A—C2A—C7A—C8A1.3 (8)C1C—C2C—C7C—C8C1.8 (9)
C5A—C6A—C7A—C2A0.3 (9)C5C—C6C—C7C—C2C1.5 (10)
C5A—C6A—C7A—C8A179.2 (5)C5C—C6C—C7C—C8C177.5 (6)
C2A—C7A—C8A—C9A19.0 (7)C2C—C7C—C8C—C9C12.1 (8)
C6A—C7A—C8A—C9A160.6 (5)C6C—C7C—C8C—C9C169.0 (6)
C1A—N1A—C9A—C10A170.1 (5)C1C—N1C—C9C—C10C170.5 (6)
C1A—N1A—C9A—C8A65.3 (6)C1C—N1C—C9C—C8C62.1 (8)
C7A—C8A—C9A—N1A51.2 (6)C7C—C8C—C9C—N1C42.2 (7)
C7A—C8A—C9A—C10A174.5 (4)C7C—C8C—C9C—C10C168.4 (5)
C12A—N2A—C10A—C9A175.5 (5)C12C—N2C—C10C—C9C176.4 (5)
C12A—N2A—C10A—S1A1.8 (6)C12C—N2C—C10C—S1C0.7 (6)
N1A—C9A—C10A—N2A162.6 (5)N1C—C9C—C10C—N2C132.1 (6)
C8A—C9A—C10A—N2A37.2 (7)C8C—C9C—C10C—N2C3.8 (9)
N1A—C9A—C10A—S1A20.4 (6)N1C—C9C—C10C—S1C51.0 (7)
C8A—C9A—C10A—S1A145.7 (4)C8C—C9C—C10C—S1C179.2 (4)
C11A—S1A—C10A—N2A0.6 (4)C11C—S1C—C10C—N2C1.6 (5)
C11A—S1A—C10A—C9A176.8 (4)C11C—S1C—C10C—C9C175.7 (5)
C10A—S1A—C11A—C12A0.7 (5)C10C—S1C—C11C—C12C2.1 (5)
S1A—C11A—C12A—N2A1.8 (7)S1C—C11C—C12C—N2C2.2 (7)
S1A—C11A—C12A—C13A176.1 (5)S1C—C11C—C12C—C13C177.0 (4)
C10A—N2A—C12A—C11A2.4 (7)C10C—N2C—C12C—C11C1.0 (7)
C10A—N2A—C12A—C13A175.8 (5)C10C—N2C—C12C—C13C178.2 (5)
C11A—C12A—C13A—C16A1.2 (9)C11C—C12C—C13C—C14C129.0 (7)
N2A—C12A—C13A—C16A179.1 (6)N2C—C12C—C13C—C14C51.9 (7)
C11A—C12A—C13A—C15A119.5 (7)C11C—C12C—C13C—C15C110.6 (7)
N2A—C12A—C13A—C15A58.4 (7)N2C—C12C—C13C—C15C68.5 (7)
C11A—C12A—C13A—C14A123.3 (7)C11C—C12C—C13C—C16C8.5 (9)
N2A—C12A—C13A—C14A58.8 (7)N2C—C12C—C13C—C16C172.4 (6)
C9B—N1B—C1B—C2B46.4 (8)C9D—N1D—C1D—C2D44.6 (7)
N1B—C1B—C2B—C7B17.8 (8)N1D—C1D—C2D—C7D11.4 (8)
N1B—C1B—C2B—C3B161.9 (6)N1D—C1D—C2D—C3D168.6 (6)
C7B—C2B—C3B—C4B0.9 (9)C7D—C2D—C3D—C4D1.0 (10)
C1B—C2B—C3B—C4B178.8 (6)C1D—C2D—C3D—C4D179.0 (6)
C2B—C3B—C4B—C5B1.1 (11)C2D—C3D—C4D—C5D0.6 (12)
C3B—C4B—C5B—C6B0.0 (12)C3D—C4D—C5D—C6D0.8 (12)
C4B—C5B—C6B—C7B1.4 (11)C4D—C5D—C6D—C7D0.6 (11)
C3B—C2B—C7B—C6B0.4 (8)C3D—C2D—C7D—C6D2.3 (8)
C1B—C2B—C7B—C6B179.9 (6)C1D—C2D—C7D—C6D177.7 (5)
C3B—C2B—C7B—C8B178.6 (5)C3D—C2D—C7D—C8D178.5 (5)
C1B—C2B—C7B—C8B1.2 (8)C1D—C2D—C7D—C8D1.5 (8)
C5B—C6B—C7B—C2B1.5 (9)C5D—C6D—C7D—C2D2.1 (9)
C5B—C6B—C7B—C8B177.5 (6)C5D—C6D—C7D—C8D178.7 (6)
C2B—C7B—C8B—C9B13.0 (8)C2D—C7D—C8D—C9D17.9 (7)
C6B—C7B—C8B—C9B168.0 (5)C6D—C7D—C8D—C9D163.0 (5)
C1B—N1B—C9B—C10B173.3 (5)C1D—N1D—C9D—C10D169.1 (4)
C1B—N1B—C9B—C8B59.8 (7)C1D—N1D—C9D—C8D66.2 (6)
C7B—C8B—C9B—N1B42.3 (7)C7D—C8D—C9D—N1D51.7 (6)
C7B—C8B—C9B—C10B168.3 (5)C7D—C8D—C9D—C10D174.3 (4)
C12B—N2B—C10B—C9B174.8 (5)C12D—N2D—C10D—C9D176.7 (5)
C12B—N2B—C10B—S1B2.9 (6)C12D—N2D—C10D—S1D0.5 (6)
N1B—C9B—C10B—N2B134.5 (6)N1D—C9D—C10D—N2D163.7 (5)
C8B—C9B—C10B—N2B6.8 (8)C8D—C9D—C10D—N2D39.7 (7)
N1B—C9B—C10B—S1B48.0 (6)N1D—C9D—C10D—S1D19.3 (6)
C8B—C9B—C10B—S1B175.6 (4)C8D—C9D—C10D—S1D143.2 (4)
C11B—S1B—C10B—N2B2.6 (5)C11D—S1D—C10D—N2D0.2 (5)
C11B—S1B—C10B—C9B175.1 (5)C11D—S1D—C10D—C9D177.1 (4)
C10B—S1B—C11B—C12B1.5 (5)C10D—S1D—C11D—C12D0.1 (5)
S1B—C11B—C12B—N2B0.3 (7)S1D—C11D—C12D—N2D0.4 (7)
S1B—C11B—C12B—C13B176.0 (4)S1D—C11D—C12D—C13D176.5 (5)
C10B—N2B—C12B—C11B1.6 (7)C10D—N2D—C12D—C11D0.6 (7)
C10B—N2B—C12B—C13B178.4 (5)C10D—N2D—C12D—C13D176.6 (5)
C11B—C12B—C13B—C16B129.8 (6)C11D—C12D—C13D—C14D126.0 (10)
N2B—C12B—C13B—C16B54.0 (6)N2D—C12D—C13D—C14D57.2 (10)
C11B—C12B—C13B—C14B111.6 (7)C11D—C12D—C13D—C16D5.4 (10)
N2B—C12B—C13B—C14B64.5 (7)N2D—C12D—C13D—C16D177.8 (7)
C11B—C12B—C13B—C15B9.2 (9)C11D—C12D—C13D—C15D110.9 (8)
N2B—C12B—C13B—C15B174.6 (6)N2D—C12D—C13D—C15D65.9 (8)

Experimental details

Crystal data
Chemical formulaC16H20N2S
Mr272.40
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)10.0534 (9), 13.0076 (12), 23.808 (2)
β (°) 102.076 (1)
V3)3044.5 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.18 × 0.16 × 0.08
Data collection
DiffractometerBruker Kappa DUO APEXII
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.965, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
39811, 15130, 12021
Rint0.035
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.092, 0.299, 1.04
No. of reflections15130
No. of parameters710
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.99, 0.76
Absolute structureFlack (1983), 7172 Friedel pairs
Absolute structure parameter0.04 (13)

Computer programs: SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

The authors thank Dr Hong Su of the University of Capetown for the data collection and structure refinement.

References

First citationAubry, S., Pellet-Rostaing, S., Faure, R. & Lemaire, M. (2006). J. Heterocycl. Chem. 43, 139–148.  CrossRef CAS Google Scholar
First citationBruker (2006). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakka, S. K., Andersson, P. G., Maguire, G. E. M., Kruger, H. G. & Govender, T. (2010). Eur. J. Org. Chem. pp. 972–980.  Web of Science CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKawthekar, R. B., Chakka, S. K., Francis, V., Andersson, P. G., Kruger, H. G., Maguire, G. E. M. & Govender, T. (2010). Tetrahedron Asymmetry, 21, 846–852.  Web of Science CrossRef CAS Google Scholar
First citationNaicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011a). Acta Cryst. E67, o67.  Web of Science CrossRef IUCr Journals Google Scholar
First citationNaicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011b). Acta Cryst. E67, o1403.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaicker, T., Petzold, K., Singh, T., Arvidsson, P. I., Kruger, H. G., Maguire, G. E. M. & Govender, T. (2010). Tetrahedron Asymmetry, 21, 2859–2867.  Web of Science CrossRef CAS Google Scholar
First citationPawar, S., Chakka, S. K., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2012). S. Afr. J. Chem. 65, 23–29.  CAS Google Scholar
First citationPawar, S., Katharigatta, V., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2011). Acta Cryst. E67, o2722.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPeters, B. K., Chakka, S. K., Naicker, T., Maguire, G. E. M., Kruger, H. G., Andersson, P. G. & Govender, T. (2010). Tetrahedron Asymmetry, 21, 679–687.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds