organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Nitro­phen­yl)-1,3-benzo­thia­zole

aDepartment of Physics, Sri Balaji Chokkalingam Engineering College, Arni, Thiruvannamalai 632 317, India, bDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India, and cDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: smurugavel27@gmail.com

(Received 25 June 2012; accepted 30 June 2012; online 7 July 2012)

In the title compound, C13H8N2O2S, the essentially planar benzothia­zole system [maximum deviation = −0.012 (1) Å for the S atom] is oriented at a dihedral angle of 48.3 (1)° with respect to the benzene ring. The nitro group is substanti­ally twisted from the plane of its attached benzene ring [dihedral angle = 52.0 (1)°]. The crystal packing features C—H⋯O hydrogen bonds, which generate C(6) helical chains propagating along [010]. Weak C—H⋯π inter­actions also occur in the crystal.

Related literature

For the pharmacological activity of benzothia­zole derivatives, see: Repiĉ et al. (2001[Repiĉ, O., Prasad, K. & Lee, G. T. (2001). Org. Process Res. Dev. 5, 519-527.]); Schwartz et al. (1992[Schwartz, A., Madan, P. B., Mohacsi, E., O-Brien, J. P., Todaro, L. J. & Coffen, D. L. (1992). J. Org. Chem. 57, 851-856.]). For related structures, see: Lakshmanan et al. (2011[Lakshmanan, D., Raj, R. M., Selvakumar, R., Bakthadoss, M. & Murugavel, S. (2011). Acta Cryst. E67, o2259.]); Zhang et al. (2008[Zhang, Y., Su, Z.-H., Wang, Q.-Z. & Teng, L. (2008). Acta Cryst. E64, o2065.]).

[Scheme 1]

Experimental

Crystal data
  • C13H8N2O2S

  • Mr = 256.27

  • Monoclinic, P 21 /c

  • a = 7.6092 (2) Å

  • b = 12.7854 (3) Å

  • c = 11.9938 (3) Å

  • β = 90.556 (2)°

  • V = 1166.78 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.24 × 0.22 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.937, Tmax = 0.958

  • 14037 measured reflections

  • 3258 independent reflections

  • 2559 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.113

  • S = 1.05

  • 3258 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the S1/N1/C1/C2/C7 thiazole ring, the C2–C7 benzene ring and the C8–C13 benzene ring, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O1i 0.93 2.51 3.236 (2) 135
C9—H9⋯Cg1ii 0.93 2.92 3.468 (2) 119
C10—H10⋯Cg2ii 0.93 2.90 3.536 (2) 127
C3—H3⋯Cg3iii 0.93 2.99 3.673 (2) 132
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x, -y, -z+1; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia (1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The benzothiazole nucleus is associated with several pharmacological activities such as anti-tumor (Repiĉ et al., 2001) and antimicrobial (Schwartz et al., 1992). As part of our studies in this area, the crystal structure of the title compound has been determined and the results are presented here.

Fig. 1. shows a displacement ellipsoid plot of (I), with the atom numbering scheme. The benzothiazole moiety (S1/N1/C1—C7) is essentially planar [maximum deviation = -0.012 (1) Å for the S atom] and lies at an angle 48.3 (1)° with respect to the benzene ring. The nitro group (N2/O1/O2) is twisted from the attached benzene ring, forming a dihedral angle of 52.0 (1)°. The geometric parameters of the title molecule agrees well with those reported for similar structures (Lakshmanan et al., 2011, Zhang et al., 2008).

The crystal packing features C—H···O hydrogen bonds. Atom C11 at x, y, z donates one proton to atom O1 at 1 - x, -1/2 + y, 3/2 - z, forming C(6) zigzag chains along the b axis (Fig. 2). The crystal packing also features three weak C—H···π interactions, the first one between a benzene H9 atom and the thiazole ring (S1/N1/C1/C2/C7) of an adjacent molecule, with a C9—H9···Cg1ii seperation of 2.92 Å, the second one between a benzene H10 atom and the benzene ring (C2–C7) of a neighbouring molecule, with a C10—H10···Cg2ii seperation of 2.90 Å and the third one between a benzene H3 atom and the benzene ring (C8–C13) of a neighbouring molecule, with a C3—H3···Cg3iii seperation of 2.99 Å (Table 1 and Fig. 3; Cg1, Cg2 and Cg3 are the centroids of the (S1/N1/C1/C2/C7) thiazole ring, (C2–C7) benzene ring and (C8–C13) benzene ring, respectively. symmetry code as in Fig. 3).

Related literature top

For the pharmacological activity of benzothiazole derivatives, see: Repiĉ et al. (2001); Schwartz et al. (1992). For related structures, see: Lakshmanan et al. (2011); Zhang et al. (2008).

Experimental top

A mixture of 2-nitrobenzaldehyde (1 g, 6.6 mmol), 2-aminobenzenethiol (0.827 g, 6.6 mmol) and bakers' yeast (2.05 g) were stirred at room temperature for 24 h in dichloro methane(DCM). After completion of the reaction, the bakers' yeast was filtered through a bed of Celite, and the filtrate was concentrated under reduced pressure. On cooling, the solid product (1.60 g, 94%) obtained was separated and crystallized from ethylacetate to afford the title compound as yellow blocks.

Refinement top

All the H atoms were positioned geometrically, with C–H = 0.93–0.96 Å and constrained to ride on their parent atom, with Uiso(H) = 1.2Ueq(C).

Structure description top

The benzothiazole nucleus is associated with several pharmacological activities such as anti-tumor (Repiĉ et al., 2001) and antimicrobial (Schwartz et al., 1992). As part of our studies in this area, the crystal structure of the title compound has been determined and the results are presented here.

Fig. 1. shows a displacement ellipsoid plot of (I), with the atom numbering scheme. The benzothiazole moiety (S1/N1/C1—C7) is essentially planar [maximum deviation = -0.012 (1) Å for the S atom] and lies at an angle 48.3 (1)° with respect to the benzene ring. The nitro group (N2/O1/O2) is twisted from the attached benzene ring, forming a dihedral angle of 52.0 (1)°. The geometric parameters of the title molecule agrees well with those reported for similar structures (Lakshmanan et al., 2011, Zhang et al., 2008).

The crystal packing features C—H···O hydrogen bonds. Atom C11 at x, y, z donates one proton to atom O1 at 1 - x, -1/2 + y, 3/2 - z, forming C(6) zigzag chains along the b axis (Fig. 2). The crystal packing also features three weak C—H···π interactions, the first one between a benzene H9 atom and the thiazole ring (S1/N1/C1/C2/C7) of an adjacent molecule, with a C9—H9···Cg1ii seperation of 2.92 Å, the second one between a benzene H10 atom and the benzene ring (C2–C7) of a neighbouring molecule, with a C10—H10···Cg2ii seperation of 2.90 Å and the third one between a benzene H3 atom and the benzene ring (C8–C13) of a neighbouring molecule, with a C3—H3···Cg3iii seperation of 2.99 Å (Table 1 and Fig. 3; Cg1, Cg2 and Cg3 are the centroids of the (S1/N1/C1/C2/C7) thiazole ring, (C2–C7) benzene ring and (C8–C13) benzene ring, respectively. symmetry code as in Fig. 3).

For the pharmacological activity of benzothiazole derivatives, see: Repiĉ et al. (2001); Schwartz et al. (1992). For related structures, see: Lakshmanan et al. (2011); Zhang et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia (1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing intermolecular C—H···O hydrogen bonds (dotted lines), forming C(6) zigzag chains along the b axis. For clarity H atoms involved in the hydrogen bonds are shown. [Symmetry codes:(iv)1 - x, -1/2 + y, 3/2 - z; (v)x, -1 + y, z; (vi)1 - x, -3/2 + y, 3/2 - z; (vii)x, -2 + y, z].
[Figure 3] Fig. 3. A view of the C—H···π interactions (dotted lines) in the crystal structure of the title compound. Cg1, Cg2 and Cg3 denotes centroid of the S1/N1/C1/C2/C7 thiazole ring, C2–C7 benzene ring and C8–C13 benzene ring, respectively. [Symmetry codes: (ii)-x, -y, 1 - z; (iii)-x, 1/2 + y, 3/2 - z].
2-(2-Nitrophenyl)-1,3-benzothiazole top
Crystal data top
C13H8N2O2SF(000) = 528
Mr = 256.27Dx = 1.459 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3261 reflections
a = 7.6092 (2) Åθ = 2.3–29.5°
b = 12.7854 (3) ŵ = 0.27 mm1
c = 11.9938 (3) ÅT = 293 K
β = 90.556 (2)°Block, yellow
V = 1166.78 (5) Å30.24 × 0.22 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3258 independent reflections
Radiation source: fine-focus sealed tube2559 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10.0 pixels mm-1θmax = 29.5°, θmin = 2.3°
ω scansh = 610
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1717
Tmin = 0.937, Tmax = 0.958l = 1616
14037 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0565P)2 + 0.2357P]
where P = (Fo2 + 2Fc2)/3
3258 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C13H8N2O2SV = 1166.78 (5) Å3
Mr = 256.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6092 (2) ŵ = 0.27 mm1
b = 12.7854 (3) ÅT = 293 K
c = 11.9938 (3) Å0.24 × 0.22 × 0.16 mm
β = 90.556 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3258 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2559 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.958Rint = 0.027
14037 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.05Δρmax = 0.24 e Å3
3258 reflectionsΔρmin = 0.32 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.23422 (17)0.05259 (10)0.59828 (11)0.0353 (3)
C20.16130 (18)0.21138 (10)0.64971 (11)0.0363 (3)
C30.0966 (2)0.29175 (12)0.71628 (13)0.0480 (3)
H30.05300.27760.78690.058*
C40.0984 (2)0.39208 (12)0.67587 (16)0.0548 (4)
H40.05610.44620.71990.066*
C50.1620 (2)0.41411 (12)0.57096 (16)0.0560 (4)
H50.16210.48300.54600.067*
C60.2249 (2)0.33699 (12)0.50273 (15)0.0531 (4)
H60.26670.35230.43200.064*
C70.22399 (19)0.23476 (11)0.54327 (12)0.0404 (3)
C80.26409 (17)0.06135 (10)0.60273 (11)0.0362 (3)
C90.2087 (2)0.12556 (11)0.51565 (13)0.0465 (3)
H90.15330.09630.45360.056*
C100.2349 (2)0.23238 (12)0.52027 (15)0.0542 (4)
H100.19790.27430.46120.065*
C110.3152 (2)0.27701 (11)0.61136 (16)0.0546 (4)
H110.33250.34900.61370.065*
C120.3705 (2)0.21558 (11)0.69957 (14)0.0470 (3)
H120.42350.24550.76210.056*
C130.34560 (18)0.10908 (10)0.69301 (11)0.0376 (3)
N10.16909 (16)0.10658 (8)0.67886 (9)0.0385 (3)
N20.42054 (19)0.04475 (10)0.78230 (11)0.0482 (3)
O10.51720 (18)0.02623 (10)0.75526 (12)0.0675 (4)
O20.3857 (2)0.06687 (13)0.87769 (10)0.0812 (4)
S10.29145 (6)0.12103 (3)0.47927 (3)0.04852 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0351 (6)0.0335 (6)0.0372 (6)0.0036 (5)0.0008 (5)0.0019 (5)
C20.0360 (7)0.0340 (6)0.0389 (6)0.0019 (5)0.0033 (5)0.0014 (5)
C30.0543 (9)0.0430 (7)0.0469 (8)0.0053 (6)0.0005 (7)0.0092 (6)
C40.0577 (10)0.0379 (7)0.0687 (10)0.0062 (7)0.0064 (8)0.0153 (7)
C50.0586 (10)0.0316 (7)0.0776 (11)0.0010 (7)0.0063 (8)0.0036 (7)
C60.0607 (10)0.0383 (8)0.0605 (9)0.0017 (7)0.0062 (8)0.0109 (7)
C70.0416 (7)0.0338 (6)0.0459 (7)0.0012 (5)0.0020 (6)0.0019 (5)
C80.0339 (6)0.0326 (6)0.0422 (7)0.0034 (5)0.0006 (5)0.0012 (5)
C90.0464 (8)0.0423 (7)0.0506 (8)0.0074 (6)0.0117 (7)0.0064 (6)
C100.0537 (9)0.0404 (8)0.0681 (11)0.0038 (7)0.0123 (8)0.0167 (7)
C110.0561 (9)0.0309 (7)0.0766 (11)0.0033 (6)0.0052 (8)0.0038 (7)
C120.0489 (8)0.0362 (7)0.0559 (8)0.0048 (6)0.0032 (7)0.0064 (6)
C130.0373 (7)0.0336 (6)0.0417 (7)0.0013 (5)0.0006 (5)0.0005 (5)
N10.0442 (6)0.0345 (5)0.0368 (5)0.0048 (4)0.0009 (5)0.0007 (4)
N20.0552 (8)0.0416 (6)0.0476 (7)0.0074 (6)0.0130 (6)0.0025 (5)
O10.0702 (8)0.0496 (7)0.0822 (9)0.0119 (6)0.0263 (7)0.0049 (6)
O20.1183 (13)0.0836 (10)0.0414 (6)0.0026 (9)0.0075 (7)0.0013 (6)
S10.0620 (3)0.0411 (2)0.0428 (2)0.00900 (16)0.01624 (17)0.00421 (14)
Geometric parameters (Å, º) top
C1—N11.2906 (17)C7—S11.7247 (14)
C1—C81.4752 (18)C8—C131.3844 (19)
C1—S11.7335 (13)C8—C91.391 (2)
C2—N11.3858 (17)C9—C101.381 (2)
C2—C31.3940 (19)C9—H90.9300
C2—C71.400 (2)C10—C111.371 (2)
C3—C41.371 (2)C10—H100.9300
C3—H30.9300C11—C121.380 (2)
C4—C51.381 (3)C11—H110.9300
C4—H40.9300C12—C131.3770 (18)
C5—C61.371 (3)C12—H120.9300
C5—H50.9300C13—N21.4617 (18)
C6—C71.395 (2)N2—O21.2103 (18)
C6—H60.9300N2—O11.2142 (19)
N1—C1—C8124.15 (12)C13—C8—C1122.09 (12)
N1—C1—S1116.61 (10)C9—C8—C1120.68 (12)
C8—C1—S1119.24 (10)C10—C9—C8120.72 (14)
N1—C2—C3125.64 (13)C10—C9—H9119.6
N1—C2—C7115.00 (11)C8—C9—H9119.6
C3—C2—C7119.36 (13)C11—C10—C9120.44 (15)
C4—C3—C2118.84 (15)C11—C10—H10119.8
C4—C3—H3120.6C9—C10—H10119.8
C2—C3—H3120.6C10—C11—C12120.29 (14)
C3—C4—C5121.16 (15)C10—C11—H11119.9
C3—C4—H4119.4C12—C11—H11119.9
C5—C4—H4119.4C13—C12—C11118.56 (14)
C6—C5—C4121.63 (15)C13—C12—H12120.7
C6—C5—H5119.2C11—C12—H12120.7
C4—C5—H5119.2C12—C13—C8122.75 (13)
C5—C6—C7117.59 (16)C12—C13—N2117.52 (13)
C5—C6—H6121.2C8—C13—N2119.58 (11)
C7—C6—H6121.2C1—N1—C2110.13 (11)
C6—C7—C2121.41 (14)O2—N2—O1124.46 (15)
C6—C7—S1129.23 (12)O2—N2—C13118.28 (14)
C2—C7—S1109.36 (10)O1—N2—C13117.25 (13)
C13—C8—C9117.22 (12)C7—S1—C188.91 (6)
N1—C2—C3—C4179.67 (15)C10—C11—C12—C131.0 (3)
C7—C2—C3—C40.8 (2)C11—C12—C13—C81.4 (2)
C2—C3—C4—C50.3 (3)C11—C12—C13—N2174.13 (15)
C3—C4—C5—C60.4 (3)C9—C8—C13—C120.9 (2)
C4—C5—C6—C70.5 (3)C1—C8—C13—C12178.36 (14)
C5—C6—C7—C20.0 (2)C9—C8—C13—N2174.55 (14)
C5—C6—C7—S1179.49 (13)C1—C8—C13—N26.2 (2)
N1—C2—C7—C6179.77 (14)C8—C1—N1—C2178.70 (12)
C3—C2—C7—C60.7 (2)S1—C1—N1—C20.41 (15)
N1—C2—C7—S10.64 (16)C3—C2—N1—C1179.35 (14)
C3—C2—C7—S1178.90 (11)C7—C2—N1—C10.16 (17)
N1—C1—C8—C1347.3 (2)C12—C13—N2—O252.8 (2)
S1—C1—C8—C13131.81 (12)C8—C13—N2—O2131.55 (16)
N1—C1—C8—C9131.96 (15)C12—C13—N2—O1125.64 (16)
S1—C1—C8—C948.95 (18)C8—C13—N2—O150.05 (19)
C13—C8—C9—C100.0 (2)C6—C7—S1—C1179.76 (16)
C1—C8—C9—C10179.32 (14)C2—C7—S1—C10.69 (11)
C8—C9—C10—C110.4 (3)N1—C1—S1—C70.67 (12)
C9—C10—C11—C120.1 (3)C8—C1—S1—C7178.49 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.932.513.236 (2)135
C9—H9···Cg1ii0.932.923.468 (2)119
C10—H10···Cg2ii0.932.903.536 (2)127
C3—H3···Cg3iii0.932.993.673 (2)132
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y, z+1; (iii) x, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC13H8N2O2S
Mr256.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.6092 (2), 12.7854 (3), 11.9938 (3)
β (°) 90.556 (2)
V3)1166.78 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.24 × 0.22 × 0.16
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.937, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
14037, 3258, 2559
Rint0.027
(sin θ/λ)max1)0.693
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.113, 1.05
No. of reflections3258
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.32

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia (1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.932.513.236 (2)135
C9—H9···Cg1ii0.932.923.468 (2)119
C10—H10···Cg2ii0.932.903.536 (2)127
C3—H3···Cg3iii0.932.993.673 (2)132
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y, z+1; (iii) x, y+1/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: bhakthadoss@yahoo.com.

Acknowledgements

SM thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLakshmanan, D., Raj, R. M., Selvakumar, R., Bakthadoss, M. & Murugavel, S. (2011). Acta Cryst. E67, o2259.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRepiĉ, O., Prasad, K. & Lee, G. T. (2001). Org. Process Res. Dev. 5, 519–527.  Google Scholar
First citationSchwartz, A., Madan, P. B., Mohacsi, E., O–Brien, J. P., Todaro, L. J. & Coffen, D. L. (1992). J. Org. Chem. 57, 851–856.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y., Su, Z.-H., Wang, Q.-Z. & Teng, L. (2008). Acta Cryst. E64, o2065.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds