organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-(2,3-Di­methyl­anilino)-N′-(thio­phen-2-yl­methyl­­idene)benzohydrazide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
*Correspondence e-mail: hkfun@usm.my

(Received 14 July 2012; accepted 18 July 2012; online 25 July 2012)

In the title compound, C20H19N3OS, the central benzene ring makes dihedral angles of 45.36 (9) and 55.33 (9)° with the thio­phene ring and the dimethyl-substituted benzene ring, respectively. The dihedral angle between the thio­phene ring and dimethyl-substituted benzene ring is 83.60 (9)°. The thio­phene ring and the benzene ring are twisted from the mean plane of the C(=O)—N—N=C bridge [maximum deviation = 0.0860 (13) Å], with dihedral angles of 23.86 (9) and 24.77 (8)°, respectively. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring. In the crystal, mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds to the same acceptor atom, forming sheets lying parallel to the bc plane. The crystal packing also features C—H⋯π inter­actions.

Related literature

For background to the chemistry and biological activity of diaryl amines, see: Reddy et al. (2010[Reddy, L. V., Suman, A., Beevi, S. S., Mangamoori, L. N., Mukkanti, K. & Pal, S. (2010). J. Braz. Chem. Soc. 21, 98-104.]). For related structures, see: Bhat et al. (2012a[Bhat, M. A., Abdel-Aziz, H. A., Ghabbour, H. A., Hemamalini, M. & Fun, H.-K. (2012a). Acta Cryst. E68, o1002.],b[Bhat, M. A., Abdel-Aziz, H. A., Ghabbour, H. A., Hemamalini, M. & Fun, H.-K. (2012b). Acta Cryst. E68, o1135.],c[Bhat, M. A., Abdel-Aziz, H. A., Ghabbour, H. A., Hemamalini, M. & Fun, H.-K. (2012c). Acta Cryst. E68, o1144-o1145.]); Wang et al. (2010[Wang, L.-Y., Xie, Y.-S., Wu, R.-M. & Zuo, H. (2010). Acta Cryst. E66, o2827.]); Tian et al. (2010[Tian, X., Xie, Y.-S. & Zuo, H. (2010). Acta Cryst. E66, o2828.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19N3OS

  • Mr = 349.44

  • Monoclinic, P 21 /c

  • a = 14.0922 (14) Å

  • b = 15.9682 (15) Å

  • c = 8.1338 (8) Å

  • β = 105.344 (2)°

  • V = 1765.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 100 K

  • 0.34 × 0.07 × 0.04 mm

Data collection
  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.936, Tmax = 0.992

  • 14626 measured reflections

  • 5082 independent reflections

  • 3338 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.128

  • S = 1.01

  • 5082 reflections

  • 236 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the S1/C15–C18 and C1–C6 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.89 (2) 1.96 (2) 2.808 (2) 160 (2)
N1—H1N1⋯O1 0.85 (2) 2.02 (3) 2.704 (2) 137 (2)
C1—H1A⋯O1ii 0.95 2.58 3.410 (2) 146
C3—H3ACg1iii 0.95 2.98 3.732 (2) 137
C9—H9ACg2iv 0.95 2.84 3.649 (2) 144
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+2; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x, y, z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In view of the importance of the chemistry and biological activity of diaryl amines (Reddy et al., 2010) and in continuation to our interest in the chemistry of hydrazones (Bhat et al., 2012a,b,c), we report herein the crystal structure of the title compound.

The asymmetric unit of the title compound is shown in Fig. 1. The central benzene ring [C7–C12] makes dihedral angles of 45.36 (9)° and 55.33 (9)° with the thiophene ring [S1/C15–C18] and dimethyl-substituted benzene ring [C1–C6], respectively. The dihedral angle between the thiophene ring and C1–C6 benzene ring is 83.60 (9)°. The thiophene ring and C7–C12 benzene ring are twisted from the mean plane of C13(O1)—N2—N3C14 bridge [maximum deviation = 0.0860 (13) Å at atom N3] with dihedral angles of 23.86 (9)° and 24.77 (8)°, respectively. An intramolecular N1—H1N1···O1 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995) in the molecule. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to those found in related structures (Tian et al., 2010; Wang et al., 2010).

In the crystal (Fig. 2), molecules are linked by N2—H1N2···O1 and C1—H1A···O1 hydrogen bonds, with the same O atom acting as the acceptor, into sheets parallel to bc plane. The crystal packing also features C—H···π interactions (Table 1), involving Cg1 and Cg2 which are the centroids of S1/C15–C18 and C1–C6 rings, respectively.

Related literature top

For background to the chemistry and biological activity of diaryl amines, see: Reddy et al. (2010). For related structures, see: Bhat et al. (2012a,b,c); Wang et al. (2010); Tian et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For reference bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was prepared by the reaction of thiophene-2-carbaldehyde (0.11 g, 1 mmol) and 2-[(2,3-dimethylphenylamine)]benzohydrazide (0.25 g, 1 mmol) in ethanol (25 ml). After stirring at room temperature for 3 h, the resulting mixture was concentrated under reduced pressure. The precipitate was washed with cold ethanol to afford the title compound. Yellow needles were recrystallized from ethanol solution by the slow evaporation of the solvent at room temperature after several days.

Refinement top

The N-bound H atoms were located in a difference Fourier map and refined freely [N—H = 0.85 (3) and 0.89 (2) Å]. The remaining H atoms were positioned geometrically [C—H = 0.95 and 0.98 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups. Two outliers, (302) and (312), were omitted in the final refinement.

Structure description top

In view of the importance of the chemistry and biological activity of diaryl amines (Reddy et al., 2010) and in continuation to our interest in the chemistry of hydrazones (Bhat et al., 2012a,b,c), we report herein the crystal structure of the title compound.

The asymmetric unit of the title compound is shown in Fig. 1. The central benzene ring [C7–C12] makes dihedral angles of 45.36 (9)° and 55.33 (9)° with the thiophene ring [S1/C15–C18] and dimethyl-substituted benzene ring [C1–C6], respectively. The dihedral angle between the thiophene ring and C1–C6 benzene ring is 83.60 (9)°. The thiophene ring and C7–C12 benzene ring are twisted from the mean plane of C13(O1)—N2—N3C14 bridge [maximum deviation = 0.0860 (13) Å at atom N3] with dihedral angles of 23.86 (9)° and 24.77 (8)°, respectively. An intramolecular N1—H1N1···O1 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995) in the molecule. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to those found in related structures (Tian et al., 2010; Wang et al., 2010).

In the crystal (Fig. 2), molecules are linked by N2—H1N2···O1 and C1—H1A···O1 hydrogen bonds, with the same O atom acting as the acceptor, into sheets parallel to bc plane. The crystal packing also features C—H···π interactions (Table 1), involving Cg1 and Cg2 which are the centroids of S1/C15–C18 and C1–C6 rings, respectively.

For background to the chemistry and biological activity of diaryl amines, see: Reddy et al. (2010). For related structures, see: Bhat et al. (2012a,b,c); Wang et al. (2010); Tian et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For reference bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids. The dashed line represents the intramolecular N—H···O hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of the title compound. The dashed lines represent the hydrogen bonds. For clarity sake, hydrogen atoms not involved in hydrogen bonding have been omitted.
(E)-2-(2,3-Dimethylanilino)-N'-(thiophen-2- ylmethylidene)benzohydrazide top
Crystal data top
C20H19N3OSF(000) = 736
Mr = 349.44Dx = 1.315 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1664 reflections
a = 14.0922 (14) Åθ = 2.9–24.3°
b = 15.9682 (15) ŵ = 0.20 mm1
c = 8.1338 (8) ÅT = 100 K
β = 105.344 (2)°Needle, yellow
V = 1765.1 (3) Å30.34 × 0.07 × 0.04 mm
Z = 4
Data collection top
Bruker APEX DUO CCD
diffractometer
5082 independent reflections
Radiation source: fine-focus sealed tube3338 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
φ and ω scansθmax = 30.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1819
Tmin = 0.936, Tmax = 0.992k = 1822
14626 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0527P)2]
where P = (Fo2 + 2Fc2)/3
5082 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C20H19N3OSV = 1765.1 (3) Å3
Mr = 349.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.0922 (14) ŵ = 0.20 mm1
b = 15.9682 (15) ÅT = 100 K
c = 8.1338 (8) Å0.34 × 0.07 × 0.04 mm
β = 105.344 (2)°
Data collection top
Bruker APEX DUO CCD
diffractometer
5082 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3338 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.992Rint = 0.067
14626 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.37 e Å3
5082 reflectionsΔρmin = 0.35 e Å3
236 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.10235 (4)0.29345 (3)0.79119 (6)0.02004 (13)
O10.44269 (10)0.16844 (8)0.95045 (15)0.0164 (3)
N10.63024 (13)0.11358 (11)1.0630 (2)0.0221 (4)
N20.38625 (12)0.23505 (10)1.1518 (2)0.0152 (3)
N30.30320 (11)0.26223 (9)1.03158 (19)0.0152 (3)
C10.72104 (15)0.01298 (12)1.0366 (2)0.0219 (4)
H1A0.67810.04431.08540.026*
C20.79626 (16)0.05289 (12)0.9882 (3)0.0225 (4)
H2A0.80600.11141.00560.027*
C30.85748 (15)0.00697 (12)0.9138 (2)0.0209 (4)
H3A0.90970.03440.88170.025*
C40.84361 (14)0.07824 (12)0.8855 (2)0.0173 (4)
C50.76785 (14)0.12003 (11)0.9365 (2)0.0164 (4)
C60.70796 (14)0.07299 (12)1.0141 (2)0.0171 (4)
C70.60869 (14)0.10490 (11)1.2183 (2)0.0170 (4)
C80.67460 (15)0.06586 (12)1.3575 (2)0.0203 (4)
H8A0.73490.04431.34420.024*
C90.65339 (16)0.05829 (12)1.5130 (3)0.0239 (4)
H9A0.69890.03101.60440.029*
C100.56674 (16)0.08987 (12)1.5376 (2)0.0233 (4)
H10A0.55230.08411.64470.028*
C110.50153 (15)0.13000 (11)1.4038 (2)0.0188 (4)
H11A0.44200.15191.42030.023*
C120.52102 (14)0.13927 (11)1.2440 (2)0.0150 (4)
C130.44837 (13)0.18131 (11)1.1041 (2)0.0142 (4)
C140.25109 (14)0.31569 (11)1.0879 (2)0.0163 (4)
H14A0.27590.33911.19830.020*
C150.15535 (14)0.34032 (11)0.9847 (2)0.0156 (4)
C160.09047 (15)0.39305 (12)1.0313 (3)0.0207 (4)
H16A0.10610.42461.13400.025*
C170.00236 (15)0.39559 (13)0.9101 (3)0.0234 (4)
H17A0.05600.42890.92220.028*
C180.00604 (15)0.34505 (12)0.7747 (3)0.0227 (4)
H18A0.06250.33900.68110.027*
C190.90953 (17)0.12491 (14)0.7978 (3)0.0294 (5)
H19A0.95860.08630.77480.044*
H19B0.94300.17040.87160.044*
H19C0.86980.14830.69010.044*
C200.75020 (17)0.21221 (12)0.9033 (3)0.0241 (4)
H20A0.71770.23550.98570.036*
H20B0.70810.22050.78750.036*
H20C0.81330.24070.91490.036*
H1N20.3987 (16)0.2551 (13)1.257 (3)0.024 (6)*
H1N10.5850 (19)0.1361 (15)0.985 (3)0.035 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0187 (3)0.0212 (2)0.0189 (2)0.0013 (2)0.00243 (18)0.00158 (19)
O10.0181 (7)0.0193 (6)0.0122 (6)0.0016 (5)0.0045 (5)0.0001 (5)
N10.0172 (9)0.0300 (9)0.0203 (9)0.0093 (7)0.0073 (7)0.0073 (7)
N20.0136 (8)0.0194 (8)0.0116 (7)0.0030 (6)0.0013 (6)0.0016 (6)
N30.0127 (8)0.0180 (7)0.0134 (7)0.0012 (6)0.0008 (6)0.0013 (6)
C10.0206 (10)0.0214 (10)0.0231 (10)0.0019 (8)0.0047 (8)0.0026 (8)
C20.0260 (11)0.0164 (9)0.0239 (10)0.0038 (8)0.0046 (9)0.0002 (8)
C30.0191 (10)0.0230 (10)0.0201 (10)0.0064 (8)0.0044 (8)0.0023 (8)
C40.0163 (10)0.0212 (9)0.0141 (9)0.0002 (7)0.0036 (7)0.0004 (7)
C50.0172 (10)0.0169 (9)0.0128 (9)0.0003 (7)0.0001 (7)0.0004 (7)
C60.0136 (9)0.0208 (9)0.0163 (9)0.0013 (7)0.0029 (7)0.0004 (7)
C70.0164 (9)0.0165 (9)0.0174 (9)0.0001 (7)0.0036 (7)0.0006 (7)
C80.0159 (10)0.0215 (9)0.0203 (10)0.0031 (8)0.0012 (8)0.0011 (8)
C90.0267 (11)0.0222 (10)0.0171 (10)0.0029 (9)0.0042 (8)0.0003 (8)
C100.0319 (12)0.0239 (10)0.0126 (9)0.0030 (9)0.0030 (8)0.0005 (8)
C110.0201 (10)0.0188 (9)0.0174 (9)0.0025 (8)0.0050 (8)0.0007 (7)
C120.0142 (9)0.0157 (8)0.0143 (9)0.0016 (7)0.0025 (7)0.0005 (7)
C130.0127 (9)0.0142 (8)0.0160 (9)0.0022 (7)0.0042 (7)0.0002 (7)
C140.0171 (10)0.0170 (9)0.0141 (9)0.0004 (7)0.0029 (7)0.0003 (7)
C150.0151 (9)0.0169 (9)0.0155 (9)0.0003 (7)0.0053 (7)0.0029 (7)
C160.0209 (10)0.0226 (10)0.0195 (10)0.0042 (8)0.0068 (8)0.0013 (8)
C170.0177 (10)0.0257 (10)0.0280 (11)0.0076 (8)0.0083 (8)0.0073 (9)
C180.0151 (10)0.0250 (10)0.0253 (11)0.0001 (8)0.0009 (8)0.0060 (8)
C190.0262 (12)0.0360 (12)0.0306 (12)0.0019 (10)0.0156 (10)0.0064 (9)
C200.0335 (12)0.0182 (9)0.0225 (10)0.0016 (9)0.0107 (9)0.0003 (8)
Geometric parameters (Å, º) top
S1—C181.709 (2)C8—C91.380 (3)
S1—C151.7243 (19)C8—H8A0.9500
O1—C131.248 (2)C9—C101.384 (3)
N1—C71.382 (2)C9—H9A0.9500
N1—C61.417 (2)C10—C111.382 (3)
N1—H1N10.85 (3)C10—H10A0.9500
N2—C131.354 (2)C11—C121.406 (3)
N2—N31.382 (2)C11—H11A0.9500
N2—H1N20.89 (2)C12—C131.475 (3)
N3—C141.287 (2)C14—C151.442 (3)
C1—C21.381 (3)C14—H14A0.9500
C1—C61.391 (3)C15—C161.368 (3)
C1—H1A0.9500C16—C171.415 (3)
C2—C31.387 (3)C16—H16A0.9500
C2—H2A0.9500C17—C181.355 (3)
C3—C41.385 (3)C17—H17A0.9500
C3—H3A0.9500C18—H18A0.9500
C4—C51.411 (3)C19—H19A0.9800
C4—C191.510 (3)C19—H19B0.9800
C5—C61.399 (3)C19—H19C0.9800
C5—C201.505 (3)C20—H20A0.9800
C7—C81.406 (3)C20—H20B0.9800
C7—C121.417 (3)C20—H20C0.9800
C18—S1—C1591.42 (10)C9—C10—H10A120.5
C7—N1—C6125.71 (17)C10—C11—C12121.68 (18)
C7—N1—H1N1115.0 (17)C10—C11—H11A119.2
C6—N1—H1N1117.7 (16)C12—C11—H11A119.2
C13—N2—N3119.15 (15)C11—C12—C7119.14 (17)
C13—N2—H1N2121.9 (15)C11—C12—C13119.70 (17)
N3—N2—H1N2118.9 (15)C7—C12—C13121.12 (16)
C14—N3—N2114.37 (15)O1—C13—N2121.08 (17)
C2—C1—C6120.20 (18)O1—C13—C12123.01 (16)
C2—C1—H1A119.9N2—C13—C12115.90 (15)
C6—C1—H1A119.9N3—C14—C15120.51 (17)
C1—C2—C3119.58 (18)N3—C14—H14A119.7
C1—C2—H2A120.2C15—C14—H14A119.7
C3—C2—H2A120.2C16—C15—C14126.67 (17)
C4—C3—C2120.99 (19)C16—C15—S1111.12 (15)
C4—C3—H3A119.5C14—C15—S1121.70 (14)
C2—C3—H3A119.5C15—C16—C17112.75 (18)
C3—C4—C5120.02 (17)C15—C16—H16A123.6
C3—C4—C19119.07 (18)C17—C16—H16A123.6
C5—C4—C19120.90 (17)C18—C17—C16112.26 (18)
C6—C5—C4118.19 (17)C18—C17—H17A123.9
C6—C5—C20121.03 (17)C16—C17—H17A123.9
C4—C5—C20120.76 (17)C17—C18—S1112.46 (16)
C1—C6—C5120.97 (18)C17—C18—H18A123.8
C1—C6—N1119.99 (17)S1—C18—H18A123.8
C5—C6—N1118.97 (17)C4—C19—H19A109.5
N1—C7—C8121.51 (18)C4—C19—H19B109.5
N1—C7—C12120.46 (17)H19A—C19—H19B109.5
C8—C7—C12117.96 (17)C4—C19—H19C109.5
C9—C8—C7121.33 (19)H19A—C19—H19C109.5
C9—C8—H8A119.3H19B—C19—H19C109.5
C7—C8—H8A119.3C5—C20—H20A109.5
C8—C9—C10120.95 (18)C5—C20—H20B109.5
C8—C9—H9A119.5H20A—C20—H20B109.5
C10—C9—H9A119.5C5—C20—H20C109.5
C11—C10—C9118.90 (18)H20A—C20—H20C109.5
C11—C10—H10A120.5H20B—C20—H20C109.5
C13—N2—N3—C14177.33 (16)C9—C10—C11—C120.1 (3)
C6—C1—C2—C31.3 (3)C10—C11—C12—C71.5 (3)
C1—C2—C3—C40.7 (3)C10—C11—C12—C13178.95 (17)
C2—C3—C4—C51.6 (3)N1—C7—C12—C11179.49 (18)
C2—C3—C4—C19177.56 (18)C8—C7—C12—C112.7 (3)
C3—C4—C5—C60.4 (3)N1—C7—C12—C133.1 (3)
C19—C4—C5—C6178.70 (18)C8—C7—C12—C13179.91 (17)
C3—C4—C5—C20178.59 (18)N3—N2—C13—O113.8 (3)
C19—C4—C5—C200.6 (3)N3—N2—C13—C12165.63 (15)
C2—C1—C6—C52.5 (3)C11—C12—C13—O1155.40 (18)
C2—C1—C6—N1179.59 (18)C7—C12—C13—O122.0 (3)
C4—C5—C6—C11.6 (3)C11—C12—C13—N224.0 (2)
C20—C5—C6—C1176.56 (18)C7—C12—C13—N2158.62 (17)
C4—C5—C6—N1178.73 (17)N2—N3—C14—C15170.89 (16)
C20—C5—C6—N10.6 (3)N3—C14—C15—C16176.61 (19)
C7—N1—C6—C149.4 (3)N3—C14—C15—S15.5 (3)
C7—N1—C6—C5133.4 (2)C18—S1—C15—C160.06 (15)
C6—N1—C7—C812.2 (3)C18—S1—C15—C14172.39 (16)
C6—N1—C7—C12171.05 (18)C14—C15—C16—C17171.90 (18)
N1—C7—C8—C9179.14 (19)S1—C15—C16—C170.0 (2)
C12—C7—C8—C92.4 (3)C15—C16—C17—C180.0 (3)
C7—C8—C9—C100.8 (3)C16—C17—C18—S10.1 (2)
C8—C9—C10—C110.5 (3)C15—S1—C18—C170.07 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the S1/C15–C18 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.89 (2)1.96 (2)2.808 (2)160 (2)
N1—H1N1···O10.85 (2)2.02 (3)2.704 (2)137 (2)
C1—H1A···O1ii0.952.583.410 (2)146
C3—H3A···Cg1iii0.952.983.732 (2)137
C9—H9A···Cg2iv0.952.843.649 (2)144
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+2; (iii) x+1, y1/2, z+3/2; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC20H19N3OS
Mr349.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.0922 (14), 15.9682 (15), 8.1338 (8)
β (°) 105.344 (2)
V3)1765.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.34 × 0.07 × 0.04
Data collection
DiffractometerBruker APEX DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.936, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
14626, 5082, 3338
Rint0.067
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.128, 1.01
No. of reflections5082
No. of parameters236
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.35

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the S1/C15–C18 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.89 (2)1.96 (2)2.808 (2)160 (2)
N1—H1N1···O10.85 (2)2.02 (3)2.704 (2)137 (2)
C1—H1A···O1ii0.952.58003.410 (2)146
C3—H3A···Cg1iii0.952.983.732 (2)137
C9—H9A···Cg2iv0.952.843.649 (2)144
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+2; (iii) x+1, y1/2, z+3/2; (iv) x, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSC thank Universiti Sains Malaysia (USM) for a Research University Grant (No. 1001/PFIZIK/811160). TSC thanks the Malaysian government and USM for the award of a Research Fellowship. The authors thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University, for funding and facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhat, M. A., Abdel-Aziz, H. A., Ghabbour, H. A., Hemamalini, M. & Fun, H.-K. (2012a). Acta Cryst. E68, o1002.  CSD CrossRef IUCr Journals Google Scholar
First citationBhat, M. A., Abdel-Aziz, H. A., Ghabbour, H. A., Hemamalini, M. & Fun, H.-K. (2012b). Acta Cryst. E68, o1135.  CSD CrossRef IUCr Journals Google Scholar
First citationBhat, M. A., Abdel-Aziz, H. A., Ghabbour, H. A., Hemamalini, M. & Fun, H.-K. (2012c). Acta Cryst. E68, o1144–o1145.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationReddy, L. V., Suman, A., Beevi, S. S., Mangamoori, L. N., Mukkanti, K. & Pal, S. (2010). J. Braz. Chem. Soc. 21, 98–104.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, X., Xie, Y.-S. & Zuo, H. (2010). Acta Cryst. E66, o2828.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, L.-Y., Xie, Y.-S., Wu, R.-M. & Zuo, H. (2010). Acta Cryst. E66, o2827.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds