organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Anilino-4-(1,3-benzo­thia­zol-2-yl)-5-(4-chloro­benzo­yl)thio­phene-3-carbo­nitrile

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
*Correspondence e-mail: hkfun@usm.my

(Received 14 July 2012; accepted 18 July 2012; online 25 July 2012)

In the title compound, C25H14ClN3OS2, the central thio­phene ring [maximum deviation = 0.011 (1) Å] makes dihedral angles of 55.72 (5), 13.36 (5) and 46.77 (4)° with the adjacent chloro-substituted benzene ring, the benzene ring and the 1,3-benzothia­zole ring system [maximum deviation = 0.012 (1) Å], respectively. An intra­molecular C—H⋯S(thienyl) hydrogen bond generates an S(6) ring motif in the mol­ecule. In the crystal, mol­ecules are linked by pairs of N—H⋯N hydrogen bonds into inversion dimers and the dimers are further connected by C—H⋯O hydrogen bonds into tapes running along [100]. Aromatic ππ stacking inter­actions are also observed [centroid-to-centroid distances = 3.6116 (6) and 3.7081 (6) Å].

Related literature

For background to the chemistry and biological activity of thio­phenes, see: Fun et al. (2012[Fun, H.-K., Chantrapromma, S. & Abdel-Aziz, H. A. (2012). Acta Cryst. E68, o1510-o1511.]); Abdel-Aziz et al. (2012[Abdel-Aziz, H. A., Al-Rashood, K. A., Ghabbour, H. A., Chantrapromma, S. & Fun, H.-K. (2012). Acta Cryst. E68, o612-o613.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C25H14ClN3OS2

  • Mr = 471.96

  • Triclinic, [P \overline 1]

  • a = 6.9469 (2) Å

  • b = 7.6722 (3) Å

  • c = 20.9874 (7) Å

  • α = 91.519 (1)°

  • β = 97.577 (1)°

  • γ = 107.791 (1)°

  • V = 1053.15 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 100 K

  • 0.31 × 0.27 × 0.19 mm

Data collection
  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.884, Tmax = 0.929

  • 27413 measured reflections

  • 7637 independent reflections

  • 6820 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.083

  • S = 1.04

  • 7637 reflections

  • 293 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯N2i 0.862 (15) 2.163 (15) 2.9558 (12) 152.7 (13)
C17—H17A⋯O1ii 0.95 2.60 3.3496 (14) 136
C24—H24A⋯S2 0.95 2.49 3.1719 (9) 128
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation to our interest in the chemistry of thiophenes (Fun et al., 2012; Abdel-Aziz et al., 2012), we report herein the crystal structure of the title compound.

The asymmetric unit of the title compound is shown in Fig. 1. The molecule consists of a thiophene ring (A) [S2/C8–C11; maximum deviation = 0.011 (1) Å at atoms S2 and C11], a chloro-substituted benzene ring (B) [C13–C18], a benzene ring (C) [C19–C24] and a benzo[d]thiazole ring system (D) [S1/N1/C1–C7; maximum deviation = 0.012 (1) Å at atom C7]. The dihedral angles between the mean planes of the rings are A/B = 55.72 (5)°, A/C = 13.36 (5)°, A/D = 46.77 (4)°, B/C = 67.90 (5)°, B/D = 23.99 (4)° and C/D = 60.11 (4)°. An intramolecular C24—H24A···S2 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995) in the molecule.

In the crystal (Fig. 2), molecules are linked by pairs of N3—H1N3···N2 hydrogen bonds into inversion dimers and the dimers are further connected by C17—H17A···O1 hydrogen bond into tapes, running along the a-axis. ππ interactions are also observed with Cg1···Cg3 = 3.6116 (6) Å [symmetry code = x, y, z] and Cg2···Cg4 = 3.7081 (6) Å [symmetry code = -x, -y, -z], where Cg1, Cg2, Cg3 and Cg4 are the centroids of S1/C6/C1/N1/C7, S2/C8–C11, C13–C18 and C19–C24 rings, respectively.

Related literature top

For background to the chemistry and biological activity of thiophenes, see: Fun et al. (2012); Abdel-Aziz et al. (2012). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

To a stirred solution of potassium hydroxide (0.56 g, 10 mmol) in dimethylformamide (20 ml), 3-(benzo[d]thiazol-2-yl)-3-oxopropanenitrile (0.2 g, 1 mmol) was added. After heating at 100°C for 10 min, phenyl isothiocyanate (0.135 g, 1 mmol) was added to the resulting mixture and the heating was continued for another 10 min, then 2-chloro-1-(4-chlorophenyl)ethanone (0.189 g, 1 mmol) was added. After the addition, the reaction mixture was heated at 100°C for 15 min. The precipitated product was filtered off, washed with water and dried. Crystallization from DMF afforded the title compound. Colourless blocks were formed after slow evaporation of DMF after one month.

Refinement top

The N-bound H atom was located in a difference Fourier map and refined freely [N3—H1N3 = 0.864 (16) Å]. The remaining H atoms were positioned geometrically [C—H = 0.95 Å] and refined using a riding model with Uiso(H) = 1.2Ueq(C). Four outliers, (001), (026), (210) and (132) were omitted in the final refinement.

Structure description top

In continuation to our interest in the chemistry of thiophenes (Fun et al., 2012; Abdel-Aziz et al., 2012), we report herein the crystal structure of the title compound.

The asymmetric unit of the title compound is shown in Fig. 1. The molecule consists of a thiophene ring (A) [S2/C8–C11; maximum deviation = 0.011 (1) Å at atoms S2 and C11], a chloro-substituted benzene ring (B) [C13–C18], a benzene ring (C) [C19–C24] and a benzo[d]thiazole ring system (D) [S1/N1/C1–C7; maximum deviation = 0.012 (1) Å at atom C7]. The dihedral angles between the mean planes of the rings are A/B = 55.72 (5)°, A/C = 13.36 (5)°, A/D = 46.77 (4)°, B/C = 67.90 (5)°, B/D = 23.99 (4)° and C/D = 60.11 (4)°. An intramolecular C24—H24A···S2 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995) in the molecule.

In the crystal (Fig. 2), molecules are linked by pairs of N3—H1N3···N2 hydrogen bonds into inversion dimers and the dimers are further connected by C17—H17A···O1 hydrogen bond into tapes, running along the a-axis. ππ interactions are also observed with Cg1···Cg3 = 3.6116 (6) Å [symmetry code = x, y, z] and Cg2···Cg4 = 3.7081 (6) Å [symmetry code = -x, -y, -z], where Cg1, Cg2, Cg3 and Cg4 are the centroids of S1/C6/C1/N1/C7, S2/C8–C11, C13–C18 and C19–C24 rings, respectively.

For background to the chemistry and biological activity of thiophenes, see: Fun et al. (2012); Abdel-Aziz et al. (2012). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids. The dashed line represents the intramolecular C—H···S hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of the title compound. The dashed lines represent the hydrogen bonds. For clarity sake, hydrogen atoms not involved in hydrogen bonding have been omitted.
2-Anilino-4-(1,3-benzothiazol-2-yl)-5-(4-chlorobenzoyl)thiophene-3-carbonitrile top
Crystal data top
C25H14ClN3OS2Z = 2
Mr = 471.96F(000) = 484
Triclinic, P1Dx = 1.488 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9469 (2) ÅCell parameters from 9847 reflections
b = 7.6722 (3) Åθ = 2.9–32.6°
c = 20.9874 (7) ŵ = 0.40 mm1
α = 91.519 (1)°T = 100 K
β = 97.577 (1)°Block, colourless
γ = 107.791 (1)°0.31 × 0.27 × 0.19 mm
V = 1053.15 (6) Å3
Data collection top
Bruker APEX DUO CCD
diffractometer
7637 independent reflections
Radiation source: fine-focus sealed tube6820 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 32.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.884, Tmax = 0.929k = 1110
27413 measured reflectionsl = 3031
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0429P)2 + 0.3666P]
where P = (Fo2 + 2Fc2)/3
7637 reflections(Δ/σ)max = 0.001
293 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C25H14ClN3OS2γ = 107.791 (1)°
Mr = 471.96V = 1053.15 (6) Å3
Triclinic, P1Z = 2
a = 6.9469 (2) ÅMo Kα radiation
b = 7.6722 (3) ŵ = 0.40 mm1
c = 20.9874 (7) ÅT = 100 K
α = 91.519 (1)°0.31 × 0.27 × 0.19 mm
β = 97.577 (1)°
Data collection top
Bruker APEX DUO CCD
diffractometer
7637 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6820 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.929Rint = 0.020
27413 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.48 e Å3
7637 reflectionsΔρmin = 0.20 e Å3
293 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.67827 (5)0.27031 (5)0.480308 (13)0.03159 (7)
S10.70001 (3)0.52966 (3)0.221308 (11)0.01676 (5)
S20.06551 (3)0.19907 (3)0.123999 (10)0.01383 (5)
O10.14999 (11)0.16428 (11)0.25836 (4)0.02145 (15)
N10.43041 (12)0.61590 (11)0.27982 (4)0.01415 (13)
N20.56707 (13)0.64723 (13)0.05915 (4)0.01993 (16)
N30.07913 (11)0.30630 (11)0.01040 (4)0.01366 (13)
C10.61873 (14)0.69007 (13)0.31835 (4)0.01479 (15)
C20.64997 (16)0.78959 (14)0.37781 (5)0.01997 (18)
H2A0.53900.81180.39490.024*
C30.84704 (17)0.85469 (15)0.41095 (5)0.0243 (2)
H3A0.87110.92290.45120.029*
C41.01158 (16)0.82196 (16)0.38628 (5)0.0242 (2)
H4A1.14490.86900.41010.029*
C50.98442 (15)0.72275 (15)0.32796 (5)0.02089 (18)
H5A1.09610.70000.31150.025*
C60.78522 (14)0.65718 (13)0.29421 (4)0.01608 (16)
C70.45180 (13)0.52813 (12)0.22864 (4)0.01309 (14)
C80.28097 (13)0.41925 (12)0.18064 (4)0.01252 (14)
C90.28442 (13)0.42981 (12)0.11329 (4)0.01245 (14)
C100.10676 (13)0.31548 (12)0.07552 (4)0.01227 (14)
C110.10148 (13)0.29707 (13)0.19427 (4)0.01379 (15)
C120.03336 (14)0.23023 (13)0.25535 (4)0.01508 (15)
C130.19182 (14)0.23782 (13)0.31168 (4)0.01467 (15)
C140.16736 (15)0.29368 (14)0.37321 (4)0.01761 (16)
H14A0.04840.32480.37930.021*
C150.31665 (16)0.30384 (15)0.42550 (5)0.02027 (18)
H15A0.30210.34380.46730.024*
C160.48753 (15)0.25455 (15)0.41560 (5)0.01946 (17)
C170.51304 (15)0.19385 (14)0.35523 (5)0.01772 (16)
H17A0.62960.15830.34960.021*
C180.36368 (14)0.18651 (13)0.30334 (4)0.01565 (16)
H18A0.37860.14610.26160.019*
C190.08240 (13)0.19674 (12)0.03545 (4)0.01251 (14)
C200.07628 (14)0.24323 (13)0.09960 (4)0.01489 (15)
H20A0.03310.34270.10980.018*
C210.22951 (14)0.14427 (14)0.14810 (4)0.01668 (16)
H21A0.22500.17670.19140.020*
C220.39039 (14)0.00277 (14)0.13365 (4)0.01648 (16)
H22A0.49720.06880.16660.020*
C230.39207 (13)0.05112 (13)0.07028 (4)0.01541 (15)
H23A0.49940.15290.06040.018*
C240.23932 (13)0.04676 (13)0.02097 (4)0.01373 (15)
H24A0.24210.01170.02210.016*
C250.44274 (13)0.55158 (13)0.08486 (4)0.01426 (15)
H1N30.190 (2)0.358 (2)0.0051 (7)0.026 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.03233 (14)0.04596 (18)0.01750 (11)0.01807 (12)0.00611 (9)0.00167 (10)
S10.01263 (9)0.02322 (12)0.01481 (10)0.00628 (8)0.00207 (7)0.00076 (8)
S20.01115 (9)0.01691 (10)0.01187 (9)0.00199 (7)0.00189 (7)0.00100 (7)
O10.0153 (3)0.0294 (4)0.0191 (3)0.0047 (3)0.0057 (2)0.0047 (3)
N10.0140 (3)0.0143 (3)0.0133 (3)0.0035 (3)0.0015 (2)0.0005 (3)
N20.0184 (4)0.0218 (4)0.0171 (4)0.0019 (3)0.0045 (3)0.0006 (3)
N30.0124 (3)0.0159 (3)0.0111 (3)0.0022 (3)0.0018 (2)0.0010 (2)
C10.0157 (4)0.0142 (4)0.0129 (3)0.0029 (3)0.0007 (3)0.0008 (3)
C20.0236 (4)0.0189 (4)0.0148 (4)0.0040 (3)0.0007 (3)0.0020 (3)
C30.0286 (5)0.0213 (5)0.0166 (4)0.0014 (4)0.0036 (4)0.0019 (3)
C40.0203 (4)0.0236 (5)0.0212 (4)0.0007 (4)0.0063 (3)0.0037 (4)
C50.0142 (4)0.0236 (5)0.0216 (4)0.0023 (3)0.0012 (3)0.0052 (4)
C60.0145 (4)0.0175 (4)0.0145 (4)0.0032 (3)0.0003 (3)0.0023 (3)
C70.0115 (3)0.0148 (4)0.0127 (3)0.0037 (3)0.0018 (3)0.0011 (3)
C80.0119 (3)0.0135 (4)0.0121 (3)0.0040 (3)0.0018 (3)0.0001 (3)
C90.0121 (3)0.0132 (4)0.0118 (3)0.0034 (3)0.0021 (3)0.0003 (3)
C100.0119 (3)0.0132 (4)0.0121 (3)0.0043 (3)0.0022 (3)0.0013 (3)
C110.0126 (3)0.0165 (4)0.0116 (3)0.0037 (3)0.0019 (3)0.0010 (3)
C120.0161 (4)0.0168 (4)0.0128 (3)0.0051 (3)0.0038 (3)0.0014 (3)
C130.0167 (4)0.0157 (4)0.0117 (3)0.0044 (3)0.0035 (3)0.0021 (3)
C140.0201 (4)0.0205 (4)0.0139 (4)0.0075 (3)0.0056 (3)0.0017 (3)
C150.0257 (4)0.0237 (5)0.0122 (4)0.0085 (4)0.0036 (3)0.0001 (3)
C160.0219 (4)0.0226 (5)0.0132 (4)0.0072 (4)0.0004 (3)0.0018 (3)
C170.0189 (4)0.0199 (4)0.0156 (4)0.0074 (3)0.0029 (3)0.0028 (3)
C180.0180 (4)0.0171 (4)0.0126 (3)0.0059 (3)0.0037 (3)0.0019 (3)
C190.0119 (3)0.0140 (4)0.0120 (3)0.0051 (3)0.0009 (3)0.0000 (3)
C200.0162 (4)0.0162 (4)0.0127 (3)0.0057 (3)0.0020 (3)0.0016 (3)
C210.0185 (4)0.0200 (4)0.0123 (3)0.0078 (3)0.0006 (3)0.0002 (3)
C220.0144 (4)0.0200 (4)0.0148 (4)0.0066 (3)0.0005 (3)0.0037 (3)
C230.0126 (3)0.0167 (4)0.0167 (4)0.0048 (3)0.0018 (3)0.0021 (3)
C240.0128 (3)0.0153 (4)0.0135 (3)0.0048 (3)0.0025 (3)0.0004 (3)
C250.0144 (3)0.0155 (4)0.0122 (3)0.0042 (3)0.0012 (3)0.0013 (3)
Geometric parameters (Å, º) top
Cl1—C161.7418 (10)C9—C101.4017 (12)
S1—C61.7252 (10)C9—C251.4188 (12)
S1—C71.7477 (9)C11—C121.4754 (12)
S2—C101.7266 (9)C12—C131.4923 (12)
S2—C111.7444 (9)C13—C181.3963 (13)
O1—C121.2294 (11)C13—C141.3975 (12)
N1—C71.3016 (11)C14—C151.3900 (14)
N1—C11.3896 (11)C14—H14A0.9500
N2—C251.1543 (12)C15—C161.3895 (14)
N3—C101.3517 (11)C15—H15A0.9500
N3—C191.4098 (11)C16—C171.3899 (13)
N3—H1N30.864 (16)C17—C181.3889 (13)
C1—C21.4016 (13)C17—H17A0.9500
C1—C61.4086 (13)C18—H18A0.9500
C2—C31.3856 (14)C19—C241.3943 (12)
C2—H2A0.9500C19—C201.4046 (12)
C3—C41.4008 (17)C20—C211.3876 (12)
C3—H3A0.9500C20—H20A0.9500
C4—C51.3839 (16)C21—C221.3967 (14)
C4—H4A0.9500C21—H21A0.9500
C5—C61.4025 (13)C22—C231.3908 (13)
C5—H5A0.9500C22—H22A0.9500
C7—C81.4681 (12)C23—C241.3940 (12)
C8—C111.3817 (12)C23—H23A0.9500
C8—C91.4209 (12)C24—H24A0.9500
C6—S1—C788.99 (4)O1—C12—C13121.52 (8)
C10—S2—C1192.36 (4)C11—C12—C13118.41 (8)
C7—N1—C1109.85 (8)C18—C13—C14119.68 (8)
C10—N3—C19131.28 (8)C18—C13—C12120.18 (8)
C10—N3—H1N3112.8 (10)C14—C13—C12120.13 (8)
C19—N3—H1N3114.3 (10)C15—C14—C13120.15 (9)
N1—C1—C2124.79 (9)C15—C14—H14A119.9
N1—C1—C6115.30 (8)C13—C14—H14A119.9
C2—C1—C6119.91 (9)C16—C15—C14118.89 (9)
C3—C2—C1118.21 (10)C16—C15—H15A120.6
C3—C2—H2A120.9C14—C15—H15A120.6
C1—C2—H2A120.9C15—C16—C17122.13 (9)
C2—C3—C4121.36 (10)C15—C16—Cl1119.51 (7)
C2—C3—H3A119.3C17—C16—Cl1118.35 (8)
C4—C3—H3A119.3C18—C17—C16118.27 (9)
C5—C4—C3121.52 (9)C18—C17—H17A120.9
C5—C4—H4A119.2C16—C17—H17A120.9
C3—C4—H4A119.2C17—C18—C13120.84 (8)
C4—C5—C6117.25 (10)C17—C18—H18A119.6
C4—C5—H5A121.4C13—C18—H18A119.6
C6—C5—H5A121.4C24—C19—C20119.73 (8)
C5—C6—C1121.74 (9)C24—C19—N3124.30 (8)
C5—C6—S1128.84 (8)C20—C19—N3115.94 (8)
C1—C6—S1109.42 (7)C21—C20—C19120.18 (8)
N1—C7—C8124.12 (8)C21—C20—H20A119.9
N1—C7—S1116.43 (7)C19—C20—H20A119.9
C8—C7—S1119.28 (6)C20—C21—C22120.36 (8)
C11—C8—C9112.19 (8)C20—C21—H21A119.8
C11—C8—C7125.47 (8)C22—C21—H21A119.8
C9—C8—C7122.34 (8)C23—C22—C21119.06 (8)
C10—C9—C25121.30 (8)C23—C22—H22A120.5
C10—C9—C8113.63 (8)C21—C22—H22A120.5
C25—C9—C8124.94 (8)C22—C23—C24121.31 (9)
N3—C10—C9122.87 (8)C22—C23—H23A119.3
N3—C10—S2126.75 (7)C24—C23—H23A119.3
C9—C10—S2110.35 (6)C23—C24—C19119.31 (8)
C8—C11—C12132.25 (8)C23—C24—H24A120.3
C8—C11—S2111.44 (6)C19—C24—H24A120.3
C12—C11—S2116.21 (6)N2—C25—C9177.03 (10)
O1—C12—C11120.03 (8)
C7—N1—C1—C2178.49 (9)C9—C8—C11—C12175.01 (9)
C7—N1—C1—C60.68 (11)C7—C8—C11—C125.01 (16)
N1—C1—C2—C3179.78 (9)C9—C8—C11—S21.36 (10)
C6—C1—C2—C30.65 (15)C7—C8—C11—S2178.62 (7)
C1—C2—C3—C40.30 (16)C10—S2—C11—C81.75 (7)
C2—C3—C4—C50.25 (17)C10—S2—C11—C12175.25 (7)
C3—C4—C5—C60.44 (16)C8—C11—C12—O1158.84 (10)
C4—C5—C6—C10.08 (15)S2—C11—C12—O124.93 (12)
C4—C5—C6—S1179.66 (8)C8—C11—C12—C1323.68 (15)
N1—C1—C6—C5179.68 (9)S2—C11—C12—C13152.55 (7)
C2—C1—C6—C50.46 (14)O1—C12—C13—C18134.78 (10)
N1—C1—C6—S10.03 (10)C11—C12—C13—C1842.66 (13)
C2—C1—C6—S1179.18 (8)O1—C12—C13—C1444.25 (14)
C7—S1—C6—C5179.18 (10)C11—C12—C13—C14138.31 (9)
C7—S1—C6—C10.44 (7)C18—C13—C14—C152.09 (15)
C1—N1—C7—C8174.18 (8)C12—C13—C14—C15178.87 (9)
C1—N1—C7—S11.05 (10)C13—C14—C15—C161.14 (15)
C6—S1—C7—N10.90 (8)C14—C15—C16—C170.60 (16)
C6—S1—C7—C8174.57 (7)C14—C15—C16—Cl1178.87 (8)
N1—C7—C8—C1144.54 (14)C15—C16—C17—C181.34 (16)
S1—C7—C8—C11130.56 (8)Cl1—C16—C17—C18178.14 (8)
N1—C7—C8—C9135.44 (10)C16—C17—C18—C130.35 (14)
S1—C7—C8—C949.46 (11)C14—C13—C18—C171.34 (14)
C11—C8—C9—C100.11 (11)C12—C13—C18—C17179.63 (9)
C7—C8—C9—C10179.88 (8)C10—N3—C19—C2411.48 (15)
C11—C8—C9—C25175.87 (9)C10—N3—C19—C20170.28 (9)
C7—C8—C9—C254.11 (14)C24—C19—C20—C212.20 (13)
C19—N3—C10—C9177.25 (9)N3—C19—C20—C21179.48 (8)
C19—N3—C10—S24.70 (14)C19—C20—C21—C220.31 (14)
C25—C9—C10—N33.59 (14)C20—C21—C22—C231.52 (14)
C8—C9—C10—N3179.53 (8)C21—C22—C23—C241.51 (14)
C25—C9—C10—S2174.74 (7)C22—C23—C24—C190.36 (13)
C8—C9—C10—S21.20 (10)C20—C19—C24—C232.20 (13)
C11—S2—C10—N3179.90 (8)N3—C19—C24—C23179.61 (8)
C11—S2—C10—C91.66 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···N2i0.862 (15)2.163 (15)2.9558 (12)152.7 (13)
C17—H17A···O1ii0.952.603.3496 (14)136
C24—H24A···S20.952.493.1719 (9)128
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC25H14ClN3OS2
Mr471.96
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.9469 (2), 7.6722 (3), 20.9874 (7)
α, β, γ (°)91.519 (1), 97.577 (1), 107.791 (1)
V3)1053.15 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.31 × 0.27 × 0.19
Data collection
DiffractometerBruker APEX DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.884, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
27413, 7637, 6820
Rint0.020
(sin θ/λ)max1)0.759
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.083, 1.04
No. of reflections7637
No. of parameters293
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.20

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1N3···N2i0.862 (15)2.163 (15)2.9558 (12)152.7 (13)
C17—H17A···O1ii0.952.603.3496 (14)136
C24—H24A···S20.952.493.1719 (9)128
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSC thank Universiti Sains Malaysia (USM) for a Research University Grant (No. 1001/PFIZIK/811160). TSC thanks the Malaysian government and USM for the award of a Research Fellowship. The authors thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University, for funding and facilities.

References

First citationAbdel-Aziz, H. A., Al-Rashood, K. A., Ghabbour, H. A., Chantrapromma, S. & Fun, H.-K. (2012). Acta Cryst. E68, o612–o613.  CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Chantrapromma, S. & Abdel-Aziz, H. A. (2012). Acta Cryst. E68, o1510–o1511.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds