organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(E)-N-(Adamantan-1-yl)carbox­imidoyl]-6-eth­­oxy­phenol

aUniversity of Sargodha, Department of Chemistry, Sargodha, Pakistan, and bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 24 July 2012; accepted 25 July 2012; online 28 July 2012)

In the title compound, C19H25NO2, the 3-eth­oxy-2-hy­droxy­benzaldehyde group is almost planar (r.m.s. deviation = 0.029 Å). An intra­molecular O—H⋯N hydrogen bond generates an S(6) ring. There are no inter­molecular hydrogen bonds.

Related literature

For a related structure, see: Fernandez et al. (2001[Fernandez, J. M., del Rio-Portilla, G. F., Quiroz-Garcia, B., Toscano, R. A. & Salcedo, R. (2001). J. Mol. Struct. 561, 197-207.]).

[Scheme 1]

Experimental

Crystal data
  • C19H25NO2

  • Mr = 299.40

  • Monoclinic, P 21 /c

  • a = 18.9892 (16) Å

  • b = 6.7660 (5) Å

  • c = 13.0072 (10) Å

  • β = 95.958 (3)°

  • V = 1662.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.35 × 0.28 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.985

  • 8977 measured reflections

  • 3006 independent reflections

  • 2074 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.158

  • S = 1.05

  • 3006 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.86 2.593 (2) 148

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (Fig. 1) has been synthesized as a derivative for the complexation and other studies.

The crystal structures of N-(1-adamantyl)salicylaldamine (Fernandez et al. 2001) has been published which is related to the title compound.

In the title compound the 3-adamantylamine the bond lengths and bond angles have normal values. The 3-ethoxy-2-hydroxybenzaldehyde group is planar with r.m.s. deviation of 0.0292 Å. There exist strong intramolecular H-bonding of O—H···N type (Table 1, Fig. 1) and S(6) ring motif is formed. There does not exist any intermolecular H-bonding.

Related literature top

For a related structure, see: Fernandez et al. (2001).

Experimental top

Equimolar quantities of 3-adamantylamine and 3-ethoxy-2-hydroxybenzaldehyde were refluxed in ethanol for 2 h and yellow prisms of (I) were obtained after 72 h by the slow evaporation of the solvent at room temperature.

Refinement top

The H-atoms were positioned geometrically at C—H = 0.93–0.97 and O—H = 0.82 Å, respectively and included in the refinement as riding with Uiso(H) = xUeq(C, O), where x = 1.5 for hydroxy & methyl and x = 1.2 for all other H-atoms.

Structure description top

The title compound (Fig. 1) has been synthesized as a derivative for the complexation and other studies.

The crystal structures of N-(1-adamantyl)salicylaldamine (Fernandez et al. 2001) has been published which is related to the title compound.

In the title compound the 3-adamantylamine the bond lengths and bond angles have normal values. The 3-ethoxy-2-hydroxybenzaldehyde group is planar with r.m.s. deviation of 0.0292 Å. There exist strong intramolecular H-bonding of O—H···N type (Table 1, Fig. 1) and S(6) ring motif is formed. There does not exist any intermolecular H-bonding.

For a related structure, see: Fernandez et al. (2001).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level. The dotted line represents the intramolecular hydrogen bond.
2-[(E)-N-(Adamantan-1-yl)carboximidoyl]-6-ethoxyphenol top
Crystal data top
C19H25NO2F(000) = 648
Mr = 299.40Dx = 1.196 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2074 reflections
a = 18.9892 (16) Åθ = 2.2–25.3°
b = 6.7660 (5) ŵ = 0.08 mm1
c = 13.0072 (10) ÅT = 296 K
β = 95.958 (3)°Prism, yellow
V = 1662.2 (2) Å30.35 × 0.28 × 0.25 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3006 independent reflections
Radiation source: fine-focus sealed tube2074 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 8.10 pixels mm-1θmax = 25.3°, θmin = 2.2°
ω scansh = 2222
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 87
Tmin = 0.975, Tmax = 0.985l = 1514
8977 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0682P)2 + 0.6627P]
where P = (Fo2 + 2Fc2)/3
3006 reflections(Δ/σ)max < 0.001
201 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C19H25NO2V = 1662.2 (2) Å3
Mr = 299.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.9892 (16) ŵ = 0.08 mm1
b = 6.7660 (5) ÅT = 296 K
c = 13.0072 (10) Å0.35 × 0.28 × 0.25 mm
β = 95.958 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3006 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2074 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.985Rint = 0.028
8977 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.05Δρmax = 0.30 e Å3
3006 reflectionsΔρmin = 0.17 e Å3
201 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.18741 (9)0.1124 (2)0.42066 (12)0.0557 (6)
O20.10146 (9)0.0658 (2)0.56419 (12)0.0616 (6)
N10.25760 (9)0.0401 (3)0.27943 (13)0.0460 (6)
C10.30814 (11)0.0164 (3)0.20220 (15)0.0426 (7)
C20.30683 (15)0.1799 (4)0.12148 (19)0.0643 (9)
C30.36170 (16)0.1346 (4)0.0448 (2)0.0716 (10)
C40.43359 (16)0.1258 (5)0.1053 (3)0.0863 (12)
C50.43686 (15)0.0407 (5)0.1834 (2)0.0802 (11)
C60.38174 (13)0.0023 (5)0.2599 (2)0.0710 (10)
C70.29071 (14)0.1797 (4)0.1462 (2)0.0646 (9)
C80.34638 (15)0.2240 (4)0.0709 (2)0.0688 (10)
C90.41789 (16)0.2344 (4)0.1310 (3)0.0820 (11)
C100.34335 (16)0.0602 (4)0.0073 (2)0.0746 (10)
C110.22809 (11)0.2044 (3)0.29534 (16)0.0445 (7)
C120.18045 (11)0.2304 (3)0.37448 (15)0.0408 (6)
C130.16242 (11)0.0702 (3)0.43468 (16)0.0415 (7)
C140.11691 (11)0.0998 (3)0.51114 (16)0.0453 (7)
C150.09234 (12)0.2874 (3)0.52875 (18)0.0551 (8)
C160.11149 (13)0.4469 (3)0.47037 (19)0.0580 (8)
C170.15451 (12)0.4186 (3)0.39414 (17)0.0497 (7)
C180.05855 (13)0.0432 (4)0.64640 (18)0.0596 (8)
C190.05370 (18)0.2399 (4)0.6973 (2)0.0825 (11)
H10.213930.110020.374790.0835*
H2A0.317850.305600.155220.0772*
H2B0.259910.189060.084410.0772*
H30.360900.239630.007220.0857*
H4A0.443390.250350.140860.1035*
H4B0.469440.105510.058390.1035*
H50.484370.048380.220570.0964*
H6A0.382780.102510.310920.0851*
H6B0.393400.125530.295820.0851*
H7A0.244050.172090.108230.0775*
H7B0.290330.285690.196390.0775*
H80.335470.350330.036000.0825*
H9A0.453060.267200.084680.0984*
H9B0.418100.338030.182500.0984*
H10A0.296140.053170.043610.0895*
H10B0.376380.087580.057630.0895*
H110.237440.312310.254580.0534*
H150.062620.307380.580300.0662*
H160.094940.572930.483330.0695*
H170.166750.525490.354740.0597*
H18A0.011730.002520.619990.0716*
H18B0.079410.053080.695780.0716*
H19A0.100310.294470.712010.1236*
H19B0.025280.327220.652010.1236*
H19C0.032380.224300.760570.1236*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0775 (12)0.0295 (8)0.0652 (10)0.0063 (7)0.0323 (8)0.0032 (7)
O20.0801 (12)0.0453 (9)0.0655 (10)0.0012 (8)0.0373 (9)0.0021 (8)
N10.0572 (11)0.0347 (10)0.0476 (10)0.0018 (8)0.0123 (9)0.0019 (8)
C10.0505 (12)0.0363 (11)0.0421 (11)0.0029 (9)0.0099 (9)0.0011 (9)
C20.0833 (18)0.0520 (14)0.0615 (15)0.0105 (13)0.0257 (13)0.0061 (12)
C30.093 (2)0.0592 (17)0.0673 (16)0.0058 (14)0.0314 (15)0.0138 (14)
C40.082 (2)0.081 (2)0.103 (2)0.0267 (17)0.0432 (18)0.0229 (19)
C50.0530 (16)0.104 (2)0.0823 (19)0.0053 (16)0.0004 (14)0.0090 (19)
C60.0649 (16)0.088 (2)0.0594 (15)0.0051 (15)0.0026 (13)0.0030 (14)
C70.0686 (16)0.0498 (14)0.0779 (17)0.0026 (12)0.0194 (14)0.0106 (13)
C80.0762 (18)0.0523 (15)0.0799 (18)0.0004 (13)0.0184 (15)0.0162 (14)
C90.0751 (19)0.075 (2)0.099 (2)0.0268 (16)0.0233 (17)0.0066 (17)
C100.0787 (18)0.087 (2)0.0590 (15)0.0130 (16)0.0114 (14)0.0144 (15)
C110.0547 (13)0.0335 (11)0.0460 (12)0.0028 (10)0.0087 (10)0.0035 (9)
C120.0473 (12)0.0320 (10)0.0435 (11)0.0008 (9)0.0062 (9)0.0002 (9)
C130.0476 (12)0.0297 (10)0.0472 (12)0.0010 (9)0.0053 (9)0.0039 (9)
C140.0510 (13)0.0377 (12)0.0485 (12)0.0017 (10)0.0112 (10)0.0014 (10)
C150.0586 (14)0.0498 (14)0.0596 (14)0.0061 (11)0.0185 (11)0.0095 (12)
C160.0674 (15)0.0353 (12)0.0726 (16)0.0121 (11)0.0140 (13)0.0067 (11)
C170.0615 (14)0.0308 (11)0.0574 (13)0.0039 (10)0.0084 (11)0.0023 (10)
C180.0660 (15)0.0659 (16)0.0503 (13)0.0106 (12)0.0216 (12)0.0087 (12)
C190.108 (2)0.081 (2)0.0640 (17)0.0329 (17)0.0350 (16)0.0010 (15)
Geometric parameters (Å, º) top
O1—C131.343 (2)C18—C191.494 (4)
O2—C141.364 (3)C2—H2A0.9700
O2—C181.418 (3)C2—H2B0.9700
O1—H10.8200C3—H30.9800
N1—C111.272 (3)C4—H4A0.9700
N1—C11.468 (3)C4—H4B0.9700
C1—C21.524 (3)C5—H50.9800
C1—C61.519 (3)C6—H6A0.9700
C1—C71.533 (3)C6—H6B0.9700
C2—C31.546 (4)C7—H7A0.9700
C3—C41.505 (4)C7—H7B0.9700
C3—C101.506 (4)C8—H80.9800
C4—C51.514 (5)C9—H9A0.9700
C5—C91.504 (4)C9—H9B0.9700
C5—C61.545 (4)C10—H10A0.9700
C7—C81.543 (4)C10—H10B0.9700
C8—C101.501 (4)C11—H110.9300
C8—C91.497 (4)C15—H150.9300
C11—C121.450 (3)C16—H160.9300
C12—C171.398 (3)C17—H170.9300
C12—C131.400 (3)C18—H18A0.9700
C13—C141.398 (3)C18—H18B0.9700
C14—C151.380 (3)C19—H19A0.9600
C15—C161.390 (3)C19—H19B0.9600
C16—C171.362 (3)C19—H19C0.9600
C14—O2—C18117.61 (17)C5—C4—H4A110.00
C13—O1—H1109.00C5—C4—H4B110.00
C1—N1—C11122.50 (19)H4A—C4—H4B108.00
N1—C1—C2115.28 (19)C4—C5—H5110.00
N1—C1—C7107.18 (18)C6—C5—H5110.00
C2—C1—C6109.5 (2)C9—C5—H5110.00
N1—C1—C6107.58 (17)C1—C6—H6A110.00
C6—C1—C7108.8 (2)C1—C6—H6B110.00
C2—C1—C7108.28 (18)C5—C6—H6A110.00
C1—C2—C3109.7 (2)C5—C6—H6B110.00
C2—C3—C10108.9 (2)H6A—C6—H6B108.00
C4—C3—C10110.8 (2)C1—C7—H7A110.00
C2—C3—C4107.8 (2)C1—C7—H7B110.00
C3—C4—C5110.6 (3)C8—C7—H7A110.00
C4—C5—C6108.0 (3)C8—C7—H7B110.00
C4—C5—C9110.7 (3)H7A—C7—H7B108.00
C6—C5—C9108.0 (3)C7—C8—H8110.00
C1—C6—C5110.1 (2)C9—C8—H8110.00
C1—C7—C8110.0 (2)C10—C8—H8110.00
C7—C8—C9108.8 (2)C5—C9—H9A109.00
C9—C8—C10111.0 (2)C5—C9—H9B109.00
C7—C8—C10107.8 (2)C8—C9—H9A109.00
C5—C9—C8111.0 (2)C8—C9—H9B109.00
C3—C10—C8110.5 (2)H9A—C9—H9B108.00
N1—C11—C12122.66 (19)C3—C10—H10A110.00
C11—C12—C17119.86 (19)C3—C10—H10B110.00
C13—C12—C17119.43 (19)C8—C10—H10A110.00
C11—C12—C13120.66 (18)C8—C10—H10B110.00
O1—C13—C14118.80 (18)H10A—C10—H10B108.00
C12—C13—C14119.47 (19)N1—C11—H11119.00
O1—C13—C12121.73 (19)C12—C11—H11119.00
O2—C14—C15125.29 (19)C14—C15—H15120.00
C13—C14—C15119.64 (19)C16—C15—H15120.00
O2—C14—C13115.06 (18)C15—C16—H16120.00
C14—C15—C16120.8 (2)C17—C16—H16120.00
C15—C16—C17120.0 (2)C12—C17—H17120.00
C12—C17—C16120.69 (19)C16—C17—H17120.00
O2—C18—C19107.8 (2)O2—C18—H18A110.00
C1—C2—H2A110.00O2—C18—H18B110.00
C1—C2—H2B110.00C19—C18—H18A110.00
C3—C2—H2A110.00C19—C18—H18B110.00
C3—C2—H2B110.00H18A—C18—H18B108.00
H2A—C2—H2B108.00C18—C19—H19A109.00
C2—C3—H3110.00C18—C19—H19B109.00
C4—C3—H3110.00C18—C19—H19C109.00
C10—C3—H3110.00H19A—C19—H19B109.00
C3—C4—H4A109.00H19A—C19—H19C109.00
C3—C4—H4B110.00H19B—C19—H19C109.00
C18—O2—C14—C13176.74 (19)C9—C5—C6—C160.4 (3)
C18—O2—C14—C152.2 (3)C4—C5—C9—C856.4 (3)
C14—O2—C18—C19175.7 (2)C6—C5—C9—C861.6 (3)
C11—N1—C1—C217.3 (3)C1—C7—C8—C959.1 (3)
C11—N1—C1—C6105.2 (2)C1—C7—C8—C1061.3 (3)
C11—N1—C1—C7137.9 (2)C7—C8—C9—C561.3 (3)
C1—N1—C11—C12177.34 (18)C10—C8—C9—C557.1 (3)
N1—C1—C2—C3179.26 (19)C7—C8—C10—C361.8 (3)
C6—C1—C2—C359.3 (3)C9—C8—C10—C357.2 (3)
C7—C1—C2—C359.3 (3)N1—C11—C12—C132.8 (3)
N1—C1—C6—C5175.2 (2)N1—C11—C12—C17174.5 (2)
C2—C1—C6—C558.8 (3)C11—C12—C13—O11.0 (3)
C7—C1—C6—C559.4 (3)C11—C12—C13—C14179.38 (19)
N1—C1—C7—C8174.59 (19)C17—C12—C13—O1178.3 (2)
C2—C1—C7—C860.5 (3)C17—C12—C13—C142.1 (3)
C6—C1—C7—C858.5 (2)C11—C12—C17—C16177.9 (2)
C1—C2—C3—C460.5 (3)C13—C12—C17—C160.6 (3)
C1—C2—C3—C1059.8 (3)O1—C13—C14—O20.9 (3)
C2—C3—C4—C562.6 (3)O1—C13—C14—C15178.1 (2)
C10—C3—C4—C556.5 (3)C12—C13—C14—O2178.77 (18)
C2—C3—C10—C861.5 (3)C12—C13—C14—C152.3 (3)
C4—C3—C10—C857.0 (3)O2—C14—C15—C16179.8 (2)
C3—C4—C5—C662.0 (3)C13—C14—C15—C160.9 (3)
C3—C4—C5—C956.1 (3)C14—C15—C16—C170.6 (4)
C4—C5—C6—C159.3 (3)C15—C16—C17—C120.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.862.593 (2)148

Experimental details

Crystal data
Chemical formulaC19H25NO2
Mr299.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)18.9892 (16), 6.7660 (5), 13.0072 (10)
β (°) 95.958 (3)
V3)1662.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.28 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.975, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
8977, 3006, 2074
Rint0.028
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.158, 1.05
No. of reflections3006
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.17

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.862.593 (2)148
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors also acknowledge the technical support provided by Syed Muhammad Hussain Rizvi of Bana Inter­national, Karachi, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFernandez, J. M., del Rio-Portilla, G. F., Quiroz-Garcia, B., Toscano, R. A. & Salcedo, R. (2001). J. Mol. Struct. 561, 197–207.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds