metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{4,4′-Di­chloro-2,2′-[2,2-di­methyl­propane-1,3-diylbis(nitrilo­methanylyl­­idene)]diphenolato}copper(II)

aDepartment of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, I. R. of IRAN, bDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and cDepartment of Chemistry, University of Isfahan, 81746-73441, Isfahan, Iran
*Correspondence e-mail: zsrkk@yahoo.com

(Received 20 July 2012; accepted 24 July 2012; online 28 July 2012)

In the title Schiff base complex, [Cu(C19H18Cl2N2O2)], the CuII ion is coordinated in a distorted square-planar environment by two N atoms and two O atoms of the tetra­dentate ligand. The dihedral angle between the benzene rings is 36.86 (14)°. In the crystal, mol­ecules are linked into inversion dimers by pairs of weak C—H⋯O hydrogen bonds. In addition, ππ [centroid–centroid distance = 3.7279 (16) Å] and weak C—H⋯π inter­actions are observed.

Related literature

For applications of Schiff bases in coordination chemistry, see: Granovski et al. (1993[Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Blower et al. (1998[Blower, P. J. (1998). Transition Met. Chem., 23, 109-112.]). For related structures, see: Ghaemi et al. (2011[Ghaemi, A., Rayati, S., Elahi, E., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m1445-m1446.]); Kargar et al. (2011[Kargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). Acta Cryst. E67, m941.], 2012[Kargar, H., Kia, R., Sharafi, Z. & Tahir, M. N. (2012). Acta Cryst. E68, m82.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C19H18Cl2N2O2)]

  • Mr = 440.79

  • Triclinic, [P \overline 1]

  • a = 9.4213 (12) Å

  • b = 9.5718 (13) Å

  • c = 11.4392 (15) Å

  • α = 74.478 (10)°

  • β = 78.635 (10)°

  • γ = 73.339 (10)°

  • V = 944.1 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.46 mm−1

  • T = 296 K

  • 0.23 × 0.12 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.731, Tmax = 0.893

  • 8620 measured reflections

  • 4302 independent reflections

  • 3369 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.098

  • S = 1.00

  • 4302 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is centroid of Cu1/O2/C17/C12/C11/N2.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯O2i 0.93 2.46 3.367 (3) 165
C10—H10BCgii 0.97 2.65 3.452 (3) 140
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with ease of preparation and structural variations (Granovski et al., 1993; Blower et al., (1998). In continuation of our work on the crystal structure of Schiff base metal complexes (Kargar et al., 2012; Kargar et al., 2011; Ghaemi, et al., (2011), we have determined the X-ray structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, comprises a Schiff base complex. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to those in related structures (Kargar et al., 2012; Kargar et al., 2011; Ghaemi, et al., (2011).

The coordination geometry of the CuII ion is distorted square-planar which is supported by the N2O2 donor atoms of the coordinated Schiff base ligand. The dihedral angle between the substituted benzene rings is 36.86 (14)°. In the crystal, molecules are linked by a pair of weak C—H···O hydrogen bonds, forming inversion dimers (Table 1, Fig. 2). The crystal structure is further stabilized by intermolecular ππ interactions [Cg1···Cg2iii = 3.7279 (16)Å; (iii) 1 - x, -y, 2 - z; Cg1 and Cg2 are centroids of the Cu1/O1/C1/C6/C7/N1 and C1–C6 rings] and C—H···π interactions (Table 1).

Related literature top

For applications of Schiff bases in coordination chemistry, see: Granovski et al. (1993); Blower et al. (1998). For related structures, see: Ghaemi, et al. (2011); Kargar et al. (2011, 2012). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was synthesized by adding 5-dichloro-salicylaldehyde-2,2-dimethyl-1, 3-propanediamine (2 mmol) to a solution of CuCl2. 4H2O (2.1 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant solution was filtered. Dark-green single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement top

The H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93, 0.96 and 0.97 Å for CH, CH3 and CH2 H-atoms, respectively, with Uiso (H) = k × Ueq(C), where k = 1.5 for CH3 H-atoms, and k = 1.2 for all other H-atoms.

Structure description top

Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with ease of preparation and structural variations (Granovski et al., 1993; Blower et al., (1998). In continuation of our work on the crystal structure of Schiff base metal complexes (Kargar et al., 2012; Kargar et al., 2011; Ghaemi, et al., (2011), we have determined the X-ray structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, comprises a Schiff base complex. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to those in related structures (Kargar et al., 2012; Kargar et al., 2011; Ghaemi, et al., (2011).

The coordination geometry of the CuII ion is distorted square-planar which is supported by the N2O2 donor atoms of the coordinated Schiff base ligand. The dihedral angle between the substituted benzene rings is 36.86 (14)°. In the crystal, molecules are linked by a pair of weak C—H···O hydrogen bonds, forming inversion dimers (Table 1, Fig. 2). The crystal structure is further stabilized by intermolecular ππ interactions [Cg1···Cg2iii = 3.7279 (16)Å; (iii) 1 - x, -y, 2 - z; Cg1 and Cg2 are centroids of the Cu1/O1/C1/C6/C7/N1 and C1–C6 rings] and C—H···π interactions (Table 1).

For applications of Schiff bases in coordination chemistry, see: Granovski et al. (1993); Blower et al. (1998). For related structures, see: Ghaemi, et al. (2011); Kargar et al. (2011, 2012). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. A part of the crystal structure of the title compound showing dimer formation through weak intermolecular C—H···O hydrogen bonds (dashed lines). Only the H atoms involved in hydrogen bonds are shown.
{4,4'-Dichloro-2,2'-[2,2-dimethylpropane-1,3- diylbis(nitrilomethanylylidene)]diphenolato}copper(II) top
Crystal data top
[Cu(C19H18Cl2N2O2)]Z = 2
Mr = 440.79F(000) = 450
Triclinic, P1Dx = 1.551 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4213 (12) ÅCell parameters from 1540 reflections
b = 9.5718 (13) Åθ = 2.5–27.4°
c = 11.4392 (15) ŵ = 1.46 mm1
α = 74.478 (10)°T = 296 K
β = 78.635 (10)°Block, dark-green
γ = 73.339 (10)°0.23 × 0.12 × 0.08 mm
V = 944.1 (2) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4302 independent reflections
Radiation source: fine-focus sealed tube3369 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
φ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1212
Tmin = 0.731, Tmax = 0.893k = 1212
8620 measured reflectionsl = 1411
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0521P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
4302 reflectionsΔρmax = 0.44 e Å3
236 parametersΔρmin = 0.46 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.044 (2)
Crystal data top
[Cu(C19H18Cl2N2O2)]γ = 73.339 (10)°
Mr = 440.79V = 944.1 (2) Å3
Triclinic, P1Z = 2
a = 9.4213 (12) ÅMo Kα radiation
b = 9.5718 (13) ŵ = 1.46 mm1
c = 11.4392 (15) ÅT = 296 K
α = 74.478 (10)°0.23 × 0.12 × 0.08 mm
β = 78.635 (10)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4302 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3369 reflections with I > 2σ(I)
Tmin = 0.731, Tmax = 0.893Rint = 0.049
8620 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.00Δρmax = 0.44 e Å3
4302 reflectionsΔρmin = 0.46 e Å3
236 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.59520 (4)0.06692 (3)0.63656 (3)0.03281 (12)
Cl10.14886 (11)0.15287 (10)1.21334 (8)0.0638 (2)
Cl20.81316 (14)0.43389 (11)0.01358 (8)0.0801 (3)
O10.4216 (2)0.1436 (2)0.74001 (17)0.0395 (4)
O20.5916 (2)0.2592 (2)0.53387 (17)0.0402 (4)
N10.6589 (2)0.1147 (2)0.7608 (2)0.0345 (5)
N20.6982 (2)0.0370 (2)0.50664 (19)0.0323 (5)
C10.3645 (3)0.0694 (3)0.8440 (2)0.0336 (5)
C20.2211 (3)0.1361 (3)0.8969 (3)0.0392 (6)
H2A0.16970.22910.85600.047*
C30.1548 (3)0.0676 (3)1.0075 (3)0.0439 (7)
H3A0.06000.11411.04010.053*
C40.2299 (3)0.0707 (3)1.0697 (3)0.0427 (7)
C50.3678 (3)0.1413 (3)1.0215 (2)0.0401 (6)
H5A0.41660.23441.06410.048*
C60.4369 (3)0.0746 (3)0.9079 (2)0.0341 (5)
C70.5839 (3)0.1549 (3)0.8646 (2)0.0367 (6)
H7A0.62780.24330.91630.044*
C80.8107 (3)0.2035 (3)0.7313 (3)0.0391 (6)
H8A0.84180.27640.80460.047*
H8B0.87820.13800.70590.047*
C90.8246 (3)0.2868 (3)0.6290 (3)0.0370 (6)
C100.7130 (3)0.1996 (3)0.5388 (2)0.0365 (6)
H10A0.74370.23700.46450.044*
H10B0.61580.21820.57390.044*
C110.7392 (3)0.0260 (3)0.3960 (2)0.0326 (5)
H11A0.78640.03630.34240.039*
C120.7187 (3)0.1840 (3)0.3477 (2)0.0319 (5)
C130.7706 (3)0.2307 (3)0.2225 (2)0.0388 (6)
H13A0.81940.15970.17660.047*
C140.7498 (3)0.3784 (3)0.1688 (3)0.0441 (7)
C150.6757 (3)0.4870 (3)0.2359 (3)0.0450 (7)
H15A0.66150.58800.19810.054*
C160.6242 (3)0.4443 (3)0.3570 (3)0.0406 (6)
H16A0.57450.51750.40050.049*
C170.6445 (3)0.2919 (3)0.4180 (2)0.0333 (5)
C180.7882 (4)0.4381 (3)0.6845 (3)0.0563 (8)
H18A0.79690.48900.62060.084*
H18B0.68800.42330.72630.084*
H18C0.85680.49730.74140.084*
C190.9840 (4)0.3059 (4)0.5632 (4)0.0598 (9)
H19A0.99530.35680.49890.090*
H19B1.05290.36360.62030.090*
H19C1.00420.20930.52900.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03676 (19)0.02733 (17)0.02913 (18)0.00348 (12)0.00110 (12)0.00637 (12)
Cl10.0809 (6)0.0601 (5)0.0447 (4)0.0320 (5)0.0197 (4)0.0069 (4)
Cl20.1256 (9)0.0540 (5)0.0398 (4)0.0221 (6)0.0211 (5)0.0012 (4)
O10.0420 (10)0.0334 (9)0.0324 (9)0.0021 (8)0.0039 (8)0.0038 (8)
O20.0512 (11)0.0292 (9)0.0333 (10)0.0068 (8)0.0072 (8)0.0083 (8)
N10.0364 (11)0.0319 (11)0.0326 (11)0.0007 (9)0.0056 (9)0.0103 (9)
N20.0372 (11)0.0254 (10)0.0335 (11)0.0062 (9)0.0034 (9)0.0074 (9)
C10.0388 (13)0.0343 (13)0.0295 (12)0.0111 (11)0.0020 (11)0.0099 (11)
C20.0383 (14)0.0366 (14)0.0392 (14)0.0071 (12)0.0007 (12)0.0092 (12)
C30.0404 (15)0.0474 (16)0.0446 (16)0.0147 (13)0.0069 (13)0.0165 (14)
C40.0553 (17)0.0431 (15)0.0338 (14)0.0247 (14)0.0059 (13)0.0103 (12)
C50.0530 (16)0.0358 (14)0.0337 (14)0.0167 (13)0.0044 (12)0.0064 (11)
C60.0408 (14)0.0342 (13)0.0294 (12)0.0124 (11)0.0030 (11)0.0083 (11)
C70.0449 (15)0.0296 (12)0.0344 (13)0.0042 (11)0.0110 (12)0.0065 (11)
C80.0360 (14)0.0376 (14)0.0424 (15)0.0007 (11)0.0089 (12)0.0128 (12)
C90.0375 (14)0.0280 (12)0.0416 (15)0.0014 (11)0.0019 (12)0.0106 (11)
C100.0464 (15)0.0259 (12)0.0383 (14)0.0102 (11)0.0068 (12)0.0071 (11)
C110.0346 (13)0.0327 (12)0.0311 (13)0.0070 (10)0.0021 (10)0.0114 (11)
C120.0323 (12)0.0306 (12)0.0312 (13)0.0085 (10)0.0004 (10)0.0065 (10)
C130.0440 (15)0.0368 (14)0.0328 (13)0.0098 (12)0.0044 (12)0.0101 (11)
C140.0536 (17)0.0414 (15)0.0319 (14)0.0149 (13)0.0013 (13)0.0009 (12)
C150.0501 (16)0.0305 (13)0.0462 (16)0.0087 (12)0.0009 (13)0.0002 (12)
C160.0419 (14)0.0291 (13)0.0425 (15)0.0037 (11)0.0059 (12)0.0084 (11)
C170.0304 (12)0.0327 (12)0.0336 (13)0.0066 (10)0.0005 (10)0.0067 (11)
C180.081 (2)0.0308 (14)0.0511 (18)0.0071 (15)0.0115 (17)0.0047 (13)
C190.0419 (17)0.066 (2)0.068 (2)0.0013 (16)0.0039 (16)0.0295 (19)
Geometric parameters (Å, º) top
Cu1—O21.8952 (18)C8—H8A0.9700
Cu1—O11.9050 (18)C8—H8B0.9700
Cu1—N21.952 (2)C9—C181.525 (4)
Cu1—N11.953 (2)C9—C191.525 (4)
Cl1—C41.749 (3)C9—C101.527 (4)
Cl2—C141.747 (3)C10—H10A0.9700
O1—C11.312 (3)C10—H10B0.9700
O2—C171.308 (3)C11—C121.434 (3)
N1—C71.280 (3)C11—H11A0.9300
N1—C81.466 (3)C12—C131.413 (4)
N2—C111.283 (3)C12—C171.418 (4)
N2—C101.471 (3)C13—C141.355 (4)
C1—C21.411 (4)C13—H13A0.9300
C1—C61.421 (4)C14—C151.398 (4)
C2—C31.378 (4)C15—C161.367 (4)
C2—H2A0.9300C15—H15A0.9300
C3—C41.385 (4)C16—C171.414 (4)
C3—H3A0.9300C16—H16A0.9300
C4—C51.365 (4)C18—H18A0.9600
C5—C61.407 (4)C18—H18B0.9600
C5—H5A0.9300C18—H18C0.9600
C6—C71.442 (4)C19—H19A0.9600
C7—H7A0.9300C19—H19B0.9600
C8—C91.550 (4)C19—H19C0.9600
O2—Cu1—O192.08 (8)C19—C9—C10110.3 (3)
O2—Cu1—N293.57 (8)C18—C9—C8109.9 (2)
O1—Cu1—N2152.81 (9)C19—C9—C8107.9 (2)
O2—Cu1—N1159.03 (9)C10—C9—C8111.1 (2)
O1—Cu1—N193.46 (9)N2—C10—C9114.0 (2)
N2—Cu1—N190.69 (9)N2—C10—H10A108.7
C1—O1—Cu1126.44 (16)C9—C10—H10A108.7
C17—O2—Cu1127.77 (16)N2—C10—H10B108.7
C7—N1—C8119.4 (2)C9—C10—H10B108.7
C7—N1—Cu1125.79 (18)H10A—C10—H10B107.6
C8—N1—Cu1114.63 (18)N2—C11—C12125.8 (2)
C11—N2—C10119.1 (2)N2—C11—H11A117.1
C11—N2—Cu1125.51 (17)C12—C11—H11A117.1
C10—N2—Cu1115.01 (17)C13—C12—C17120.0 (2)
O1—C1—C2118.3 (2)C13—C12—C11116.9 (2)
O1—C1—C6124.7 (2)C17—C12—C11123.1 (2)
C2—C1—C6117.0 (2)C14—C13—C12120.4 (2)
C3—C2—C1122.0 (3)C14—C13—H13A119.8
C3—C2—H2A119.0C12—C13—H13A119.8
C1—C2—H2A119.0C13—C14—C15120.7 (3)
C2—C3—C4119.7 (3)C13—C14—Cl2119.7 (2)
C2—C3—H3A120.1C15—C14—Cl2119.6 (2)
C4—C3—H3A120.1C16—C15—C14119.9 (3)
C5—C4—C3120.6 (3)C16—C15—H15A120.1
C5—C4—Cl1119.9 (2)C14—C15—H15A120.1
C3—C4—Cl1119.5 (2)C15—C16—C17121.8 (2)
C4—C5—C6120.7 (3)C15—C16—H16A119.1
C4—C5—H5A119.6C17—C16—H16A119.1
C6—C5—H5A119.6O2—C17—C16118.5 (2)
C5—C6—C1119.9 (2)O2—C17—C12124.3 (2)
C5—C6—C7117.3 (2)C16—C17—C12117.2 (2)
C1—C6—C7122.8 (2)C9—C18—H18A109.5
N1—C7—C6125.4 (2)C9—C18—H18B109.5
N1—C7—H7A117.3H18A—C18—H18B109.5
C6—C7—H7A117.3C9—C18—H18C109.5
N1—C8—C9113.3 (2)H18A—C18—H18C109.5
N1—C8—H8A108.9H18B—C18—H18C109.5
C9—C8—H8A108.9C9—C19—H19A109.5
N1—C8—H8B108.9C9—C19—H19B109.5
C9—C8—H8B108.9H19A—C19—H19B109.5
H8A—C8—H8B107.7C9—C19—H19C109.5
C18—C9—C19111.0 (3)H19A—C19—H19C109.5
C18—C9—C10106.7 (2)H19B—C19—H19C109.5
O2—Cu1—O1—C1172.8 (2)C8—N1—C7—C6176.8 (2)
N2—Cu1—O1—C185.3 (3)Cu1—N1—C7—C61.2 (4)
N1—Cu1—O1—C113.0 (2)C5—C6—C7—N1176.0 (2)
O1—Cu1—O2—C17153.3 (2)C1—C6—C7—N17.1 (4)
N2—Cu1—O2—C170.1 (2)C7—N1—C8—C9111.5 (3)
N1—Cu1—O2—C17101.4 (3)Cu1—N1—C8—C972.4 (3)
O2—Cu1—N1—C7112.0 (3)N1—C8—C9—C1887.2 (3)
O1—Cu1—N1—C76.9 (2)N1—C8—C9—C19151.7 (3)
N2—Cu1—N1—C7146.2 (2)N1—C8—C9—C1030.7 (3)
O2—Cu1—N1—C863.9 (3)C11—N2—C10—C9114.9 (3)
O1—Cu1—N1—C8168.88 (17)Cu1—N2—C10—C971.5 (3)
N2—Cu1—N1—C838.01 (18)C18—C9—C10—N2161.2 (2)
O2—Cu1—N2—C110.1 (2)C19—C9—C10—N278.2 (3)
O1—Cu1—N2—C11101.7 (3)C8—C9—C10—N241.4 (3)
N1—Cu1—N2—C11159.3 (2)C10—N2—C11—C12173.6 (2)
O2—Cu1—N2—C10172.92 (17)Cu1—N2—C11—C120.8 (4)
O1—Cu1—N2—C1071.3 (3)N2—C11—C12—C13179.3 (3)
N1—Cu1—N2—C1027.62 (18)N2—C11—C12—C172.0 (4)
Cu1—O1—C1—C2168.66 (18)C17—C12—C13—C140.1 (4)
Cu1—O1—C1—C611.3 (4)C11—C12—C13—C14177.2 (3)
O1—C1—C2—C3178.2 (2)C12—C13—C14—C150.5 (5)
C6—C1—C2—C31.8 (4)C12—C13—C14—Cl2179.4 (2)
C1—C2—C3—C40.2 (4)C13—C14—C15—C160.3 (5)
C2—C3—C4—C51.3 (4)Cl2—C14—C15—C16179.2 (2)
C2—C3—C4—Cl1177.0 (2)C14—C15—C16—C170.5 (5)
C3—C4—C5—C60.4 (4)Cu1—O2—C17—C16177.33 (19)
Cl1—C4—C5—C6177.9 (2)Cu1—O2—C17—C121.2 (4)
C4—C5—C6—C11.7 (4)C15—C16—C17—O2179.7 (3)
C4—C5—C6—C7178.7 (2)C15—C16—C17—C121.0 (4)
O1—C1—C6—C5177.4 (2)C13—C12—C17—O2179.4 (2)
C2—C1—C6—C52.7 (4)C11—C12—C17—O22.2 (4)
O1—C1—C6—C70.5 (4)C13—C12—C17—C160.8 (4)
C2—C1—C6—C7179.6 (2)C11—C12—C17—C16176.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg is centroid of Cu1/O2/C17/C12/C11/N2.
D—H···AD—HH···AD···AD—H···A
C16—H16A···O2i0.932.463.367 (3)165
C10—H10B···Cgii0.972.653.452 (3)140
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C19H18Cl2N2O2)]
Mr440.79
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.4213 (12), 9.5718 (13), 11.4392 (15)
α, β, γ (°)74.478 (10), 78.635 (10), 73.339 (10)
V3)944.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.46
Crystal size (mm)0.23 × 0.12 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.731, 0.893
No. of measured, independent and
observed [I > 2σ(I)] reflections
8620, 4302, 3369
Rint0.049
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.098, 1.00
No. of reflections4302
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.46

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is centroid of Cu1/O2/C17/C12/C11/N2.
D—H···AD—HH···AD···AD—H···A
C16—H16A···O2i0.932.463.367 (3)164.5
C10—H10B···Cgii0.972.653.452 (3)140
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
 

Acknowledgements

HK and FG thanks PNU for the financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBlower, P. J. (1998). Transition Met. Chem., 23, 109–112.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGhaemi, A., Rayati, S., Elahi, E., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m1445–m1446.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGranovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  Google Scholar
First citationKargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). Acta Cryst. E67, m941.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKargar, H., Kia, R., Sharafi, Z. & Tahir, M. N. (2012). Acta Cryst. E68, m82.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds