metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The monoclinic form of di-μ-aqua-bis­­[di­aqua­bis­­(thio­cyanato-κN)iron(II)]–1,4-bis­­(4H-1,2,4-triazol-4-yl)benzene (1/3)

aTianjin Key Laboratory of Structure and Performance for Functional Molecule, Tianjin Normal University, Tianjin 300071, People's Republic of China
*Correspondence e-mail: qsdingbin@yahoo.com.cn

(Received 10 May 2012; accepted 9 June 2012; online 10 July 2012)

The title complex, [Fe2(NCS)4(H2O)6]·3C10H8N6, comprises two FeII atoms octahedrally coordinated and bridged by two aqua O atoms that straddle a crystallographic inversion center, forming a quadrilateral core. The water ligands of the core are involved in hydrogen bonds with the triazole N atoms of the organic mol­ecules, which generates a layer motif in the ab plane. There are ππ stacking inter­actions between benzene rings of 3.490 (6) Å, and between triazole rings of 3.543 (8) and 3.734 (7) Å in neighboring layers, forming a three-dimensional network.

Related literature

For details of compounds containing similar diiron centers, see: Hsu et al. (1999[Hsu, H. F., Dong, Y., Shu, L., Young, V. G. Jr & Que, L. Jr (1999). J. Am. Chem. Soc. 121, 5230-5237.]); Zheng et al. (1999[Zheng, H., Zang, Y., Dong, Y., Young, V. G. Jr & Que, L. Jr (1999). J. Am. Chem. Soc. 121, 2226-2235.]); MacMurdo et al. (2000[MacMurdo, V. L., Zheng, H. & Que, L. Jr (2000). Inorg. Chem. 39, 2254-2255.]); Yoon et al. (2004[Yoon, S., Kelly, A. E. & Lippard, S. J. (2004). Polyhedron, 23, 2805-2812.]). For information on multicomponent di­oxy­gen dependent enzymes including toluene monooxygenase, see: Sazinsky et al. (2004[Sazinsky, M. H., Bard, J., Di Donato, A. & Lippard, S. J. (2004). J. Biol. Chem. 279, 30600-30610.]), and for those that include the R2 subunit of ribonucleotide reductase, see: Nordlund & Eklund (1993[Nordlund, P. & Eklund, H. (1993). J. Mol. Biol. 232, 123-164.]); Stubbe & Van der Donk (1998[Stubbe, J. & Van der Donk, W. A. (1998). Chem. Rev. 98, 705-762.]). For the triclinic form of the title compound, see: Yang et al. (2012[Yang, P., Ding, B. & Du, G.-X. (2012). Acta Cryst. E68, m1038-m1039.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe2(NCS)4(H2O)6]·3C10H8N6

  • Mr = 1088.79

  • Monoclinic, P 2/c

  • a = 7.828 (2) Å

  • b = 14.198 (4) Å

  • c = 19.846 (5) Å

  • β = 97.212 (4)°

  • V = 2188.3 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 173 K

  • 0.18 × 0.17 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.851, Tmax = 0.866

  • 10801 measured reflections

  • 3865 independent reflections

  • 2796 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.132

  • S = 1.04

  • 3865 reflections

  • 309 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Selected bond lengths (Å)

Fe1—N12 2.080 (3)
Fe1—N11 2.098 (3)
Fe1—O1 2.099 (2)
Fe1—O3 2.106 (2)
Fe1—O2 2.258 (2)
Fe1—O2i 2.271 (2)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N3ii 0.84 2.00 2.833 (4) 176
O1—H1B⋯N6iii 0.84 2.00 2.841 (4) 178
O2—H2A⋯N10 0.84 2.00 2.834 (3) 176
O2—H2B⋯N8iv 0.84 2.00 2.836 (4) 174
O3—H3A⋯N2i 0.84 1.95 2.784 (4) 176
O3—H3B⋯N5v 0.84 1.92 2.761 (4) 179
Symmetry codes: (i) [-x, y, -z+{\script{1\over 2}}]; (ii) [-x+1, y, -z+{\script{1\over 2}}]; (iii) [-x+1, y-1, -z+{\script{1\over 2}}]; (iv) x, y-1, z; (v) [-x, y-1, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The diiron unit, with a carboxylate-rich coordination environment, continues to attract considerable attention due to its role in enzyme catalysis activity, which occurs in related multicomponent dioxygen dependent enzymes, including toluene monooxygenase (Sazinsky et al., 2004), the R2 subunit of ribonucleotide reductase (Stubbe & Van der Donk, 1998; Nordlund & Eklund, 1993). With the development of compounds that contain the diiron center, the structure of a series of Fe2(II,II) (MacMurdo et al., 2000), Fe2(III,III) (Zheng et al., 1999) and Fe2(III,IV) (Hsu et al., 1999) complexes with a central Fe2O2 quadrilateral have been obtained. In comparison to other compounds with similar di-iron species, it is rare for the quadrilateral center to include two water molecules, as most contain carboxylic oxygen atoms. In order to explore further details of the coordination environment of the diiron system, the title complex was synthesized. As shown in Fig. 1, the structure comprises two distorted octahedral iron(II) centers that straddle a crystallographic inversion center bridged by two aqueous oxygen atoms to form a quadrilateral core. The separation between the iron atoms is 3.498 (4) Å, which is remarkably different from the 3.0430 (7) Å reported previously, owing to the absence of carboxylate ligands (Yoon et al., 2004). Moreover, the distance of Fe—Fe is different from that in complexes that contain higher valence iron (MacMurdo et al., 2000; Zheng et al., 1999; Hsu et al., 1999). The bond lengths of Fe—O2 and Fe—O2A are 2.258 (3) and 2.271 (5) Å, and the angles of O2—Fe—O3 and Fe1A—O2—Fe are 92.09 (1)° and 101.12 (9)°. Each Fe(II) center resides in a six-coordinated octahedron of two nitrogens and four waters. Two waters bridge the iron atoms in the equatorial plane to form the quadrilateral core with a mean Fe-O distance of 2.272 (2) Å. The other waters (O1 & O3) act as terminal ligands with the bond lengths 2.106 (4) Å and 2.099 (4) Å. The axial positions are occupied by two N atoms from the NCS- anions with the distances 2.080 (1) Å and 2.098 (1) Å to iron. Selected bond distances are listed in Table 1. As indicated in Fig. 2, classical intermolecular O—H···N H-bonds are formed between the triazole nitrogen atom supplied by the uncoordinated organic ligand 1,4-Bis(4H-1,2,4-triazol-4-yl)benzene and aqueous oxygen atoms supplied by the bridging and terminal water ligands to generate a two-dimensional ladder-like structure with the O···N separation ranging from 2.761 (4) Å to 2.861 (4) Å. In addition, there are intermolecular π-π stacking interactions between the organic species within the crystal that form a three-dimensional network. The interlayer distance between triazole moieties and benzene rings of neighboring layers is 3.490 (6) Å. There are also π-π stacking interactions between the triazole moieties within one layer, the corresponding distance are 3.543 (8) Å and 3.734 (7) Å. Details of the hydrogen bonds are given in Table 2.

Related literature top

For details of compounds containing similar diiron centers, see: Hsu et al. (1999); Zheng et al. (1999); MacMurdo et al. (2000); Yoon et al. (2004). For information on multicomponent dioxygen dependent enzymes including toluene monooxygenase, see: Sazinsky et al. (2004), and for those that include the R2 subunit of ribonucleotide reductase, see: Nordlund & Eklund (1993); Stubbe & Van der Donk (1998). For the triclinic form of the title compound, see: Yang et al. (2012).

Experimental top

The compound was synthesized under hydrothermal conditions. A mixture of L (L = 1,4-bis(4H-1,2,4-triazol-4-yl)benzene) (0.3 mmol, 0.0636 g), FeSO4.7H2O (0.1 mmol, 0.028 g), KSCN (0.2 mmol, 0.019 g) and water (10 ml) was placed in a 25 ml acid digestion bomb and heated at 433 K for two days, then slowly cooled to room temperature over three days. After washing twice with 5 ml water, colorless block crystals of the compound were obtained.

Refinement top

The water H atoms were located in a Fourier difference map and refined subject to an O—H distance restraint of 0.88 (1) Å and an H···H distance restraint of 1.42 (2) Å. Other H atoms were allowed to ride on their parent atoms with C—H distances of 0.93 Å (Uiso(H) = 1.2Ueq(C)). All of the non-hydrogen atoms were refined anisotropically.

Structure description top

The diiron unit, with a carboxylate-rich coordination environment, continues to attract considerable attention due to its role in enzyme catalysis activity, which occurs in related multicomponent dioxygen dependent enzymes, including toluene monooxygenase (Sazinsky et al., 2004), the R2 subunit of ribonucleotide reductase (Stubbe & Van der Donk, 1998; Nordlund & Eklund, 1993). With the development of compounds that contain the diiron center, the structure of a series of Fe2(II,II) (MacMurdo et al., 2000), Fe2(III,III) (Zheng et al., 1999) and Fe2(III,IV) (Hsu et al., 1999) complexes with a central Fe2O2 quadrilateral have been obtained. In comparison to other compounds with similar di-iron species, it is rare for the quadrilateral center to include two water molecules, as most contain carboxylic oxygen atoms. In order to explore further details of the coordination environment of the diiron system, the title complex was synthesized. As shown in Fig. 1, the structure comprises two distorted octahedral iron(II) centers that straddle a crystallographic inversion center bridged by two aqueous oxygen atoms to form a quadrilateral core. The separation between the iron atoms is 3.498 (4) Å, which is remarkably different from the 3.0430 (7) Å reported previously, owing to the absence of carboxylate ligands (Yoon et al., 2004). Moreover, the distance of Fe—Fe is different from that in complexes that contain higher valence iron (MacMurdo et al., 2000; Zheng et al., 1999; Hsu et al., 1999). The bond lengths of Fe—O2 and Fe—O2A are 2.258 (3) and 2.271 (5) Å, and the angles of O2—Fe—O3 and Fe1A—O2—Fe are 92.09 (1)° and 101.12 (9)°. Each Fe(II) center resides in a six-coordinated octahedron of two nitrogens and four waters. Two waters bridge the iron atoms in the equatorial plane to form the quadrilateral core with a mean Fe-O distance of 2.272 (2) Å. The other waters (O1 & O3) act as terminal ligands with the bond lengths 2.106 (4) Å and 2.099 (4) Å. The axial positions are occupied by two N atoms from the NCS- anions with the distances 2.080 (1) Å and 2.098 (1) Å to iron. Selected bond distances are listed in Table 1. As indicated in Fig. 2, classical intermolecular O—H···N H-bonds are formed between the triazole nitrogen atom supplied by the uncoordinated organic ligand 1,4-Bis(4H-1,2,4-triazol-4-yl)benzene and aqueous oxygen atoms supplied by the bridging and terminal water ligands to generate a two-dimensional ladder-like structure with the O···N separation ranging from 2.761 (4) Å to 2.861 (4) Å. In addition, there are intermolecular π-π stacking interactions between the organic species within the crystal that form a three-dimensional network. The interlayer distance between triazole moieties and benzene rings of neighboring layers is 3.490 (6) Å. There are also π-π stacking interactions between the triazole moieties within one layer, the corresponding distance are 3.543 (8) Å and 3.734 (7) Å. Details of the hydrogen bonds are given in Table 2.

For details of compounds containing similar diiron centers, see: Hsu et al. (1999); Zheng et al. (1999); MacMurdo et al. (2000); Yoon et al. (2004). For information on multicomponent dioxygen dependent enzymes including toluene monooxygenase, see: Sazinsky et al. (2004), and for those that include the R2 subunit of ribonucleotide reductase, see: Nordlund & Eklund (1993); Stubbe & Van der Donk (1998). For the triclinic form of the title compound, see: Yang et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, showing 30% probability displacement ellipsoids. Unlabelled atoms of the inversion-related parts have symmetry code: (-x, y, -z + 1/2).
[Figure 2] Fig. 2. The two-dimensional layer structure of the title complex viewed approximately along the crystallographic c axis. Purple dashed lines indicate O—H···N hydrogen bonds.
Di-µ-aqua-bis[diaquabis(thiocyanato-κN)iron(II)]– 1,4-bis(4H-1,2,4-triazol-4-yl)benzene (1/3) top
Crystal data top
[Fe2(NCS)4(H2O)6]·3C10H8N6F(000) = 1116
Mr = 1088.79Dx = 1.652 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 2057 reflections
a = 7.828 (2) Åθ = 2.5–27.8°
b = 14.198 (4) ŵ = 0.93 mm1
c = 19.846 (5) ÅT = 173 K
β = 97.212 (4)°Block, colourless
V = 2188.3 (10) Å30.18 × 0.17 × 0.16 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
3865 independent reflections
Radiation source: fine-focus sealed tube2796 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
φ and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 89
Tmin = 0.851, Tmax = 0.866k = 1616
10801 measured reflectionsl = 2123
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0585P)2 + 0.4735P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.132(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.89 e Å3
3865 reflectionsΔρmin = 0.56 e Å3
309 parameters
Crystal data top
[Fe2(NCS)4(H2O)6]·3C10H8N6V = 2188.3 (10) Å3
Mr = 1088.79Z = 2
Monoclinic, P2/cMo Kα radiation
a = 7.828 (2) ŵ = 0.93 mm1
b = 14.198 (4) ÅT = 173 K
c = 19.846 (5) Å0.18 × 0.17 × 0.16 mm
β = 97.212 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
3865 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2796 reflections with I > 2σ(I)
Tmin = 0.851, Tmax = 0.866Rint = 0.058
10801 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0501 restraint
wR(F2) = 0.132H-atom parameters constrained
S = 1.04Δρmax = 0.89 e Å3
3865 reflectionsΔρmin = 0.56 e Å3
309 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.05963 (6)0.16467 (3)0.33793 (2)0.01446 (18)
S10.05329 (11)0.50871 (6)0.35618 (5)0.0211 (2)
S20.05068 (11)0.17806 (6)0.35648 (5)0.0203 (2)
O10.3101 (3)0.16590 (15)0.39010 (12)0.0196 (5)
H1A0.37080.21450.39720.029*
H1B0.37520.11950.39980.029*
O20.1789 (3)0.16476 (14)0.24007 (11)0.0161 (5)
H2A0.24380.21190.24070.024*
H2B0.24170.11690.23930.024*
O30.0890 (3)0.16644 (15)0.41931 (12)0.0203 (5)
H3A0.14730.21460.42550.030*
H3B0.14820.11960.42780.030*
N10.3789 (4)0.47023 (19)0.06694 (14)0.0183 (7)
N20.2966 (4)0.3219 (2)0.06431 (16)0.0258 (7)
N30.4698 (4)0.3241 (2)0.08670 (14)0.0202 (7)
N40.3743 (4)0.8658 (2)0.05758 (14)0.0174 (7)
N50.2863 (4)1.0131 (2)0.05359 (15)0.0224 (7)
N60.4616 (4)1.0122 (2)0.07812 (14)0.0209 (7)
N70.50000.8633 (3)0.25000.0154 (9)
N80.4102 (4)1.0106 (2)0.24412 (14)0.0214 (7)
N90.50000.4665 (3)0.25000.0145 (9)
N100.4106 (4)0.31863 (18)0.24409 (14)0.0168 (6)
N110.0567 (4)0.3124 (2)0.33920 (14)0.0183 (7)
N120.0565 (4)0.0182 (2)0.34003 (14)0.0196 (7)
C10.2475 (5)0.4088 (3)0.05327 (19)0.0261 (9)
H10.13260.42680.03740.031*
C20.5163 (5)0.4124 (3)0.08729 (17)0.0216 (9)
H20.63070.43390.10020.026*
C30.3775 (4)0.5706 (2)0.06257 (17)0.0169 (8)
C40.2300 (5)0.6193 (3)0.03582 (18)0.0198 (8)
H40.12920.58510.01930.024*
C50.2278 (5)0.7155 (2)0.03294 (18)0.0187 (8)
H50.12600.74780.01470.022*
C60.3744 (4)0.7656 (2)0.05673 (17)0.0158 (8)
C70.5252 (4)0.7171 (3)0.08215 (17)0.0194 (8)
H70.62720.75130.09720.023*
C80.5258 (4)0.6211 (2)0.08527 (17)0.0170 (8)
H80.62780.58870.10300.020*
C90.2403 (5)0.9256 (2)0.04204 (18)0.0212 (8)
H90.12690.90630.02490.025*
C100.5096 (5)0.9249 (2)0.07933 (17)0.0201 (8)
H100.62390.90430.09340.024*
C110.3611 (5)0.9233 (2)0.24117 (18)0.0207 (8)
H110.24430.90340.23390.025*
C120.50000.7624 (3)0.25000.0139 (10)
C130.3455 (4)0.7139 (2)0.23747 (16)0.0151 (8)
H130.24010.74750.22900.018*
C140.3453 (4)0.6164 (2)0.23733 (17)0.0178 (8)
H140.23960.58300.22860.021*
C150.50000.5672 (3)0.25000.0161 (11)
C160.3622 (5)0.4059 (2)0.24096 (18)0.0199 (8)
H160.24540.42560.23330.024*
C170.0552 (4)0.3932 (2)0.34653 (17)0.0155 (8)
C180.0545 (4)0.0633 (2)0.34701 (17)0.0159 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0105 (3)0.0110 (3)0.0222 (3)0.0003 (2)0.0035 (2)0.0001 (2)
S10.0128 (5)0.0146 (5)0.0355 (5)0.0013 (4)0.0016 (4)0.0022 (4)
S20.0134 (5)0.0110 (5)0.0363 (6)0.0011 (4)0.0024 (4)0.0023 (4)
O10.0137 (12)0.0117 (12)0.0329 (14)0.0002 (10)0.0011 (10)0.0002 (10)
O20.0116 (11)0.0094 (12)0.0273 (13)0.0001 (10)0.0027 (10)0.0005 (10)
O30.0154 (12)0.0151 (13)0.0318 (14)0.0017 (10)0.0087 (10)0.0010 (10)
N10.0179 (16)0.0148 (16)0.0220 (16)0.0038 (13)0.0017 (13)0.0006 (12)
N20.0175 (17)0.0259 (19)0.0356 (19)0.0038 (15)0.0096 (14)0.0005 (15)
N30.0170 (16)0.0218 (18)0.0219 (16)0.0009 (14)0.0032 (13)0.0026 (13)
N40.0153 (16)0.0153 (15)0.0220 (16)0.0004 (12)0.0045 (13)0.0010 (12)
N50.0171 (16)0.0194 (18)0.0322 (18)0.0028 (14)0.0088 (13)0.0003 (14)
N60.0216 (17)0.0161 (17)0.0254 (17)0.0034 (14)0.0043 (13)0.0040 (13)
N70.010 (2)0.009 (2)0.027 (2)0.0000.0032 (17)0.000
N80.0170 (15)0.0242 (18)0.0238 (16)0.0008 (14)0.0055 (13)0.0015 (14)
N90.012 (2)0.015 (2)0.017 (2)0.0000.0041 (16)0.000
N100.0179 (15)0.0117 (16)0.0218 (16)0.0027 (12)0.0062 (13)0.0014 (12)
N110.0131 (16)0.0175 (18)0.0251 (17)0.0012 (12)0.0056 (12)0.0001 (12)
N120.0148 (16)0.0166 (18)0.0276 (17)0.0017 (13)0.0041 (13)0.0012 (13)
C10.016 (2)0.026 (2)0.037 (2)0.0022 (17)0.0070 (17)0.0015 (17)
C20.018 (2)0.025 (2)0.022 (2)0.0054 (16)0.0028 (16)0.0033 (16)
C30.0150 (19)0.0174 (19)0.0188 (19)0.0012 (15)0.0036 (15)0.0013 (14)
C40.0099 (19)0.023 (2)0.026 (2)0.0004 (15)0.0001 (15)0.0012 (16)
C50.0122 (19)0.0158 (19)0.028 (2)0.0026 (15)0.0010 (15)0.0012 (15)
C60.0147 (19)0.0156 (19)0.0179 (18)0.0023 (14)0.0055 (14)0.0029 (14)
C70.0107 (19)0.026 (2)0.0211 (19)0.0022 (15)0.0005 (15)0.0027 (16)
C80.0112 (19)0.021 (2)0.0188 (19)0.0020 (15)0.0032 (15)0.0015 (15)
C90.0134 (19)0.020 (2)0.031 (2)0.0017 (16)0.0069 (16)0.0036 (16)
C100.017 (2)0.019 (2)0.025 (2)0.0038 (15)0.0042 (16)0.0002 (15)
C110.018 (2)0.020 (2)0.025 (2)0.0030 (16)0.0054 (16)0.0005 (15)
C120.014 (3)0.013 (3)0.015 (2)0.0000.005 (2)0.000
C130.0118 (19)0.0142 (19)0.0195 (19)0.0029 (14)0.0034 (14)0.0013 (14)
C140.0100 (19)0.021 (2)0.023 (2)0.0008 (15)0.0021 (15)0.0005 (15)
C150.017 (3)0.015 (3)0.016 (3)0.0000.004 (2)0.000
C160.0164 (19)0.021 (2)0.022 (2)0.0039 (16)0.0032 (15)0.0008 (15)
C170.0083 (18)0.016 (2)0.0226 (19)0.0017 (14)0.0019 (14)0.0054 (15)
C180.0075 (17)0.022 (2)0.0189 (19)0.0007 (15)0.0021 (14)0.0040 (15)
Geometric parameters (Å, º) top
Fe1—N122.080 (3)N8—N8ii1.396 (6)
Fe1—N112.098 (3)N9—C16ii1.374 (4)
Fe1—O12.099 (2)N9—C161.374 (4)
Fe1—O32.106 (2)N9—C151.430 (6)
Fe1—O22.258 (2)N10—C161.294 (4)
Fe1—O2i2.271 (2)N10—N10ii1.390 (6)
S1—C171.652 (4)N11—C171.156 (4)
S2—C181.641 (4)N12—C181.166 (4)
O1—H1A0.8400C1—H10.9500
O1—H1B0.8400C2—H20.9500
O2—Fe1i2.271 (2)C3—C81.390 (5)
O2—H2A0.8401C3—C41.392 (5)
O2—H2B0.8401C4—C51.367 (5)
O3—H3A0.8399C4—H40.9500
O3—H3B0.8400C5—C61.382 (5)
N1—C11.350 (4)C5—H50.9500
N1—C21.373 (4)C6—C71.405 (5)
N1—C31.428 (4)C7—C81.364 (5)
N2—C11.303 (4)C7—H70.9500
N2—N31.373 (4)C8—H80.9500
N3—C21.304 (4)C9—H90.9500
N4—C91.355 (4)C10—H100.9500
N4—C101.378 (4)C11—H110.9500
N4—C61.423 (4)C12—C131.387 (4)
N5—C91.306 (4)C12—C13ii1.387 (4)
N5—N61.397 (4)C13—C141.385 (5)
N6—C101.295 (4)C13—H130.9500
N7—C11ii1.376 (4)C14—C151.393 (4)
N7—C111.376 (4)C14—H140.9500
N7—C121.432 (6)C15—C14ii1.393 (4)
N8—C111.296 (4)C16—H160.9500
N12—Fe1—N11177.62 (11)N1—C1—H1123.9
N12—Fe1—O190.63 (10)N3—C2—N1111.4 (3)
N11—Fe1—O189.82 (10)N3—C2—H2124.3
N12—Fe1—O389.29 (10)N1—C2—H2124.3
N11—Fe1—O388.33 (10)C8—C3—C4119.1 (3)
O1—Fe1—O3101.16 (9)C8—C3—N1119.7 (3)
N12—Fe1—O291.43 (9)C4—C3—N1121.2 (3)
N11—Fe1—O290.93 (9)C5—C4—C3121.2 (3)
O1—Fe1—O287.86 (9)C5—C4—H4119.4
O3—Fe1—O2170.94 (8)C3—C4—H4119.4
N12—Fe1—O2i90.20 (9)C4—C5—C6119.6 (3)
N11—Fe1—O2i89.90 (9)C4—C5—H5120.2
O1—Fe1—O2i166.73 (9)C6—C5—H5120.2
O3—Fe1—O2i92.09 (9)C5—C6—C7119.7 (3)
O2—Fe1—O2i78.88 (9)C5—C6—N4121.1 (3)
Fe1—O1—H1A124.3C7—C6—N4119.1 (3)
Fe1—O1—H1B127.5C8—C7—C6120.2 (3)
H1A—O1—H1B107.0C8—C7—H7119.9
Fe1—O2—Fe1i101.12 (9)C6—C7—H7119.9
Fe1—O2—H2A107.6C7—C8—C3120.2 (3)
Fe1i—O2—H2A117.0C7—C8—H8119.9
Fe1—O2—H2B108.7C3—C8—H8119.9
Fe1i—O2—H2B114.9N5—C9—N4111.5 (3)
H2A—O2—H2B106.9N5—C9—H9124.2
Fe1—O3—H3A119.0N4—C9—H9124.2
Fe1—O3—H3B121.1N6—C10—N4111.6 (3)
H3A—O3—H3B107.0N6—C10—H10124.2
C1—N1—C2102.8 (3)N4—C10—H10124.2
C1—N1—C3129.3 (3)N8—C11—N7111.2 (3)
C2—N1—C3127.9 (3)N8—C11—H11124.4
C1—N2—N3106.9 (3)N7—C11—H11124.4
C2—N3—N2106.8 (3)C13—C12—C13ii120.5 (4)
C9—N4—C10103.4 (3)C13—C12—N7119.8 (2)
C9—N4—C6128.7 (3)C13ii—C12—N7119.8 (2)
C10—N4—C6127.7 (3)C14—C13—C12119.9 (3)
C9—N5—N6106.9 (3)C14—C13—H13120.1
C10—N6—N5106.6 (3)C12—C13—H13120.1
C11ii—N7—C11103.4 (4)C13—C14—C15120.0 (4)
C11ii—N7—C12128.3 (2)C13—C14—H14120.0
C11—N7—C12128.3 (2)C15—C14—H14120.0
C11—N8—N8ii107.1 (2)C14—C15—C14ii119.9 (5)
C16ii—N9—C16102.4 (4)C14—C15—N9120.1 (2)
C16ii—N9—C15128.8 (2)C14ii—C15—N9120.1 (2)
C16—N9—C15128.8 (2)N10—C16—N9111.9 (3)
C16—N10—N10ii106.9 (2)N10—C16—H16124.0
C17—N11—Fe1173.5 (3)N9—C16—H16124.0
C18—N12—Fe1174.3 (3)N11—C17—S1179.4 (3)
N2—C1—N1112.2 (3)N12—C18—S2179.7 (4)
N2—C1—H1123.9
N12—Fe1—O2—Fe1i89.86 (10)C9—N4—C6—C7172.9 (3)
N11—Fe1—O2—Fe1i89.78 (10)C10—N4—C6—C71.9 (5)
O1—Fe1—O2—Fe1i179.56 (9)C5—C6—C7—C82.0 (5)
O3—Fe1—O2—Fe1i4.6 (6)N4—C6—C7—C8176.5 (3)
O2i—Fe1—O2—Fe1i0.06 (11)C6—C7—C8—C30.7 (5)
C1—N2—N3—C20.6 (4)C4—C3—C8—C70.9 (5)
C9—N5—N6—C100.4 (4)N1—C3—C8—C7179.1 (3)
N12—Fe1—N11—C1733 (4)N6—N5—C9—N40.2 (4)
O1—Fe1—N11—C1767 (2)C10—N4—C9—N50.7 (4)
O3—Fe1—N11—C1734 (2)C6—N4—C9—N5175.1 (3)
O2—Fe1—N11—C17155 (2)N5—N6—C10—N40.8 (4)
O2i—Fe1—N11—C17126 (2)C9—N4—C10—N60.9 (4)
N11—Fe1—N12—C1832 (5)C6—N4—C10—N6174.9 (3)
O1—Fe1—N12—C1869 (3)N8ii—N8—C11—N70.4 (4)
O3—Fe1—N12—C1832 (3)C11ii—N7—C11—N80.16 (17)
O2—Fe1—N12—C18157 (3)C12—N7—C11—N8179.84 (17)
O2i—Fe1—N12—C18124 (3)C11ii—N7—C12—C13177.4 (2)
N3—N2—C1—N10.1 (4)C11—N7—C12—C132.6 (2)
C2—N1—C1—N20.4 (4)C11ii—N7—C12—C13ii2.6 (2)
C3—N1—C1—N2178.8 (3)C11—N7—C12—C13ii177.4 (2)
N2—N3—C2—N11.0 (4)C13ii—C12—C13—C140.1 (2)
C1—N1—C2—N30.9 (4)N7—C12—C13—C14179.9 (2)
C3—N1—C2—N3178.4 (3)C12—C13—C14—C150.2 (4)
C1—N1—C3—C8174.0 (3)C13—C14—C15—C14ii0.1 (2)
C2—N1—C3—C85.0 (5)C13—C14—C15—N9179.9 (2)
C1—N1—C3—C46.1 (6)C16ii—N9—C15—C14177.6 (3)
C2—N1—C3—C4174.9 (3)C16—N9—C15—C142.4 (3)
C8—C3—C4—C51.4 (5)C16ii—N9—C15—C14ii2.4 (3)
N1—C3—C4—C5178.6 (3)C16—N9—C15—C14ii177.6 (3)
C3—C4—C5—C60.2 (5)N10ii—N10—C16—N90.1 (4)
C4—C5—C6—C71.5 (5)C16ii—N9—C16—N100.04 (17)
C4—C5—C6—N4176.9 (3)C15—N9—C16—N10179.96 (17)
C9—N4—C6—C55.5 (5)Fe1—N11—C17—S1176 (100)
C10—N4—C6—C5179.7 (3)Fe1—N12—C18—S2126 (70)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N3ii0.842.002.833 (4)176
O1—H1B···N6iii0.842.002.841 (4)178
O2—H2A···N100.842.002.834 (3)176
O2—H2B···N8iv0.842.002.836 (4)174
O3—H3A···N2i0.841.952.784 (4)176
O3—H3B···N5v0.841.922.761 (4)179
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y, z+1/2; (iii) x+1, y1, z+1/2; (iv) x, y1, z; (v) x, y1, z+1/2.

Experimental details

Crystal data
Chemical formula[Fe2(NCS)4(H2O)6]·3C10H8N6
Mr1088.79
Crystal system, space groupMonoclinic, P2/c
Temperature (K)173
a, b, c (Å)7.828 (2), 14.198 (4), 19.846 (5)
β (°) 97.212 (4)
V3)2188.3 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.18 × 0.17 × 0.16
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.851, 0.866
No. of measured, independent and
observed [I > 2σ(I)] reflections
10801, 3865, 2796
Rint0.058
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.132, 1.04
No. of reflections3865
No. of parameters309
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.56

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Fe1—N122.080 (3)Fe1—O32.106 (2)
Fe1—N112.098 (3)Fe1—O22.258 (2)
Fe1—O12.099 (2)Fe1—O2i2.271 (2)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N3ii0.842.002.833 (4)175.8
O1—H1B···N6iii0.842.002.841 (4)177.6
O2—H2A···N100.842.002.834 (3)176.4
O2—H2B···N8iv0.842.002.836 (4)173.9
O3—H3A···N2i0.841.952.784 (4)175.8
O3—H3B···N5v0.841.922.761 (4)179.2
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y, z+1/2; (iii) x+1, y1, z+1/2; (iv) x, y1, z; (v) x, y1, z+1/2.
 

Acknowledgements

This present work was supported financially by Tianjin Educational Committee (20090504) and Tianjin Normal University (1E0402B).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHsu, H. F., Dong, Y., Shu, L., Young, V. G. Jr & Que, L. Jr (1999). J. Am. Chem. Soc. 121, 5230–5237.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacMurdo, V. L., Zheng, H. & Que, L. Jr (2000). Inorg. Chem. 39, 2254–2255.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNordlund, P. & Eklund, H. (1993). J. Mol. Biol. 232, 123–164.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSazinsky, M. H., Bard, J., Di Donato, A. & Lippard, S. J. (2004). J. Biol. Chem. 279, 30600–30610.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStubbe, J. & Van der Donk, W. A. (1998). Chem. Rev. 98, 705–762.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, P., Ding, B. & Du, G.-X. (2012). Acta Cryst. E68, m1038–m1039.  CSD CrossRef IUCr Journals Google Scholar
First citationYoon, S., Kelly, A. E. & Lippard, S. J. (2004). Polyhedron, 23, 2805–2812.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, H., Zang, Y., Dong, Y., Young, V. G. Jr & Que, L. Jr (1999). J. Am. Chem. Soc. 121, 2226–2235.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds