metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­[2,2′-(propane-1,3-di­yl)bis­­(5-car­b­oxy-1H-imidazole-4-carboxyl­ato)-κ4N3,O4:N3′,O4′](pyridine-κN)cobalt(II)–4,4′-bi­pyridine (1/1)

aDepartment of Chemistry and Chemical Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, People's Republic of China
*Correspondence e-mail: liuwei@hncj.edu.cn

(Received 5 June 2012; accepted 30 June 2012; online 25 July 2012)

In the title compound, [Co(C13H10N4O8)(C5H5N)(H2O)]·C10H8N2, the asymmetric unit comprises half a CoII complex located on a mirror plane and half a cocrystallized mol­ecule of 4,4′-bipyridine located on an inversion center. The CoII ion is six coordinate, with distorted octa­hedral geometry, ligated by two N atoms and two O atoms from a 2,2′-(propane-1,3-di­yl)bis­(5-carboxy-1H-imidazole-4-carboxyl­ate) dianion, one N atom from a pyridine mol­ecule and one coordinating water mol­ecule. The Co—O bond lengths range from 2.076 (2) to 2.1441 (15) Å, while the Co—N bond lengths are 2.138 (3) and 2.1515 (17) Å. A two-dimensional network of N—H⋯O and O—H⋯N hydrogen bonds stabilizes the crystal packing. There are ππ inter­actions between the bipyridine and imidazole rings [centroid–centroid distance = 3.7694 (4) Å]. The propane-1,3-diyl group is disordered over two conformations, with refined occupancies of 0.755 (8) and 0.245 (8).

Related literature

For complexes based on substituted 4,5-imidazole­dicarb­oxy­lic acids, see: Zhu et al. (2010[Zhu, L. C., Zhao, Y., Yu, S. J. & Zhao, M. M. (2010). Inorg. Chem. Commun. 13, 1299-1303.], 2011[Zhu, Y., Wang, W. Y., Guo, M. W., Li, G. & Lu, H. J. (2011). Inorg. Chem. Commun. 14, 1432-1435.]); Lu et al. (2010[Lu, W. G., Jiang, L. & Lu, T. B. (2010). Cryst. Growth Des. 10, 4310-4318.]); Song et al. (2010[Song, J. F., Zhou, R. S., Hu, T. P., Zhuo, C. & Wang, B. B. (2010). J. Coord. Chem. 63, 4201-4214.]); Zhang et al. (2010[Zhang, F. W., Li, Z. F., Ge, T. Z., Yao, H. C., Li, G., Lu, H. J. & Zhu, Y. Y. (2010). Inorg. Chem. 49, 3776-3788.]); Wang et al. (2008[Wang, S., Zhang, L. R., Li, G. H., Huo, Q. S. & Liu, Y. L. (2008). CrystEngComm, 10, 1662-1666.]); Feng et al. (2010[Feng, X., Zhao, J. S., Liu, B., Wang, L. Y., Ng, S., Zhang, G., Wang, J. G., Shi, X. G. & Liu, Y. Y. (2010). Cryst. Growth Des. 10, 1399-1408.]); Liu et al. (2010[Liu, X. F., Wang, L. Y., Ma, L. F. & Li, R. F. (2010). Chin. J. Struct. Chem. 29, 280-284.]); Zheng et al. (2011[Zheng, S. R., Cai, S. L., Pan, M., Fan, J., Xiao, T. T. & Zhang, W. G. (2011). CrystEngComm, 13, 883-888.]); Li et al. (2009[Li, X., Wu, B. L., Niu, C. Y., Niu, Y. Y. & Zhang, H. Y. (2009). Cryst. Growth Des. 9, 3423-3431.], 2010[Li, X., Wu, B. L., Wang, R. Y., Zhang, H. Y., Niu, C. Y., Niu, Y. Y. & Hou, H. W. (2010). Inorg. Chem. 49, 2600-2613.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C13H10N4O8)(C5H5N)(H2O)]·C10H8N2

  • Mr = 661.47

  • Monoclinic, P 21 /m

  • a = 7.9733 (10) Å

  • b = 20.738 (3) Å

  • c = 8.2987 (11) Å

  • β = 91.350 (2)°

  • V = 1371.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 296 K

  • 0.22 × 0.18 × 0.11 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.862, Tmax = 0.927

  • 11480 measured reflections

  • 3443 independent reflections

  • 2633 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.105

  • S = 1.05

  • 3443 reflections

  • 219 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.82 1.65 2.473 (2) 177
O5—H1W⋯N4i 0.82 1.95 2.727 (3) 157
N2—H2⋯O4ii 0.86 1.93 2.763 (3) 162
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+1]; (ii) -x+2, -y+1, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

It is well known that aromatic polycarboxylates, especially the N-heterocyclic carboxylates, are excellent candidates for preparing novel MOFs, because of their versatile coordination modes and potential hydrogen-bonding donors and acceptors. Recently, 4,5-imidazoledicarboxylic acid (Zhu et al., 2010; Lu et al., 2010) and its 2-position substituent derivatives, such as 2-methyl-1H-imidazole-4,5-dicarboxylic acid (Song et al., 2010), 2-ethyl-1H-imidazole-4,5-dicarboxylic acid (Zhang et al., 2010; Wang et al., 2008), 2-propyl-1H-imidazole-4,5-dicarboxylic acid (Feng et al., 2010; Liu et al., 2010), 2-(hydroxymethyl)-1H-imidazole-4,5-dicarboxylic acid (Zheng et al., 2011), 2-phenyl-1H-imidazole-4,5-dicarboxylic acid (Zhu et al., 2011) and 2-pyridyl-1H-imidazole-4,5-dicarboxylic acid (Li et al., 2009; Li et al., 2010) have attracted great attention in the field of coordination chemistry. Now, our group has strong interest in adopting another imidazole dicarboxylate ligand, 1,3-bis-(1H-imidazole-4,5-dicarboxylate acid) propane to prepare various coordination compounds.

As shown in Fig. 1, the molecule is a discrete neutral monomer, in which the asymmetric unit comprises half a CoII complex located on a mirror plane and half a co-crystallized molecule of 4,4'-bipyridine located on an inversion center. The CoII ion is six coordinate and has a distorted octahedral geometry. It is ligated by two nitrogen atoms and two oxygen atoms from a 1,3-bis-(1H-imidazole-4,5-dicarboxylate) propane dianion, one nitrogen atom from a pyridine molecule and one oxygen atom from a coordinated water molecule. The Co—O distances range from 2.076 (2) to 2.1441 (15) Å, while Co—N distances are 2.138 (3) and 2.1515 (17) Å, respectively. A two-dimensional network of N—H···O and O—H···N hydrogen bonds help to stabilize the crystal packing. Aromatic π-π interactions between bipyridine rings and imidazole rings [centroid—centroid distance = 3.7694 (4) Å] are also observed.

Related literature top

For complexes based on substituted 4,5-imidazoledicarboxylic acids, see: Zhu et al. (2010, 2011); Lu et al. (2010); Song et al. (2010); Zhang et al. (2010); Wang et al. (2008); Feng et al. (2010); Liu et al. (2010); Zheng et al. (2011); Li et al. (2009, 2010).

Experimental top

A mixture of cobalt chloride hexahydrate (0.0238 g, 0.1 mmol), 1,3-bis-(1H-imidazole-4,5-dicarboxylate acid) propane (0.0352 g, 0.1 mmol), 4,4'-bipyridine (0.0198 g, 0.1 mmol), pyridine (0.8 ml) and H2O (10 ml) was sealed in a Teflon-lined stainless autoclave and heated at 413 K for 3 days. The bomb was allowed to cool to room temperature gradually and red prismatic crystals were obtained.

Refinement top

H atoms attached to N and O atoms were located in a difference Fourier maps and refined as riding in their as-found relative positions, with Uiso(H) = 1.5Ueq(O, N). Other H atoms were positioned geometrically with C—H = 0.93 and 0.97 Å for aromatic and methylene H, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Structure description top

It is well known that aromatic polycarboxylates, especially the N-heterocyclic carboxylates, are excellent candidates for preparing novel MOFs, because of their versatile coordination modes and potential hydrogen-bonding donors and acceptors. Recently, 4,5-imidazoledicarboxylic acid (Zhu et al., 2010; Lu et al., 2010) and its 2-position substituent derivatives, such as 2-methyl-1H-imidazole-4,5-dicarboxylic acid (Song et al., 2010), 2-ethyl-1H-imidazole-4,5-dicarboxylic acid (Zhang et al., 2010; Wang et al., 2008), 2-propyl-1H-imidazole-4,5-dicarboxylic acid (Feng et al., 2010; Liu et al., 2010), 2-(hydroxymethyl)-1H-imidazole-4,5-dicarboxylic acid (Zheng et al., 2011), 2-phenyl-1H-imidazole-4,5-dicarboxylic acid (Zhu et al., 2011) and 2-pyridyl-1H-imidazole-4,5-dicarboxylic acid (Li et al., 2009; Li et al., 2010) have attracted great attention in the field of coordination chemistry. Now, our group has strong interest in adopting another imidazole dicarboxylate ligand, 1,3-bis-(1H-imidazole-4,5-dicarboxylate acid) propane to prepare various coordination compounds.

As shown in Fig. 1, the molecule is a discrete neutral monomer, in which the asymmetric unit comprises half a CoII complex located on a mirror plane and half a co-crystallized molecule of 4,4'-bipyridine located on an inversion center. The CoII ion is six coordinate and has a distorted octahedral geometry. It is ligated by two nitrogen atoms and two oxygen atoms from a 1,3-bis-(1H-imidazole-4,5-dicarboxylate) propane dianion, one nitrogen atom from a pyridine molecule and one oxygen atom from a coordinated water molecule. The Co—O distances range from 2.076 (2) to 2.1441 (15) Å, while Co—N distances are 2.138 (3) and 2.1515 (17) Å, respectively. A two-dimensional network of N—H···O and O—H···N hydrogen bonds help to stabilize the crystal packing. Aromatic π-π interactions between bipyridine rings and imidazole rings [centroid—centroid distance = 3.7694 (4) Å] are also observed.

For complexes based on substituted 4,5-imidazoledicarboxylic acids, see: Zhu et al. (2010, 2011); Lu et al. (2010); Song et al. (2010); Zhang et al. (2010); Wang et al. (2008); Feng et al. (2010); Liu et al. (2010); Zheng et al. (2011); Li et al. (2009, 2010).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. Unlabelled atoms are related to labelled atoms by the symmetry operations (x, -y+1/2, z for CoII complex; 1-x, 1-y, 1-z for 4,4-bipy).
Aqua[2,2'-(propane-1,3-diyl)bis(5-carboxy-1H-imidazole-4-carboxylato)- κ4N3,O4:N3',O4'](pyridine- κN)cobalt(II)–4,4'-bipyridine (1/1) top
Crystal data top
[Co(C13H10N4O8)(C5H5N)(H2O)]·C10H8N2F(000) = 680
Mr = 661.47Dx = 1.601 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 2701 reflections
a = 7.9733 (10) Åθ = 2.6–28.3°
b = 20.738 (3) ŵ = 0.70 mm1
c = 8.2987 (11) ÅT = 296 K
β = 91.350 (2)°Prismatic, red
V = 1371.8 (3) Å30.22 × 0.18 × 0.11 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
3443 independent reflections
Radiation source: fine-focus sealed tube2633 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1010
Tmin = 0.862, Tmax = 0.927k = 2727
11480 measured reflectionsl = 1110
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0442P)2 + 0.5516P]
where P = (Fo2 + 2Fc2)/3
3443 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.43 e Å3
1 restraintΔρmin = 0.34 e Å3
Crystal data top
[Co(C13H10N4O8)(C5H5N)(H2O)]·C10H8N2V = 1371.8 (3) Å3
Mr = 661.47Z = 2
Monoclinic, P21/mMo Kα radiation
a = 7.9733 (10) ŵ = 0.70 mm1
b = 20.738 (3) ÅT = 296 K
c = 8.2987 (11) Å0.22 × 0.18 × 0.11 mm
β = 91.350 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3443 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
2633 reflections with I > 2σ(I)
Tmin = 0.862, Tmax = 0.927Rint = 0.033
11480 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.105H-atom parameters constrained
S = 1.05Δρmax = 0.43 e Å3
3443 reflectionsΔρmin = 0.34 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co11.06603 (5)0.25000.45178 (5)0.03122 (13)
O11.1510 (2)0.32701 (7)0.60553 (18)0.0383 (4)
O21.2252 (2)0.43073 (8)0.6011 (2)0.0522 (5)
O31.2037 (3)0.52310 (8)0.4133 (2)0.0529 (5)
H31.21280.49180.47340.079*
O41.1130 (3)0.54174 (8)0.1645 (2)0.0529 (5)
O51.3034 (3)0.25000.3543 (3)0.0427 (6)
H1W1.32940.21300.33010.064*0.50
N11.0110 (2)0.33325 (8)0.3051 (2)0.0333 (4)
N20.9918 (2)0.41425 (8)0.1356 (2)0.0376 (4)
H20.96800.43580.04940.045*
N30.8291 (3)0.25000.5671 (3)0.0362 (6)
N40.5482 (3)0.64535 (11)0.7813 (3)0.0581 (6)
C11.0812 (3)0.38718 (10)0.3751 (3)0.0323 (5)
C21.0707 (3)0.43808 (10)0.2707 (3)0.0339 (5)
C30.9574 (3)0.35140 (10)0.1597 (3)0.0391 (5)
C41.1577 (3)0.38108 (10)0.5396 (3)0.0352 (5)
C51.1307 (3)0.50565 (11)0.2790 (3)0.0389 (5)
C60.8845 (10)0.3117 (3)0.0277 (8)0.077 (2)0.755 (8)
H6A0.97360.29900.04320.092*0.755 (8)
H6B0.80600.33800.03470.092*0.755 (8)
C70.7919 (6)0.25000.0846 (6)0.0417 (13)0.755 (8)
H7A0.67790.25000.04110.050*0.755 (8)
H7B0.78670.25000.20120.050*0.755 (8)
C80.7494 (3)0.30506 (12)0.6012 (3)0.0432 (6)
H80.80320.34390.58070.052*
C90.5915 (3)0.30676 (14)0.6651 (3)0.0531 (7)
H90.54040.34600.68690.064*
C100.5108 (5)0.25000.6959 (5)0.0564 (10)
H100.40330.25000.73710.068*
C110.6117 (4)0.63819 (13)0.9295 (4)0.0565 (7)
H110.67010.67270.97510.068*
C120.5967 (3)0.58259 (12)1.0209 (3)0.0467 (6)
H120.64420.58021.12410.056*
C130.5101 (3)0.53088 (11)0.9558 (3)0.0378 (5)
C140.4429 (4)0.53878 (13)0.8010 (4)0.0604 (8)
H140.38290.50540.75200.072*
C150.4649 (4)0.59541 (15)0.7211 (4)0.0681 (9)
H150.41830.59920.61770.082*
C7'0.9726 (4)0.25000 (15)0.0032 (4)0.048 (4)*0.245 (8)
H7'10.99620.25000.11730.057*0.245 (8)
H7'21.07620.25000.06040.057*0.245 (8)
C6'0.841 (2)0.3086 (7)0.049 (2)0.034 (3)*0.245 (8)
H6'10.80010.33230.04460.041*0.245 (8)
H6'20.74700.29170.10740.041*0.245 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0391 (2)0.0229 (2)0.0313 (2)0.0000.00719 (16)0.000
O10.0514 (10)0.0286 (8)0.0344 (9)0.0005 (7)0.0105 (7)0.0007 (7)
O20.0784 (13)0.0338 (9)0.0434 (10)0.0142 (8)0.0229 (9)0.0026 (7)
O30.0842 (14)0.0277 (9)0.0458 (11)0.0100 (8)0.0171 (9)0.0005 (7)
O40.0819 (13)0.0294 (9)0.0466 (11)0.0079 (8)0.0133 (9)0.0070 (8)
O50.0451 (13)0.0284 (11)0.0549 (15)0.0000.0038 (11)0.000
N10.0417 (10)0.0235 (8)0.0342 (10)0.0004 (7)0.0091 (8)0.0011 (7)
N20.0518 (11)0.0257 (9)0.0349 (10)0.0025 (8)0.0109 (8)0.0041 (8)
N30.0409 (15)0.0319 (14)0.0356 (15)0.0000.0052 (11)0.000
N40.0629 (15)0.0422 (13)0.0696 (17)0.0037 (11)0.0090 (12)0.0145 (11)
C10.0381 (11)0.0237 (10)0.0349 (12)0.0008 (9)0.0056 (9)0.0030 (8)
C20.0414 (12)0.0268 (10)0.0333 (12)0.0016 (9)0.0040 (9)0.0017 (9)
C30.0533 (14)0.0280 (11)0.0354 (13)0.0024 (10)0.0111 (10)0.0007 (9)
C40.0427 (12)0.0288 (11)0.0336 (12)0.0000 (9)0.0074 (9)0.0031 (9)
C50.0497 (14)0.0275 (11)0.0394 (13)0.0007 (10)0.0042 (10)0.0029 (10)
C60.127 (6)0.053 (3)0.049 (3)0.053 (3)0.024 (4)0.005 (2)
C70.049 (3)0.033 (2)0.042 (3)0.0000.020 (2)0.000
C80.0486 (14)0.0405 (13)0.0402 (14)0.0048 (11)0.0044 (10)0.0007 (11)
C90.0528 (16)0.0609 (18)0.0456 (15)0.0178 (13)0.0006 (12)0.0010 (13)
C100.043 (2)0.084 (3)0.042 (2)0.0000.0003 (16)0.000
C110.0655 (18)0.0355 (14)0.069 (2)0.0091 (12)0.0129 (15)0.0069 (13)
C120.0578 (16)0.0388 (13)0.0433 (14)0.0068 (11)0.0000 (11)0.0039 (11)
C130.0384 (12)0.0330 (12)0.0419 (13)0.0018 (9)0.0019 (10)0.0015 (10)
C140.076 (2)0.0456 (15)0.0580 (18)0.0175 (14)0.0252 (15)0.0147 (13)
C150.083 (2)0.0592 (19)0.061 (2)0.0065 (16)0.0203 (16)0.0207 (16)
Geometric parameters (Å, º) top
Co1—O52.076 (2)C6—H6A0.9700
Co1—N32.138 (3)C6—H6B0.9700
Co1—O12.1441 (15)C7—C6i1.557 (6)
Co1—O1i2.1441 (15)C7—H7A0.9700
Co1—N1i2.1515 (17)C7—H7B0.9700
Co1—N12.1515 (17)C8—C91.378 (4)
O1—C41.249 (3)C8—H80.9300
O2—C41.264 (3)C9—C101.369 (3)
O3—C51.297 (3)C9—H90.9300
O3—H30.8200C10—C9i1.369 (3)
O4—C51.215 (3)C10—H100.9300
O5—H1W0.8200C11—C121.387 (4)
N1—C31.326 (3)C11—H110.9300
N1—C11.374 (3)C12—C131.378 (3)
N2—C31.348 (3)C12—H120.9300
N2—C21.366 (3)C13—C141.390 (3)
N2—H20.8600C13—C13ii1.486 (4)
N3—C81.340 (3)C14—C151.362 (4)
N3—C8i1.340 (3)C14—H140.9300
N4—C151.322 (4)C15—H150.9300
N4—C111.327 (4)C7'—C6'i1.667 (13)
C1—C21.367 (3)C7'—C6'1.667 (13)
C1—C41.487 (3)C7'—H7'10.9700
C2—C51.482 (3)C7'—H7'20.9700
C3—C61.478 (6)C6'—H6'10.9700
C3—C6'1.565 (19)C6'—H6'20.9700
C6—C71.557 (6)
O5—Co1—N3176.35 (10)C3—C6—H6A108.6
O5—Co1—O187.35 (7)C7—C6—H6A108.6
N3—Co1—O190.22 (7)C3—C6—H6B108.6
O5—Co1—O1i87.35 (7)C7—C6—H6B108.6
N3—Co1—O1i90.22 (7)H6A—C6—H6B107.6
O1—Co1—O1i96.30 (8)C6—C7—C6i110.7 (7)
O5—Co1—N1i87.43 (7)C6—C7—H7A109.5
N3—Co1—N1i94.74 (7)C6i—C7—H7A109.5
O1—Co1—N1i172.62 (6)C6—C7—H7B109.5
O1i—Co1—N1i78.25 (6)C6i—C7—H7B109.5
O5—Co1—N187.43 (7)H7A—C7—H7B108.1
N3—Co1—N194.74 (7)N3—C8—C9123.0 (2)
O1—Co1—N178.25 (6)N3—C8—H8118.5
O1i—Co1—N1172.62 (6)C9—C8—H8118.5
N1i—Co1—N1106.72 (9)C10—C9—C8119.2 (3)
C4—O1—Co1115.09 (14)C10—C9—H9120.4
C5—O3—H3109.5C8—C9—H9120.4
Co1—O5—H1W109.5C9—C10—C9i118.7 (4)
C3—N1—C1105.87 (18)C9—C10—H10120.7
C3—N1—Co1143.14 (15)C9i—C10—H10120.7
C1—N1—Co1109.78 (13)N4—C11—C12124.3 (3)
C3—N2—C2108.63 (18)N4—C11—H11117.8
C3—N2—H2125.7C12—C11—H11117.8
C2—N2—H2125.7C13—C12—C11118.8 (3)
C8—N3—C8i116.9 (3)C13—C12—H12120.6
C8—N3—Co1121.51 (15)C11—C12—H12120.6
C8i—N3—Co1121.51 (15)C12—C13—C14116.7 (2)
C15—N4—C11116.1 (2)C12—C13—C13ii122.5 (3)
C2—C1—N1110.02 (19)C14—C13—C13ii120.9 (3)
C2—C1—C4131.70 (19)C15—C14—C13120.0 (3)
N1—C1—C4118.24 (18)C15—C14—H14120.0
N2—C2—C1105.15 (18)C13—C14—H14120.0
N2—C2—C5121.5 (2)N4—C15—C14124.1 (3)
C1—C2—C5133.3 (2)N4—C15—H15118.0
N1—C3—N2110.33 (19)C14—C15—H15118.0
N1—C3—C6129.0 (3)C6'i—C7'—C6'93.5 (12)
N2—C3—C6120.4 (3)C6'i—C7'—H7'1113.0
N1—C3—C6'123.2 (7)C6'—C7'—H7'1113.0
N2—C3—C6'125.5 (6)C6'i—C7'—H7'2113.0
C6—C3—C6'14.6 (7)C6'—C7'—H7'2113.0
O1—C4—O2125.2 (2)H7'1—C7'—H7'2110.4
O1—C4—C1117.23 (18)C3—C6'—C7'101.5 (9)
O2—C4—C1117.59 (19)C3—C6'—H6'1111.5
O4—C5—O3122.8 (2)C7'—C6'—H6'1111.5
O4—C5—C2121.0 (2)C3—C6'—H6'2111.5
O3—C5—C2116.2 (2)C7'—C6'—H6'2111.5
C3—C6—C7114.5 (5)H6'1—C6'—H6'2109.3
O5—Co1—O1—C477.25 (17)C1—N1—C3—C6174.5 (5)
N3—Co1—O1—C4105.47 (17)Co1—N1—C3—C69.5 (6)
O1i—Co1—O1—C4164.28 (13)C1—N1—C3—C6'169.0 (6)
N1i—Co1—O1—C4122.3 (5)Co1—N1—C3—C6'26.1 (7)
N1—Co1—O1—C410.68 (16)C2—N2—C3—N10.1 (3)
O5—Co1—N1—C386.0 (3)C2—N2—C3—C6174.9 (4)
N3—Co1—N1—C396.9 (3)C2—N2—C3—C6'168.9 (7)
O1—Co1—N1—C3173.8 (3)Co1—O1—C4—O2169.8 (2)
O1i—Co1—N1—C3131.0 (5)Co1—O1—C4—C19.7 (3)
N1i—Co1—N1—C30.5 (3)C2—C1—C4—O1178.4 (2)
O5—Co1—N1—C178.58 (15)N1—C1—C4—O11.1 (3)
N3—Co1—N1—C198.49 (15)C2—C1—C4—O21.1 (4)
O1—Co1—N1—C19.25 (14)N1—C1—C4—O2178.5 (2)
O1i—Co1—N1—C133.6 (6)N2—C2—C5—O40.9 (4)
N1i—Co1—N1—C1165.12 (11)C1—C2—C5—O4176.1 (2)
O5—Co1—N3—C891.7 (2)N2—C2—C5—O3180.0 (2)
O1—Co1—N3—C843.6 (2)C1—C2—C5—O33.1 (4)
O1i—Co1—N3—C8139.9 (2)N1—C3—C6—C727.9 (8)
N1i—Co1—N3—C8141.9 (2)N2—C3—C6—C7158.5 (4)
N1—Co1—N3—C834.6 (2)C6'—C3—C6—C744 (3)
O5—Co1—N3—C8i91.7 (2)C3—C6—C7—C6i114.7 (5)
O1—Co1—N3—C8i139.9 (2)C8i—N3—C8—C91.4 (5)
O1i—Co1—N3—C8i43.6 (2)Co1—N3—C8—C9175.34 (19)
N1i—Co1—N3—C8i34.6 (2)N3—C8—C9—C100.1 (4)
N1—Co1—N3—C8i141.9 (2)C8—C9—C10—C9i1.3 (5)
C3—N1—C1—C20.4 (3)C15—N4—C11—C120.6 (4)
Co1—N1—C1—C2170.09 (15)N4—C11—C12—C130.2 (4)
C3—N1—C1—C4178.2 (2)C11—C12—C13—C140.2 (4)
Co1—N1—C1—C47.8 (2)C11—C12—C13—C13ii179.1 (3)
C3—N2—C2—C10.1 (3)C12—C13—C14—C150.3 (4)
C3—N2—C2—C5177.6 (2)C13ii—C13—C14—C15179.0 (3)
N1—C1—C2—N20.3 (2)C11—N4—C15—C140.4 (5)
C4—C1—C2—N2177.8 (2)C13—C14—C15—N40.0 (5)
N1—C1—C2—C5177.0 (2)N1—C3—C6'—C7'70.7 (10)
C4—C1—C2—C50.5 (4)N2—C3—C6'—C7'121.7 (6)
C1—N1—C3—N20.3 (3)C6—C3—C6'—C7'48 (2)
Co1—N1—C3—N2164.64 (19)C6'i—C7'—C6'—C3129.0 (6)
Symmetry codes: (i) x, y+1/2, z; (ii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.821.652.473 (2)177
O5—H1W···N4iii0.821.952.727 (3)157
N2—H2···O4iv0.861.932.763 (3)162
Symmetry codes: (iii) x+2, y1/2, z+1; (iv) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula[Co(C13H10N4O8)(C5H5N)(H2O)]·C10H8N2
Mr661.47
Crystal system, space groupMonoclinic, P21/m
Temperature (K)296
a, b, c (Å)7.9733 (10), 20.738 (3), 8.2987 (11)
β (°) 91.350 (2)
V3)1371.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.22 × 0.18 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.862, 0.927
No. of measured, independent and
observed [I > 2σ(I)] reflections
11480, 3443, 2633
Rint0.033
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.105, 1.05
No. of reflections3443
No. of parameters219
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.34

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.821.652.473 (2)177.1
O5—H1W···N4i0.821.952.727 (3)156.8
N2—H2···O4ii0.861.932.763 (3)162.1
Symmetry codes: (i) x+2, y1/2, z+1; (ii) x+2, y+1, z.
 

Acknowledgements

We gratefully acknowledge financial support by the Foundation of Henan Key Science and Technology Research (grant Nos. 122102210414 and 122102210415), the Foundation of Henan Educational Committee (grant Nos. 2010A150003 and 2011B150001), and the Foundation of Henan University of Urban Construction (grant Nos. 2010JYB007 and 2010JYB008).

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFeng, X., Zhao, J. S., Liu, B., Wang, L. Y., Ng, S., Zhang, G., Wang, J. G., Shi, X. G. & Liu, Y. Y. (2010). Cryst. Growth Des. 10, 1399–1408.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, X., Wu, B. L., Niu, C. Y., Niu, Y. Y. & Zhang, H. Y. (2009). Cryst. Growth Des. 9, 3423–3431.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, X., Wu, B. L., Wang, R. Y., Zhang, H. Y., Niu, C. Y., Niu, Y. Y. & Hou, H. W. (2010). Inorg. Chem. 49, 2600–2613.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLiu, X. F., Wang, L. Y., Ma, L. F. & Li, R. F. (2010). Chin. J. Struct. Chem. 29, 280–284.  Google Scholar
First citationLu, W. G., Jiang, L. & Lu, T. B. (2010). Cryst. Growth Des. 10, 4310–4318.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, J. F., Zhou, R. S., Hu, T. P., Zhuo, C. & Wang, B. B. (2010). J. Coord. Chem. 63, 4201–4214.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, S., Zhang, L. R., Li, G. H., Huo, Q. S. & Liu, Y. L. (2008). CrystEngComm, 10, 1662–1666.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, F. W., Li, Z. F., Ge, T. Z., Yao, H. C., Li, G., Lu, H. J. & Zhu, Y. Y. (2010). Inorg. Chem. 49, 3776–3788.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZheng, S. R., Cai, S. L., Pan, M., Fan, J., Xiao, T. T. & Zhang, W. G. (2011). CrystEngComm, 13, 883–888.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, Y., Wang, W. Y., Guo, M. W., Li, G. & Lu, H. J. (2011). Inorg. Chem. Commun. 14, 1432–1435.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhu, L. C., Zhao, Y., Yu, S. J. & Zhao, M. M. (2010). Inorg. Chem. Commun. 13, 1299–1303.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds