organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-{[8-(4-Acetyl­oxybenzo­yl)-2,7-dimeth­­oxy­naphthalen-1-yl]carbon­yl}phenyl acetate

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 5 July 2012; accepted 16 July 2012; online 21 July 2012)

In the mol­ecule of the title compound, C30H24O8, the two 4-acet­oxy­benzoyl groups at the 1- and 8-positions of the naphthalene ring system are aligned almost anti­parallel, and the two benzene rings make a dihedral angle of 54.21 (9)°. The dihedral angles between the benzene rings and the naphthalene ring system are 63.63 (8) and 78.54 (8)°.

Related literature

For formation reactions of aroylated naphthalene compounds via electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto et al. (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.], 2011[Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.]). For the structures of closely related compounds, see: Hijikata et al. (2010[Hijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902-o2903.]); Muto, Kato et al. (2010[Muto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.]); Sasagawa, Hijikata et al. (2011[Sasagawa, K., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2119.]); Sasagawa, Muto et al. (2011[Sasagawa, K., Muto, T., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o3354.]); Muto, Sasagawa et al. (2012[Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2012). Acta Cryst. E68, o23.]).

[Scheme 1]

Experimental

Crystal data
  • C30H24O8

  • Mr = 512.49

  • Monoclinic, C 2/c

  • a = 44.115 (6) Å

  • b = 7.9710 (9) Å

  • c = 15.035 (4) Å

  • β = 99.439 (16)°

  • V = 5215.2 (15) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.79 mm−1

  • T = 193 K

  • 0.60 × 0.20 × 0.05 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.649, Tmax = 0.962

  • 44265 measured reflections

  • 4760 independent reflections

  • 3547 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.127

  • S = 1.11

  • 4760 reflections

  • 348 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11C⋯O4i 0.98 2.36 3.320 (3) 166
C12—H12A⋯O3ii 0.98 2.53 3.380 (3) 145
C3—H3⋯O7iii 0.95 2.47 3.369 (3) 158
C21—H21⋯O8iv 0.95 2.53 3.364 (3) 146
Symmetry codes: (i) x, y-1, z; (ii) [x, -y, z-{\script{1\over 2}}]; (iii) [x, -y-1, z-{\script{1\over 2}}]; (iv) -x+1, -y, -z+1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on selective electrophilic aromatic aroylation of the naphthalene ring core, 1,8-diaroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009, Okamoto et al., 2011). Recently, we have reported the X-ray crystal structures of 1,8-diaroylated 2,7-dimethoxynaphthalene derivatives such as [2,7-dimethoxy-8-(4-methylbenzoyl)-1-naphthyl](4-methylphenyl)methanone [1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene] (Muto et al., 2010), [2,7-dimethoxy-8-(2,4,6-trimethylbenzoyl)naphthalen-1-yl](2,4,6-trimethylphenyl)methanone [1,8-bis(2,4,6-trimethylbenzoyl)-2,7-dimethoxynaphthalene] (Muto et al., 2012), {8-[4-(bromomethyl)benzoyl]-2,7-dimethoxynaphthalen-1-yl}[4-(bromomethyl)phenyl]methanone [1,8-bis(4-bromomethylbenzoyl)-2,7-dimethoxynaphthalene] (Sasagawa, Hijikata et al., 2011), and {8-[4-(butoxy)benzoyl]-2,7-dimethoxynaphthalen-1-yl}[4-(butoxy)phenyl]methanone [1,8-bis(4-butoxylbenzoyl)-2,7-dimethoxynaphthalene] (Sasagawa, Muto et al., 2011). The aroyl groups in these compounds are almost perpendicularly attached to the naphthalene rings and oriented in opposite directions (anti-orientation). Moreover, we have also shown that the aroyl groups of 2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene (Hijikata et al., 2010) are oriented in the same direction (syn-orientation) in the crystal. As part of our ongoing studies on the molecular structures of these kinds of homologous molecules, the X-ray crystal structure of the title compound, 1,8-diaroylated naphthalene bearing acetoxy groups, is discussed in this article.

The molecular structure of the title compound is displayed in Fig 1. Two 4-acetoxybenzoyl groups are twisted away from the attached naphthalene ring and are situated in anti orientation. The dihedral angle between the best planes of the two phenyl rings is 54.21 (9)°. The two dihedral angles between the best planes of the 4-acetoxyphenyl rings and the naphthalene ring are 63.63 (8) and 78.54 (8)°, respectively.

The dihedral angles between the naphthalene ring system and the bridging ketonic carbonyl C—C(O)—C planes [58.30 (9) and 54.11 (9)°] are larger than those between the phenyl rings and the bridging carbonyl planes [10.65 (10) and 28.80 (10)°]. Besides, the dihedral angles between the phenyl rings and the bridging acetoxy C—C(O)—O planes [57.29 (10) and 60.32 (13)°] are similar to those between the naphthalene ring system and the bridging ketonic carbonyl C—C(O)—O planes.

In the molecular packing, four C—H···O interactions are observed, i.e., two types of C—H···O interactions between the oxygen atoms of the ketonic carbonyl groups and the hydrogen atoms of the methoxy groups [C11—H11C···O4 = 2.36 Å, C12—H12A···O3 = 2.53 Å], C—H···O interaction between carbonyl oxygen atom of the acetoxy groups and hydrogen atom of the napthalene ring [C3—H3···O7 = 2.47 Å], and C—H···O interaction between carbonyl oxygen atom of the acetoxy group and hydrogen atom of the benzene ring [C21—H21···O8 = 2.53 Å]. The C—H···O interactions between the methoxy group and the ketonic carbonyl group and between the acetoxy group and the benzene ring effectively contribute to stabilization of the molecular packing (Fig. 2).

Related literature top

For formation reactions of aroylated naphthalene compounds via electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto et al. (2009, 2011). For the structures of closely related compounds, see: Hijikata et al. (2010); Muto, Kato et al. (2010); Sasagawa, Hijikata et al. (2011); Sasagawa, Muto et al. (2011); Muto, Sasagawa et al. (2012).

Experimental top

The title compound was prepared by an esterification reaction of 1,8-bis(4-hydroxybenzoyl)-2,7-dimethoxynaphthalene (1.0 mmol, 428.5 mg), which was obtained via SNAr reaction of 1,8-bis(4-fluorobenzoyl)-2,7-dimethoxynaphthalene with sodium hydroxide, with acetic anhydride (63.0 mmol, 6.43 g) in the presence of concentrated sulfuric acid (1 drop). After the reaction mixture was stirred at room temperature for 1 h, it was poured into water (30 ml). The aqueous layer was extracted with CHCl3 (15 ml × 3).The combined extracts were washed with aqueous NaHCO3 followed by washing with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give a cake. The crude product was purified by recrystallization from methanol (isolated yield 56%). The isolated product was crystallized from methanol to give single-crystals.

1H NMR δ (300 MHz, CDCl3); 2.30 (6H, s), 3.70 (6H, s), 7.07 (4H, d, J = 8.4 Hz), 7.20 (2H, d, J= 8.7 Hz), 7.69 (4H, d, J = 8.1 Hz), 7.95 (2H, d, J = 9.0 Hz) p.p.m. 13C NMR δ(75 MHz, CDCl3); 21.20, 56.31, 110.03, 120.88, 121.03, 125.36, 120.72, 130.56, 132.18,136.12, 153.94, 156.27, 168.72, 195.69 p.p.m. IR(KBr); 1760(CO, ester), 1662(CO, ketone), 1609, 1511, 1461(Ar, napthalene) cm-1. (m/z): [M + H]+ Calcd for C30H25O8, 513.1549; found, 513.1545. M.p. = 434.4 - 436.9 K

Refinement top

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and with Uĩso(H)= 1.2 Ueq(C). Displacement parameters of atoms C6 and O1 were restrained using the SHELXL97 commands DELU and SIMU.

Structure description top

In the course of our study on selective electrophilic aromatic aroylation of the naphthalene ring core, 1,8-diaroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009, Okamoto et al., 2011). Recently, we have reported the X-ray crystal structures of 1,8-diaroylated 2,7-dimethoxynaphthalene derivatives such as [2,7-dimethoxy-8-(4-methylbenzoyl)-1-naphthyl](4-methylphenyl)methanone [1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene] (Muto et al., 2010), [2,7-dimethoxy-8-(2,4,6-trimethylbenzoyl)naphthalen-1-yl](2,4,6-trimethylphenyl)methanone [1,8-bis(2,4,6-trimethylbenzoyl)-2,7-dimethoxynaphthalene] (Muto et al., 2012), {8-[4-(bromomethyl)benzoyl]-2,7-dimethoxynaphthalen-1-yl}[4-(bromomethyl)phenyl]methanone [1,8-bis(4-bromomethylbenzoyl)-2,7-dimethoxynaphthalene] (Sasagawa, Hijikata et al., 2011), and {8-[4-(butoxy)benzoyl]-2,7-dimethoxynaphthalen-1-yl}[4-(butoxy)phenyl]methanone [1,8-bis(4-butoxylbenzoyl)-2,7-dimethoxynaphthalene] (Sasagawa, Muto et al., 2011). The aroyl groups in these compounds are almost perpendicularly attached to the naphthalene rings and oriented in opposite directions (anti-orientation). Moreover, we have also shown that the aroyl groups of 2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene (Hijikata et al., 2010) are oriented in the same direction (syn-orientation) in the crystal. As part of our ongoing studies on the molecular structures of these kinds of homologous molecules, the X-ray crystal structure of the title compound, 1,8-diaroylated naphthalene bearing acetoxy groups, is discussed in this article.

The molecular structure of the title compound is displayed in Fig 1. Two 4-acetoxybenzoyl groups are twisted away from the attached naphthalene ring and are situated in anti orientation. The dihedral angle between the best planes of the two phenyl rings is 54.21 (9)°. The two dihedral angles between the best planes of the 4-acetoxyphenyl rings and the naphthalene ring are 63.63 (8) and 78.54 (8)°, respectively.

The dihedral angles between the naphthalene ring system and the bridging ketonic carbonyl C—C(O)—C planes [58.30 (9) and 54.11 (9)°] are larger than those between the phenyl rings and the bridging carbonyl planes [10.65 (10) and 28.80 (10)°]. Besides, the dihedral angles between the phenyl rings and the bridging acetoxy C—C(O)—O planes [57.29 (10) and 60.32 (13)°] are similar to those between the naphthalene ring system and the bridging ketonic carbonyl C—C(O)—O planes.

In the molecular packing, four C—H···O interactions are observed, i.e., two types of C—H···O interactions between the oxygen atoms of the ketonic carbonyl groups and the hydrogen atoms of the methoxy groups [C11—H11C···O4 = 2.36 Å, C12—H12A···O3 = 2.53 Å], C—H···O interaction between carbonyl oxygen atom of the acetoxy groups and hydrogen atom of the napthalene ring [C3—H3···O7 = 2.47 Å], and C—H···O interaction between carbonyl oxygen atom of the acetoxy group and hydrogen atom of the benzene ring [C21—H21···O8 = 2.53 Å]. The C—H···O interactions between the methoxy group and the ketonic carbonyl group and between the acetoxy group and the benzene ring effectively contribute to stabilization of the molecular packing (Fig. 2).

For formation reactions of aroylated naphthalene compounds via electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto et al. (2009, 2011). For the structures of closely related compounds, see: Hijikata et al. (2010); Muto, Kato et al. (2010); Sasagawa, Hijikata et al. (2011); Sasagawa, Muto et al. (2011); Muto, Sasagawa et al. (2012).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku, 2010); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Intermolecular C—H···O interactions between H11C and O4 [symmetry equivalent x,1 + y,z] and between H21 and O8 [symmetry equivalent -x,1 - y,-z].
4-{[8-(4-Acetyloxybenzoyl)-2,7-dimethoxynaphthalen-1-yl]carbonyl}phenyl acetate top
Crystal data top
C30H24O8F(000) = 2144
Mr = 512.49Dx = 1.305 Mg m3
Monoclinic, C2/cMelting point = 436.9–434.4 K
Hall symbol: -C 2ycCu Kα radiation, λ = 1.54178 Å
a = 44.115 (6) ÅCell parameters from 2415 reflections
b = 7.9710 (9) Åθ = 3.0–66.9°
c = 15.035 (4) ŵ = 0.79 mm1
β = 99.439 (16)°T = 193 K
V = 5215.2 (15) Å3Platelet, colorless
Z = 80.60 × 0.20 × 0.05 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4760 independent reflections
Radiation source: rotating anode3547 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 10.000 pixels mm-1θmax = 68.1°, θmin = 4.1°
ω scansh = 5251
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 99
Tmin = 0.649, Tmax = 0.962l = 1818
44265 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0509P)2 + 3.8146P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.003
4760 reflectionsΔρmax = 0.21 e Å3
348 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00093 (6)
Crystal data top
C30H24O8V = 5215.2 (15) Å3
Mr = 512.49Z = 8
Monoclinic, C2/cCu Kα radiation
a = 44.115 (6) ŵ = 0.79 mm1
b = 7.9710 (9) ÅT = 193 K
c = 15.035 (4) Å0.60 × 0.20 × 0.05 mm
β = 99.439 (16)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4760 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
3547 reflections with I > 2σ(I)
Tmin = 0.649, Tmax = 0.962Rint = 0.024
44265 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.11Δρmax = 0.21 e Å3
4760 reflectionsΔρmin = 0.23 e Å3
348 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.67019 (4)0.50504 (18)0.69478 (11)0.0666 (4)
O20.57758 (4)0.0498 (2)0.38430 (9)0.0684 (4)
O30.60948 (3)0.21880 (19)0.69000 (9)0.0577 (4)
O40.63836 (3)0.07349 (17)0.58412 (9)0.0530 (3)
O50.73159 (3)0.02768 (17)0.94108 (10)0.0600 (4)
O60.50983 (3)0.3687 (2)0.63806 (10)0.0713 (5)
O70.72389 (4)0.1669 (2)1.04398 (11)0.0749 (5)
O80.48041 (4)0.3266 (2)0.50231 (13)0.0765 (5)
C10.65066 (5)0.5185 (3)0.44900 (17)0.0674 (6)
H10.65370.58700.39950.081*
C20.61596 (5)0.3398 (3)0.34495 (14)0.0663 (6)
H20.61870.41150.29640.080*
C30.66475 (5)0.5624 (3)0.53323 (18)0.0662 (6)
H30.67750.65880.54230.079*
C40.63189 (5)0.3764 (3)0.43240 (15)0.0577 (5)
C50.59705 (5)0.2061 (3)0.32843 (14)0.0647 (6)
H50.58580.18760.26970.078*
C60.65994 (5)0.4615 (3)0.60696 (15)0.0556 (5)
C70.62858 (4)0.2672 (3)0.50575 (12)0.0493 (5)
C80.59414 (5)0.0946 (3)0.39916 (13)0.0547 (5)
C90.64307 (4)0.3145 (2)0.59433 (13)0.0488 (5)
C100.61025 (4)0.1195 (2)0.48571 (12)0.0474 (4)
C110.68463 (6)0.6645 (3)0.71381 (19)0.0754 (7)
H11A0.68850.68300.77910.090*
H11B0.70410.66670.69070.090*
H11C0.67110.75320.68470.090*
C120.55560 (6)0.0640 (4)0.30369 (15)0.0797 (7)
H12A0.56630.07480.25180.096*
H12B0.54280.16330.30740.096*
H12C0.54260.03640.29640.096*
C130.63614 (4)0.2268 (2)0.67754 (12)0.0477 (4)
C140.61272 (4)0.0255 (2)0.54981 (12)0.0454 (4)
C150.69160 (5)0.1424 (3)0.72838 (14)0.0544 (5)
H150.69640.17450.67140.065*
C160.71455 (5)0.0820 (3)0.79466 (14)0.0573 (5)
H160.73500.07250.78330.069*
C170.66159 (4)0.1561 (2)0.74484 (12)0.0451 (4)
C180.70746 (5)0.0359 (2)0.87711 (13)0.0511 (5)
C190.65498 (5)0.1042 (2)0.82785 (13)0.0495 (5)
H190.63440.11070.83910.059*
C200.67777 (5)0.0431 (3)0.89443 (14)0.0537 (5)
H200.67300.00700.95080.064*
C210.55710 (4)0.0299 (3)0.56628 (12)0.0517 (5)
H210.55550.08480.54900.062*
C220.58486 (4)0.1138 (2)0.56932 (11)0.0453 (4)
C230.53169 (5)0.1133 (3)0.58840 (13)0.0574 (5)
H230.51280.05600.58790.069*
C240.58705 (5)0.2828 (3)0.59350 (12)0.0501 (5)
H240.60610.33990.59610.060*
C250.53453 (5)0.2814 (3)0.61117 (13)0.0568 (5)
C260.56166 (5)0.3679 (3)0.61376 (13)0.0557 (5)
H260.56300.48350.62910.067*
C270.73804 (5)0.0490 (3)1.02320 (15)0.0575 (5)
C280.76456 (5)0.0327 (3)1.08052 (16)0.0713 (6)
H28A0.75870.14601.09650.086*
H28B0.78190.03921.04730.086*
H28C0.77060.03331.13560.086*
C290.48345 (5)0.3866 (3)0.57648 (19)0.0667 (6)
C300.46120 (6)0.4943 (4)0.6140 (2)0.0937 (9)
H30A0.46350.47680.67930.112*
H30B0.44020.46490.58590.112*
H30C0.46520.61230.60170.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0778 (10)0.0442 (8)0.0766 (11)0.0067 (7)0.0087 (8)0.0012 (7)
O20.0918 (11)0.0719 (10)0.0371 (8)0.0067 (9)0.0022 (7)0.0024 (7)
O30.0519 (8)0.0720 (10)0.0501 (8)0.0014 (7)0.0106 (6)0.0031 (7)
O40.0542 (8)0.0500 (8)0.0525 (8)0.0057 (6)0.0020 (6)0.0068 (6)
O50.0662 (9)0.0515 (8)0.0579 (9)0.0124 (7)0.0027 (7)0.0004 (7)
O60.0650 (9)0.0921 (12)0.0572 (9)0.0241 (8)0.0109 (7)0.0053 (8)
O70.0694 (10)0.0795 (11)0.0707 (10)0.0193 (9)0.0040 (8)0.0163 (9)
O80.0638 (10)0.0704 (11)0.0880 (13)0.0015 (8)0.0094 (9)0.0064 (9)
C10.0698 (14)0.0650 (14)0.0716 (16)0.0075 (12)0.0239 (12)0.0233 (12)
C20.0724 (14)0.0812 (16)0.0477 (12)0.0163 (13)0.0172 (11)0.0253 (11)
C30.0625 (13)0.0501 (12)0.0892 (18)0.0022 (10)0.0220 (12)0.0146 (12)
C40.0594 (12)0.0574 (12)0.0603 (13)0.0092 (10)0.0213 (10)0.0180 (10)
C50.0711 (14)0.0807 (16)0.0423 (11)0.0103 (13)0.0090 (10)0.0139 (11)
C60.0560 (11)0.0474 (11)0.0632 (13)0.0043 (9)0.0096 (10)0.0061 (10)
C70.0523 (10)0.0518 (11)0.0456 (11)0.0108 (9)0.0132 (8)0.0090 (9)
C80.0615 (12)0.0643 (13)0.0393 (10)0.0108 (10)0.0109 (9)0.0074 (9)
C90.0491 (10)0.0440 (10)0.0543 (11)0.0061 (8)0.0117 (9)0.0067 (8)
C100.0545 (11)0.0512 (11)0.0377 (10)0.0081 (9)0.0107 (8)0.0060 (8)
C110.0712 (15)0.0450 (12)0.0991 (19)0.0075 (11)0.0183 (13)0.0118 (12)
C120.0871 (17)0.100 (2)0.0459 (13)0.0052 (15)0.0069 (12)0.0032 (12)
C130.0539 (11)0.0444 (10)0.0453 (10)0.0006 (8)0.0090 (8)0.0037 (8)
C140.0552 (11)0.0450 (10)0.0353 (9)0.0050 (8)0.0057 (8)0.0006 (8)
C150.0583 (11)0.0536 (12)0.0524 (12)0.0067 (9)0.0125 (9)0.0041 (9)
C160.0560 (11)0.0577 (12)0.0589 (13)0.0107 (10)0.0114 (10)0.0020 (10)
C170.0515 (10)0.0363 (9)0.0467 (10)0.0013 (8)0.0055 (8)0.0026 (8)
C180.0577 (11)0.0397 (10)0.0526 (11)0.0037 (9)0.0012 (9)0.0000 (8)
C190.0527 (11)0.0452 (10)0.0502 (11)0.0048 (8)0.0070 (9)0.0006 (8)
C200.0616 (12)0.0497 (11)0.0488 (11)0.0037 (9)0.0058 (9)0.0044 (9)
C210.0589 (12)0.0564 (12)0.0379 (10)0.0024 (9)0.0025 (8)0.0008 (9)
C220.0524 (10)0.0516 (11)0.0300 (9)0.0001 (8)0.0006 (7)0.0009 (8)
C230.0538 (11)0.0736 (15)0.0438 (11)0.0015 (10)0.0049 (9)0.0069 (10)
C240.0559 (11)0.0530 (11)0.0388 (10)0.0006 (9)0.0000 (8)0.0015 (8)
C250.0597 (12)0.0694 (14)0.0404 (11)0.0152 (11)0.0055 (9)0.0053 (10)
C260.0642 (13)0.0551 (12)0.0449 (11)0.0084 (10)0.0004 (9)0.0005 (9)
C270.0588 (12)0.0546 (12)0.0567 (13)0.0021 (10)0.0023 (10)0.0029 (10)
C280.0694 (14)0.0717 (15)0.0671 (15)0.0109 (12)0.0056 (11)0.0074 (12)
C290.0533 (12)0.0697 (15)0.0782 (17)0.0033 (11)0.0141 (12)0.0230 (13)
C300.0704 (16)0.107 (2)0.110 (2)0.0262 (16)0.0331 (15)0.0328 (18)
Geometric parameters (Å, º) top
O1—C61.369 (3)C12—H12B0.9800
O1—C111.430 (3)C12—H12C0.9800
O2—C81.362 (3)C13—C171.493 (3)
O2—C121.427 (3)C14—C221.487 (3)
O3—C131.223 (2)C15—C161.385 (3)
O4—C141.225 (2)C15—C171.390 (3)
O5—C271.365 (3)C15—H150.9500
O5—C181.407 (2)C16—C181.377 (3)
O6—C291.371 (3)C16—H160.9500
O6—C251.407 (2)C17—C191.390 (3)
O7—C271.198 (3)C18—C201.378 (3)
O8—C291.200 (3)C19—C201.385 (3)
C1—C31.362 (3)C19—H190.9500
C1—C41.402 (3)C20—H200.9500
C1—H10.9500C21—C231.390 (3)
C2—C51.351 (3)C21—C221.389 (3)
C2—C41.416 (3)C21—H210.9500
C2—H20.9500C22—C241.395 (3)
C3—C61.413 (3)C23—C251.384 (3)
C3—H30.9500C23—H230.9500
C4—C71.431 (3)C24—C261.385 (3)
C5—C81.408 (3)C24—H240.9500
C5—H50.9500C25—C261.376 (3)
C6—C91.384 (3)C26—H260.9500
C7—C91.430 (3)C27—C281.485 (3)
C7—C101.432 (3)C28—H28A0.9800
C8—C101.391 (3)C28—H28B0.9800
C9—C131.508 (3)C28—H28C0.9800
C10—C141.498 (3)C29—C301.483 (4)
C11—H11A0.9800C30—H30A0.9800
C11—H11B0.9800C30—H30B0.9800
C11—H11C0.9800C30—H30C0.9800
C12—H12A0.9800
C6—O1—C11118.99 (18)C16—C15—H15119.9
C8—O2—C12118.56 (18)C17—C15—H15119.9
C27—O5—C18118.60 (16)C18—C16—C15119.55 (19)
C29—O6—C25117.98 (18)C18—C16—H16120.2
C3—C1—C4122.6 (2)C15—C16—H16120.2
C3—C1—H1118.7C15—C17—C19118.83 (18)
C4—C1—H1118.7C15—C17—C13122.76 (17)
C5—C2—C4122.0 (2)C19—C17—C13118.41 (17)
C5—C2—H2119.0C16—C18—C20121.49 (18)
C4—C2—H2119.0C16—C18—O5116.96 (18)
C1—C3—C6118.6 (2)C20—C18—O5121.46 (18)
C1—C3—H3120.7C20—C19—C17121.27 (19)
C6—C3—H3120.7C20—C19—H19119.4
C1—C4—C2121.4 (2)C17—C19—H19119.4
C1—C4—C7119.1 (2)C18—C20—C19118.53 (19)
C2—C4—C7119.5 (2)C18—C20—H20120.7
C2—C5—C8119.3 (2)C19—C20—H20120.7
C2—C5—H5120.3C23—C21—C22120.2 (2)
C8—C5—H5120.3C23—C21—H21119.9
O1—C6—C9115.61 (18)C22—C21—H21119.9
O1—C6—C3122.9 (2)C21—C22—C24119.76 (18)
C9—C6—C3121.4 (2)C21—C22—C14121.26 (18)
C4—C7—C9118.11 (19)C24—C22—C14118.96 (17)
C4—C7—C10117.59 (18)C25—C23—C21118.6 (2)
C9—C7—C10124.28 (17)C25—C23—H23120.7
O2—C8—C10116.90 (17)C21—C23—H23120.7
O2—C8—C5121.51 (19)C26—C24—C22120.43 (19)
C10—C8—C5121.3 (2)C26—C24—H24119.8
C6—C9—C7119.92 (18)C22—C24—H24119.8
C6—C9—C13117.15 (18)C26—C25—C23122.3 (2)
C7—C9—C13122.02 (17)C26—C25—O6117.1 (2)
C8—C10—C7119.91 (17)C23—C25—O6120.5 (2)
C8—C10—C14117.62 (18)C25—C26—C24118.7 (2)
C7—C10—C14121.36 (16)C25—C26—H26120.7
O1—C11—H11A109.5C24—C26—H26120.7
O1—C11—H11B109.5O7—C27—O5123.17 (19)
H11A—C11—H11B109.5O7—C27—C28126.0 (2)
O1—C11—H11C109.5O5—C27—C28110.85 (19)
H11A—C11—H11C109.5C27—C28—H28A109.5
H11B—C11—H11C109.5C27—C28—H28B109.5
O2—C12—H12A109.5H28A—C28—H28B109.5
O2—C12—H12B109.5C27—C28—H28C109.5
H12A—C12—H12B109.5H28A—C28—H28C109.5
O2—C12—H12C109.5H28B—C28—H28C109.5
H12A—C12—H12C109.5O8—C29—O6122.6 (2)
H12B—C12—H12C109.5O8—C29—C30127.1 (2)
O3—C13—C17120.79 (17)O6—C29—C30110.2 (2)
O3—C13—C9118.83 (17)C29—C30—H30A109.5
C17—C13—C9120.35 (16)C29—C30—H30B109.5
O4—C14—C22120.38 (17)H30A—C30—H30B109.5
O4—C14—C10118.46 (17)C29—C30—H30C109.5
C22—C14—C10121.13 (16)H30A—C30—H30C109.5
C16—C15—C17120.28 (19)H30B—C30—H30C109.5
C4—C1—C3—C60.8 (3)C7—C10—C14—O445.0 (3)
C3—C1—C4—C2175.9 (2)C8—C10—C14—C2255.0 (2)
C3—C1—C4—C73.5 (3)C7—C10—C14—C22137.04 (18)
C5—C2—C4—C1177.9 (2)C17—C15—C16—C180.1 (3)
C5—C2—C4—C71.4 (3)C16—C15—C17—C191.7 (3)
C4—C2—C5—C83.2 (3)C16—C15—C17—C13177.39 (19)
C11—O1—C6—C9172.72 (18)O3—C13—C17—C15171.31 (19)
C11—O1—C6—C34.3 (3)C9—C13—C17—C1510.7 (3)
C1—C3—C6—O1172.5 (2)O3—C13—C17—C199.6 (3)
C1—C3—C6—C94.4 (3)C9—C13—C17—C19168.36 (17)
C1—C4—C7—C94.1 (3)C15—C16—C18—C202.2 (3)
C2—C4—C7—C9175.27 (18)C15—C16—C18—O5178.72 (18)
C1—C4—C7—C10177.48 (18)C27—O5—C18—C16123.6 (2)
C2—C4—C7—C103.2 (3)C27—O5—C18—C2059.9 (3)
C12—O2—C8—C10166.42 (19)C15—C17—C19—C201.5 (3)
C12—O2—C8—C519.1 (3)C13—C17—C19—C20177.64 (18)
C2—C5—C8—O2174.0 (2)C16—C18—C20—C192.4 (3)
C2—C5—C8—C100.2 (3)O5—C18—C20—C19178.76 (17)
O1—C6—C9—C7173.40 (17)C17—C19—C20—C180.5 (3)
C3—C6—C9—C73.7 (3)C23—C21—C22—C240.9 (3)
O1—C6—C9—C134.1 (3)C23—C21—C22—C14177.33 (17)
C3—C6—C9—C13173.02 (18)O4—C14—C22—C21151.77 (18)
C4—C7—C9—C60.6 (3)C10—C14—C22—C2130.3 (3)
C10—C7—C9—C6178.93 (18)O4—C14—C22—C2426.5 (3)
C4—C7—C9—C13168.20 (17)C10—C14—C22—C24151.44 (17)
C10—C7—C9—C1310.1 (3)C22—C21—C23—C251.6 (3)
O2—C8—C10—C7178.93 (17)C21—C22—C24—C260.5 (3)
C5—C8—C10—C74.4 (3)C14—C22—C24—C26178.78 (17)
O2—C8—C10—C1410.8 (3)C21—C23—C25—C260.9 (3)
C5—C8—C10—C14163.68 (19)C21—C23—C25—O6177.03 (16)
C4—C7—C10—C86.0 (3)C29—O6—C25—C26119.9 (2)
C9—C7—C10—C8172.35 (18)C29—O6—C25—C2363.8 (3)
C4—C7—C10—C14161.67 (17)C23—C25—C26—C240.5 (3)
C9—C7—C10—C1420.0 (3)O6—C25—C26—C24175.78 (17)
C6—C9—C13—O3113.6 (2)C22—C24—C26—C251.2 (3)
C7—C9—C13—O355.5 (3)C18—O5—C27—O70.9 (3)
C6—C9—C13—C1764.4 (2)C18—O5—C27—C28178.60 (18)
C7—C9—C13—C17126.51 (19)C25—O6—C29—O82.4 (3)
C8—C10—C14—O4122.9 (2)C25—O6—C29—C30175.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11C···O4i0.982.363.320 (3)166
C12—H12A···O3ii0.982.533.380 (3)145
C3—H3···O7iii0.952.473.369 (3)158
C21—H21···O8iv0.952.533.364 (3)146
Symmetry codes: (i) x, y1, z; (ii) x, y, z1/2; (iii) x, y1, z1/2; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC30H24O8
Mr512.49
Crystal system, space groupMonoclinic, C2/c
Temperature (K)193
a, b, c (Å)44.115 (6), 7.9710 (9), 15.035 (4)
β (°) 99.439 (16)
V3)5215.2 (15)
Z8
Radiation typeCu Kα
µ (mm1)0.79
Crystal size (mm)0.60 × 0.20 × 0.05
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.649, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
44265, 4760, 3547
Rint0.024
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.127, 1.11
No. of reflections4760
No. of parameters348
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.23

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku, 2010), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11C···O4i0.982.363.320 (3)166
C12—H12A···O3ii0.982.533.380 (3)145
C3—H3···O7iii0.952.473.369 (3)158
C21—H21···O8iv0.952.533.364 (3)146
Symmetry codes: (i) x, y1, z; (ii) x, y, z1/2; (iii) x, y1, z1/2; (iv) x+1, y, z+1.
 

Acknowledgements

The authors express their gratitude to Master Toyokazu Muto, Department of Organic and Polymer Materials Chemistry, Graduate School, Tokyo University of Agriculture & Technology, and Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for their technical advice. This work was partially supported by the Ogasawara Foundation for the Promotion of Science & Engineering, Tokyo, Japan.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902–o2903.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMuto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2012). Acta Cryst. E68, o23.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.  Web of Science CrossRef CAS Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSasagawa, K., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2119.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSasagawa, K., Muto, T., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o3354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds