organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1,3-Dioxoisoindolin-2-yl)acetic acid–N′-[(E)-2-meth­­oxy­benzyl­­idene]pyridine-4-carbohydrazide (1/1)

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bDepartment of Chemistry, Government College University, Lahore 54000, Pakistan, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dChemistry Department, Tikrit University, Tikrit, Iraq
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 6 July 2012; accepted 10 July 2012; online 14 July 2012)

In the title 1:1 cocrystal, C10H7NO4·C14H13N3O2, mol­ecules are linked by inter­molecular C—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds, forming a three-dimensional network. In addition, ππ stacking inter­actions [with centroid–centroid distances of 3.5723 (19) and 3.6158 (18) Å] are observed.

Related literature

For the use of co-crystals in drug design and delivery, see: Vishweshwar et al. (2009[Vishweshwar, P., McMahon, J. A. & Bis, J. A. (2009). J. Pharm. Sci. 95, 499-516.]); Peterson et al. (2006[Peterson, M. L., Hickey, M. B., Zaworotko, M. J. & Almarsson, O. (2006). J. Pharm. Pharm. Sci. 9, 317-326.]); McNamara et al. (2006[McNamara, D. P., Childs, S. L., Giordano, J., Iarriccio, A., Cassidy, J., Shet, M. S., Mannion, R., O'Donnell, E. & Park, A. (2006). Pharm. Res. 23, 1888-1897.]). For anti-tuberculosis drugs containing the isoniazid core structure, see: Bijev (2006[Bijev, A. (2006). Lett. Drug. Des. Discov. 3, 506-512.]); Imramovský et al. (2007[Imramovský, A., Polanc, S., Vinšová, J., Kočevar, M., Jampílek, J., Rečková, Z. & Kaustová, J. (2007). Bioorg. Med. Chem. 15, 2551-2559.]); Maccari et al. (2005[Maccari, R., Ottana, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett. 15, 2509-2513.]); Schultheiss & Newman (2009[Schultheiss, N. & Newman, A. (2009). Cryst. Growth Des. 9, 2950-2967.]); Shindikar & Viswanathan (2005[Shindikar, A. V. & Viswanathan, C. L. (2005). Bioorg. Med. Chem. Lett. 15, 1803-1806.]); Sinha et al. (2005[Sinha, N., Jain, S., Tilekar, A., Upadhayaya, R. S., Kishore, N., Jana, G. H. & Arora, S. K. (2005). Bioorg. Med. Chem. Lett. 15, 1573-1576.]); Sriram et al. (2006[Sriram, D., Yogeeswari, P. & Madhu, K. (2006). Bioorg. Med. Chem. 14, 876-878.]).

[Scheme 1]

Experimental

Crystal data
  • C10H7NO4·C14H13N3O2

  • Mr = 460.44

  • Monoclinic, P 21 /n

  • a = 7.0747 (10) Å

  • b = 43.511 (6) Å

  • c = 7.5477 (9) Å

  • β = 110.015 (5)°

  • V = 2183.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.980

  • 19892 measured reflections

  • 4304 independent reflections

  • 2345 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.135

  • S = 1.02

  • 4304 reflections

  • 309 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯N4i 0.82 1.86 2.681 (3) 177
N3—H3B⋯O6ii 0.86 2.12 2.958 (3) 164
C4—H4⋯O4iii 0.93 2.44 3.190 (4) 138
C20—H20⋯O3ii 0.93 2.57 3.500 (4) 174
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The use of co-crystals in drug design and delivery and as functional materials with potential applications as pharmaceuticals has recently attracted considerable interest (Vishweshwar et al., 2009; Peterson et al., 2006; McNamara et al., 2006). Moreover, co-crystallization in particular is a reliable method for the modification of drug physical and technical properties such as solubility, dissolution rate, stability, hygroscopisity and compressibility without alternating the pharmacological behaviour of their ingredients (Schultheiss & Newman, 2009). Compounds incorporating the isoniazid (INH) core structure have shown high inhibitory activity in vitro (Bijev, 2006; Imramovský et al., 2007) and in mice towards M. tuberculosis H37Rv, ATCC 27294, M. tuberculosis clinical isolates and isoniazid -resistant M. tuberculosis (Maccari et al., 2005; Shindikar & Viswanathan, 2005; Sinha et al., 2005; Sriram et al., 2006). In this context and on continuation of our interest in the synthesis of potentially biologically active molecules based on the core structure of isoniazid we decided to investigate the reaction of isoniazid-related hydrazones with phthalimido-acetic acid. The reaction showed the unexpected co-crystallized product (I) with its ingridients in a 1:1 ratio. In this study we report a new co-crystallization method for the anti-tubercular drug N'-[(E)-(4-methoxyphenyl)methylidene]pyridine-4-carbohydrazide with (1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)acetic acid and the crystal structure of their cocrystal compound.

Fig. 1 shows the molecules of a 1:1 cocrystal of (1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)acetic acid and N'-[(1E)-(2-methoxyphenyl)methylidene]pyridine-4-carbohydrazide. The bond lengths and bond angles are all within the expected ranges. In the molecule of (1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)acetic acid, the 2,3-dihydro-1H-isoindole ring (N1/C1–C8) is planar with a maimum deviation of 0.014 (3) Å for C2 atom. In the molecule of N'-[(1E)-(2-methoxyphenyl)methylidene]pyridine-4-carbohydrazide, the C11–C16 benzene and N4C19–C23 pyridine rings make a dihedral angle of 4.44 (15)° with each other.

The crystal structure is stabilized by intermolecular C—H···O, N—H···O and O—H···N hydrogen bonds, forming a three dimensional network (Table 1, Fig. 2). Furthermore, π-π stacking interactions [Cg3···Cg4(1 - x, -y, 1 - z) = 3.5723 (19) Å and Cg4···Cg4(1 - x, -y, -z) = 3.6158 (18) Å; where Cg3 and Cg4 are centroids of the N1/C1/C2/C7/C8 and C1–C6 rings, respectively] contribute to stabilize the crystal structure.

Related literature top

For the use of co-crystals in drug design and delivery, see: Vishweshwar et al. (2009); Peterson et al. (2006); McNamara et al. (2006). For anti-tuberculosis drugs containing the isoniazid core structure, see: Bijev (2006); Imramovský et al. (2007); Maccari et al. (2005); Schultheiss & Newman (2009); Shindikar & Viswanathan (2005); Sinha et al. (2005); Sriram et al. (2006).

Experimental top

A mixture of 255 mg (1 mmol) N'-[(E)-(2-methoxyphenyl)methylidene]pyridine-4-carbohydrazide and 205 mg (1 mmol) (1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)acetic acid in 50 ml e thanol was refluxed at 351 K for six hours. The reaction mixture was poured onto crushed ice to afford a solid product which was filtered off, washed with ethanol dried under vacuum and recrystallized from ethanol in good yield (78%). Crystals (m.p. 449 K) suitable for X-ray diffraction were grown by slow evaporation from an ethanol solution at room temperature over 24 h.

Refinement top

H-atoms were placed in calculated positions [O—H = 0.82 Å, N—H = 0.86 Å, C–H = 0.93–0.97 Å] and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2 or 1.5Ueq(C, N, O).

Structure description top

The use of co-crystals in drug design and delivery and as functional materials with potential applications as pharmaceuticals has recently attracted considerable interest (Vishweshwar et al., 2009; Peterson et al., 2006; McNamara et al., 2006). Moreover, co-crystallization in particular is a reliable method for the modification of drug physical and technical properties such as solubility, dissolution rate, stability, hygroscopisity and compressibility without alternating the pharmacological behaviour of their ingredients (Schultheiss & Newman, 2009). Compounds incorporating the isoniazid (INH) core structure have shown high inhibitory activity in vitro (Bijev, 2006; Imramovský et al., 2007) and in mice towards M. tuberculosis H37Rv, ATCC 27294, M. tuberculosis clinical isolates and isoniazid -resistant M. tuberculosis (Maccari et al., 2005; Shindikar & Viswanathan, 2005; Sinha et al., 2005; Sriram et al., 2006). In this context and on continuation of our interest in the synthesis of potentially biologically active molecules based on the core structure of isoniazid we decided to investigate the reaction of isoniazid-related hydrazones with phthalimido-acetic acid. The reaction showed the unexpected co-crystallized product (I) with its ingridients in a 1:1 ratio. In this study we report a new co-crystallization method for the anti-tubercular drug N'-[(E)-(4-methoxyphenyl)methylidene]pyridine-4-carbohydrazide with (1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)acetic acid and the crystal structure of their cocrystal compound.

Fig. 1 shows the molecules of a 1:1 cocrystal of (1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)acetic acid and N'-[(1E)-(2-methoxyphenyl)methylidene]pyridine-4-carbohydrazide. The bond lengths and bond angles are all within the expected ranges. In the molecule of (1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)acetic acid, the 2,3-dihydro-1H-isoindole ring (N1/C1–C8) is planar with a maimum deviation of 0.014 (3) Å for C2 atom. In the molecule of N'-[(1E)-(2-methoxyphenyl)methylidene]pyridine-4-carbohydrazide, the C11–C16 benzene and N4C19–C23 pyridine rings make a dihedral angle of 4.44 (15)° with each other.

The crystal structure is stabilized by intermolecular C—H···O, N—H···O and O—H···N hydrogen bonds, forming a three dimensional network (Table 1, Fig. 2). Furthermore, π-π stacking interactions [Cg3···Cg4(1 - x, -y, 1 - z) = 3.5723 (19) Å and Cg4···Cg4(1 - x, -y, -z) = 3.6158 (18) Å; where Cg3 and Cg4 are centroids of the N1/C1/C2/C7/C8 and C1–C6 rings, respectively] contribute to stabilize the crystal structure.

For the use of co-crystals in drug design and delivery, see: Vishweshwar et al. (2009); Peterson et al. (2006); McNamara et al. (2006). For anti-tuberculosis drugs containing the isoniazid core structure, see: Bijev (2006); Imramovský et al. (2007); Maccari et al. (2005); Schultheiss & Newman (2009); Shindikar & Viswanathan (2005); Sinha et al. (2005); Sriram et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing and the hydrogen bonding viewed along the c axis. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
2-(1,3-Dioxoisoindolin-2-yl)acetic acid–N'-[(E)-2-methoxybenzylidene]pyridine-4-carbohydrazide (1/1) top
Crystal data top
C10H7NO4·C14H13N3O2F(000) = 960
Mr = 460.44Dx = 1.401 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 410 reflections
a = 7.0747 (10) Åθ = 2.8–18.3°
b = 43.511 (6) ŵ = 0.10 mm1
c = 7.5477 (9) ÅT = 296 K
β = 110.015 (5)°Prism, white
V = 2183.1 (5) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4304 independent reflections
Radiation source: fine-focus sealed tube2345 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.970, Tmax = 0.980k = 5353
19892 measured reflectionsl = 96
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0485P)2 + 0.2903P]
where P = (Fo2 + 2Fc2)/3
4304 reflections(Δ/σ)max < 0.001
309 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C10H7NO4·C14H13N3O2V = 2183.1 (5) Å3
Mr = 460.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.0747 (10) ŵ = 0.10 mm1
b = 43.511 (6) ÅT = 296 K
c = 7.5477 (9) Å0.30 × 0.20 × 0.20 mm
β = 110.015 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4304 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2345 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.980Rint = 0.061
19892 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.02Δρmax = 0.14 e Å3
4304 reflectionsΔρmin = 0.18 e Å3
309 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O50.9659 (3)0.13677 (4)0.9365 (3)0.0713 (9)
O60.7705 (3)0.28342 (4)0.8630 (2)0.0491 (7)
N20.9227 (3)0.22710 (5)0.8728 (3)0.0448 (8)
N30.9636 (3)0.24511 (5)1.0332 (3)0.0431 (8)
N40.9687 (3)0.32666 (5)1.5100 (3)0.0475 (9)
C110.9448 (4)0.17874 (6)0.7399 (4)0.0426 (10)
C120.9519 (4)0.14724 (6)0.7626 (4)0.0527 (11)
C130.9412 (5)0.12788 (7)0.6119 (5)0.0733 (14)
C140.9201 (5)0.14100 (10)0.4399 (5)0.0838 (16)
C150.9080 (5)0.17224 (9)0.4141 (5)0.0780 (16)
C160.9193 (4)0.19068 (7)0.5638 (4)0.0574 (11)
C170.9700 (4)0.19899 (6)0.9011 (4)0.0425 (9)
C180.8817 (4)0.27317 (6)1.0142 (4)0.0383 (9)
C190.9250 (3)0.29134 (5)1.1918 (3)0.0345 (8)
C200.9321 (4)0.32285 (6)1.1838 (4)0.0425 (9)
C210.9562 (4)0.33942 (6)1.3457 (4)0.0478 (10)
C220.9617 (4)0.29627 (6)1.5154 (4)0.0474 (10)
C230.9432 (4)0.27773 (6)1.3624 (3)0.0432 (9)
C240.9578 (6)0.10465 (7)0.9630 (5)0.0989 (18)
O10.1383 (4)0.04421 (5)0.1887 (3)0.0801 (9)
O20.8106 (4)0.05255 (5)0.4959 (3)0.0820 (9)
O30.4269 (3)0.13691 (4)0.2806 (3)0.0563 (7)
O40.5019 (4)0.09977 (4)0.1147 (3)0.0768 (9)
N10.4681 (4)0.05545 (5)0.3577 (3)0.0530 (9)
C10.3116 (5)0.03656 (7)0.2495 (4)0.0554 (11)
C20.4075 (5)0.00722 (6)0.2291 (4)0.0524 (10)
C30.3233 (5)0.01899 (7)0.1349 (4)0.0665 (14)
C40.4514 (7)0.04291 (7)0.1340 (4)0.0748 (14)
C50.6539 (7)0.04044 (7)0.2267 (5)0.0771 (14)
C60.7384 (6)0.01406 (7)0.3214 (4)0.0711 (14)
C70.6119 (5)0.00973 (6)0.3213 (4)0.0528 (10)
C80.6528 (5)0.04091 (7)0.4045 (4)0.0562 (11)
C90.4417 (5)0.08717 (6)0.3977 (4)0.0571 (10)
C100.4610 (4)0.10833 (6)0.2468 (4)0.0495 (10)
H3B1.039300.238401.141600.0520*
H130.948200.106700.627100.0880*
H140.913900.128300.338800.1000*
H150.892400.180700.296800.0940*
H160.909500.211900.546700.0690*
H171.020400.191301.023300.0510*
H200.920900.332801.071500.0510*
H210.964300.360701.340000.0570*
H220.969600.286901.628600.0570*
H230.943100.256401.373700.0520*
H24A0.832900.096700.878400.1490*
H24B0.967300.100601.090800.1490*
H24C1.067700.094900.937900.1490*
H30.185200.020700.073700.0800*
H3A0.443400.148100.199600.0840*
H40.399100.060900.069400.0900*
H50.736700.057000.225700.0920*
H60.876400.012500.383200.0850*
H9A0.541700.092700.517800.0680*
H9B0.309900.089800.408500.0680*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.0945 (17)0.0458 (13)0.0698 (15)0.0059 (11)0.0233 (12)0.0036 (11)
O60.0610 (13)0.0456 (11)0.0326 (10)0.0085 (9)0.0054 (9)0.0006 (8)
N20.0474 (14)0.0426 (14)0.0398 (13)0.0021 (11)0.0089 (10)0.0081 (10)
N30.0519 (14)0.0403 (13)0.0301 (12)0.0075 (11)0.0050 (10)0.0024 (10)
N40.0560 (16)0.0456 (15)0.0419 (14)0.0016 (11)0.0179 (11)0.0047 (11)
C110.0352 (16)0.0470 (17)0.0452 (17)0.0030 (12)0.0132 (12)0.0063 (13)
C120.0480 (19)0.0502 (19)0.0577 (19)0.0030 (14)0.0154 (15)0.0086 (15)
C130.064 (2)0.061 (2)0.092 (3)0.0124 (17)0.0228 (19)0.034 (2)
C140.079 (3)0.108 (3)0.068 (2)0.026 (2)0.030 (2)0.044 (2)
C150.079 (3)0.107 (3)0.053 (2)0.030 (2)0.0289 (18)0.019 (2)
C160.059 (2)0.071 (2)0.0436 (18)0.0141 (15)0.0193 (15)0.0080 (15)
C170.0410 (16)0.0442 (17)0.0432 (15)0.0010 (13)0.0157 (12)0.0013 (13)
C180.0391 (16)0.0390 (16)0.0369 (15)0.0013 (12)0.0131 (12)0.0007 (12)
C190.0288 (14)0.0390 (15)0.0340 (14)0.0002 (11)0.0084 (11)0.0010 (11)
C200.0460 (17)0.0449 (17)0.0360 (15)0.0030 (13)0.0131 (12)0.0019 (12)
C210.0545 (19)0.0391 (16)0.0489 (18)0.0064 (13)0.0166 (14)0.0018 (14)
C220.0557 (19)0.0493 (18)0.0380 (15)0.0031 (14)0.0170 (13)0.0041 (13)
C230.0527 (18)0.0374 (15)0.0407 (16)0.0046 (13)0.0177 (13)0.0039 (12)
C240.125 (4)0.047 (2)0.114 (3)0.001 (2)0.027 (3)0.014 (2)
O10.0718 (17)0.0643 (15)0.0895 (16)0.0049 (13)0.0088 (13)0.0052 (12)
O20.0728 (17)0.0660 (15)0.0948 (17)0.0089 (13)0.0128 (14)0.0199 (13)
O30.0881 (15)0.0373 (11)0.0495 (12)0.0022 (10)0.0312 (11)0.0029 (9)
O40.136 (2)0.0485 (13)0.0652 (14)0.0040 (12)0.0592 (15)0.0054 (11)
N10.0680 (18)0.0366 (13)0.0507 (14)0.0013 (12)0.0155 (13)0.0014 (11)
C10.069 (2)0.0473 (18)0.0458 (17)0.0029 (17)0.0143 (16)0.0084 (14)
C20.080 (2)0.0372 (17)0.0402 (16)0.0030 (15)0.0207 (16)0.0047 (13)
C30.094 (3)0.050 (2)0.0545 (19)0.0154 (19)0.0243 (18)0.0047 (15)
C40.127 (3)0.043 (2)0.062 (2)0.014 (2)0.042 (2)0.0098 (16)
C50.119 (3)0.048 (2)0.075 (2)0.013 (2)0.047 (2)0.0021 (18)
C60.087 (3)0.055 (2)0.071 (2)0.0114 (19)0.0266 (19)0.0008 (17)
C70.072 (2)0.0431 (18)0.0423 (16)0.0014 (15)0.0181 (16)0.0025 (13)
C80.071 (2)0.0447 (18)0.0505 (18)0.0034 (17)0.0178 (17)0.0006 (14)
C90.083 (2)0.0366 (16)0.0546 (18)0.0009 (15)0.0275 (16)0.0006 (13)
C100.063 (2)0.0380 (17)0.0460 (17)0.0006 (13)0.0168 (15)0.0031 (14)
Geometric parameters (Å, º) top
O5—C121.361 (4)C22—C231.378 (4)
O5—C241.416 (4)C13—H130.9300
O6—C181.227 (3)C14—H140.9300
O1—C11.200 (5)C15—H150.9300
O2—C81.205 (4)C16—H160.9300
O3—C101.308 (3)C17—H170.9300
O4—C101.189 (4)C20—H200.9300
O3—H3A0.8200C21—H210.9300
N2—N31.387 (3)C22—H220.9300
N2—C171.267 (3)C23—H230.9300
N3—C181.338 (3)C24—H24A0.9600
N4—C211.334 (4)C24—H24B0.9600
N4—C221.324 (3)C24—H24C0.9600
N3—H3B0.8600C1—C21.478 (4)
N1—C91.439 (3)C2—C31.368 (4)
N1—C81.384 (4)C2—C71.378 (5)
N1—C11.396 (4)C3—C41.382 (5)
C11—C171.463 (4)C4—C51.367 (7)
C11—C121.380 (4)C5—C61.376 (5)
C11—C161.380 (4)C6—C71.368 (5)
C12—C131.397 (4)C7—C81.481 (4)
C13—C141.379 (5)C9—C101.507 (4)
C14—C151.372 (6)C3—H30.9300
C15—C161.366 (5)C4—H40.9300
C18—C191.495 (4)C5—H50.9300
C19—C231.383 (3)C6—H60.9300
C19—C201.374 (3)C9—H9A0.9700
C20—C211.378 (4)C9—H9B0.9700
C12—O5—C24118.3 (2)N4—C21—H21118.00
C10—O3—H3A110.00N4—C22—H22118.00
N3—N2—C17115.7 (2)C23—C22—H22118.00
N2—N3—C18118.0 (2)C22—C23—H23121.00
C21—N4—C22116.9 (2)C19—C23—H23121.00
C18—N3—H3B121.00O5—C24—H24C109.00
N2—N3—H3B121.00H24B—C24—H24C110.00
C1—N1—C9123.6 (3)H24A—C24—H24B110.00
C1—N1—C8111.8 (2)H24A—C24—H24C109.00
C8—N1—C9124.3 (3)O5—C24—H24B109.00
C12—C11—C16118.7 (3)O5—C24—H24A110.00
C16—C11—C17120.9 (2)O1—C1—N1124.2 (3)
C12—C11—C17120.4 (3)O1—C1—C2130.2 (3)
C11—C12—C13120.6 (3)N1—C1—C2105.6 (3)
O5—C12—C13123.3 (2)C1—C2—C3129.8 (3)
O5—C12—C11116.1 (2)C1—C2—C7108.6 (3)
C12—C13—C14118.4 (3)C3—C2—C7121.6 (3)
C13—C14—C15121.7 (3)C2—C3—C4117.5 (3)
C14—C15—C16118.8 (3)C3—C4—C5120.9 (3)
C11—C16—C15121.8 (3)C4—C5—C6121.6 (4)
N2—C17—C11119.4 (3)C5—C6—C7117.6 (4)
N3—C18—C19116.0 (2)C2—C7—C8107.8 (3)
O6—C18—C19120.7 (2)C6—C7—C8131.3 (3)
O6—C18—N3123.2 (2)C2—C7—C6120.9 (3)
C18—C19—C23122.3 (2)O2—C8—C7129.5 (3)
C20—C19—C23118.4 (2)N1—C8—C7106.3 (3)
C18—C19—C20119.2 (2)O2—C8—N1124.2 (3)
C19—C20—C21118.6 (2)N1—C9—C10112.1 (2)
N4—C21—C20123.7 (2)O3—C10—C9111.3 (2)
N4—C22—C23123.6 (3)O4—C10—C9123.6 (2)
C19—C23—C22118.8 (2)O3—C10—O4125.1 (3)
C12—C13—H13121.00C2—C3—H3121.00
C14—C13—H13121.00C4—C3—H3121.00
C15—C14—H14119.00C3—C4—H4120.00
C13—C14—H14119.00C5—C4—H4120.00
C16—C15—H15121.00C4—C5—H5119.00
C14—C15—H15121.00C6—C5—H5119.00
C11—C16—H16119.00C5—C6—H6121.00
C15—C16—H16119.00C7—C6—H6121.00
N2—C17—H17120.00N1—C9—H9A109.00
C11—C17—H17120.00N1—C9—H9B109.00
C21—C20—H20121.00C10—C9—H9A109.00
C19—C20—H20121.00C10—C9—H9B109.00
C20—C21—H21118.00H9A—C9—H9B108.00
C24—O5—C12—C11175.1 (3)O6—C18—C19—C23142.3 (3)
C24—O5—C12—C133.7 (5)O6—C18—C19—C2032.7 (4)
C17—N2—N3—C18167.0 (3)N3—C18—C19—C2334.9 (4)
N3—N2—C17—C11175.9 (2)N3—C18—C19—C20150.1 (3)
N2—N3—C18—O61.1 (4)C18—C19—C23—C22173.1 (3)
N2—N3—C18—C19178.2 (2)C23—C19—C20—C210.3 (4)
C22—N4—C21—C201.6 (4)C18—C19—C20—C21174.9 (3)
C21—N4—C22—C230.2 (4)C20—C19—C23—C221.9 (4)
C1—N1—C9—C1087.7 (4)C19—C20—C21—N41.6 (5)
C8—N1—C9—C1085.4 (3)N4—C22—C23—C191.9 (4)
C8—N1—C1—C20.9 (3)O1—C1—C2—C30.1 (6)
C9—N1—C1—O14.7 (5)O1—C1—C2—C7178.7 (3)
C9—N1—C1—C2174.7 (3)N1—C1—C2—C3179.2 (3)
C1—N1—C8—O2179.4 (3)N1—C1—C2—C70.7 (3)
C1—N1—C8—C70.8 (3)C1—C2—C3—C4177.8 (3)
C9—N1—C8—O25.7 (5)C7—C2—C3—C40.6 (5)
C8—N1—C1—O1178.5 (3)C1—C2—C7—C6178.6 (3)
C9—N1—C8—C7174.5 (2)C1—C2—C7—C80.2 (3)
C17—C11—C12—C13175.8 (3)C3—C2—C7—C60.1 (5)
C12—C11—C16—C152.3 (5)C3—C2—C7—C8178.9 (3)
C17—C11—C12—O55.4 (4)C2—C3—C4—C51.1 (5)
C12—C11—C17—N2165.6 (3)C3—C4—C5—C61.1 (6)
C16—C11—C17—N216.3 (4)C4—C5—C6—C70.6 (5)
C17—C11—C16—C15175.9 (3)C5—C6—C7—C20.1 (5)
C16—C11—C12—O5176.4 (3)C5—C6—C7—C8178.6 (3)
C16—C11—C12—C132.4 (5)C2—C7—C8—O2179.9 (3)
C11—C12—C13—C141.1 (5)C2—C7—C8—N10.3 (3)
O5—C12—C13—C14177.7 (3)C6—C7—C8—O21.3 (6)
C12—C13—C14—C150.5 (6)C6—C7—C8—N1179.0 (3)
C13—C14—C15—C160.7 (6)N1—C9—C10—O3176.9 (3)
C14—C15—C16—C110.8 (5)N1—C9—C10—O43.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N4i0.821.862.681 (3)177
N3—H3B···O6ii0.862.122.958 (3)164
C4—H4···O4iii0.932.443.190 (4)138
C20—H20···O3ii0.932.573.500 (4)174
Symmetry codes: (i) x1/2, y+1/2, z3/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC10H7NO4·C14H13N3O2
Mr460.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)7.0747 (10), 43.511 (6), 7.5477 (9)
β (°) 110.015 (5)
V3)2183.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.970, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
19892, 4304, 2345
Rint0.061
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.135, 1.02
No. of reflections4304
No. of parameters309
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.18

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N4i0.821.862.681 (3)177
N3—H3B···O6ii0.862.122.958 (3)164
C4—H4···O4iii0.932.443.190 (4)138
C20—H20···O3ii0.932.573.500 (4)174
Symmetry codes: (i) x1/2, y+1/2, z3/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y, z.
 

Acknowledgements

The authors thank the Iraqi Higher Education Authority for their financial support. Manchester Metropolitan University is gratefully acknowledged for facilitating this study.

References

First citationBijev, A. (2006). Lett. Drug. Des. Discov. 3, 506–512.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationImramovský, A., Polanc, S., Vinšová, J., Kočevar, M., Jampílek, J., Rečková, Z. & Kaustová, J. (2007). Bioorg. Med. Chem. 15, 2551–2559.  Web of Science PubMed Google Scholar
First citationMaccari, R., Ottana, R. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett. 15, 2509–2513.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMcNamara, D. P., Childs, S. L., Giordano, J., Iarriccio, A., Cassidy, J., Shet, M. S., Mannion, R., O'Donnell, E. & Park, A. (2006). Pharm. Res. 23, 1888–1897.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPeterson, M. L., Hickey, M. B., Zaworotko, M. J. & Almarsson, O. (2006). J. Pharm. Pharm. Sci. 9, 317–326.  Web of Science PubMed Google Scholar
First citationSchultheiss, N. & Newman, A. (2009). Cryst. Growth Des. 9, 2950–2967.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShindikar, A. V. & Viswanathan, C. L. (2005). Bioorg. Med. Chem. Lett. 15, 1803–1806.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSinha, N., Jain, S., Tilekar, A., Upadhayaya, R. S., Kishore, N., Jana, G. H. & Arora, S. K. (2005). Bioorg. Med. Chem. Lett. 15, 1573–1576.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSriram, D., Yogeeswari, P. & Madhu, K. (2006). Bioorg. Med. Chem. 14, 876–878.  Web of Science CrossRef Google Scholar
First citationVishweshwar, P., McMahon, J. A. & Bis, J. A. (2009). J. Pharm. Sci. 95, 499–516.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds