organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Acetyl-1-(3-methyl­phen­yl)thio­urea

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 17 July 2012; accepted 19 July 2012; online 28 July 2012)

In the crystal structure of the title compound, C10H12N2OS, the conformation of the two N—H bonds are anti to each other. The amide C=O and the C=S are are also anti to each other. The N—H bond adjacent to the benzene ring is syn to the m-methyl groups. The dihedral angle between the benzene ring and the side chain [mean plane of atoms C—C(O)N—C—N; maximum deviation 0.029 (2) Å] is 14.30 (7)°. There is an intramolecular N—H⋯O hydrogen bond generating an S(6) ring motif. In the crystal, the molecules are linked via N—H⋯) hydrogen bonds, forming chains propagating along [001]. The S atom is disordered and was refined using a split model [occupancy ratio 0.56 (4):0.44 (4)].

Related literature

For studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Alkan et al. (2011[Alkan, C., Tek, Y. & Kahraman, D. (2011). Turk. J. Chem. 35, 769-777.]); Bhat & Gowda (2000[Bhat, D. K. & Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279-284.]); Bowes et al. (2003[Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1-o3.]); Gowda et al. (2000[Gowda, B. T., Svoboda, I. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 779-790.]); Saeed et al. (2010[Saeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808-o2809.]); Shahwar et al. (2012[Shahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. & Raza, M. A. (2012). Acta Cryst. E68, o1160.]), of N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2337.]) and of N-chloro­aryl­sulfonamides, see: Gowda & Ramachandra (1989[Gowda, B. T. & Ramachandra, P. (1989). J. Chem. Soc. Perkin Trans. 2, pp. 1067-1071.]); Jyothi & Gowda (2004[Jyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64-68.]); Shetty & Gowda (2004[Shetty, M. & Gowda, B. T. (2004). Z. Naturforsch. Teil B, 59, 63-72.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12N2OS

  • Mr = 208.29

  • Monoclinic, P 21 /c

  • a = 7.6841 (9) Å

  • b = 14.943 (1) Å

  • c = 9.5358 (9) Å

  • β = 107.49 (1)°

  • V = 1044.32 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 295 K

  • 0.48 × 0.44 × 0.24 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire CCD. diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.878, Tmax = 0.936

  • 4011 measured reflections

  • 2137 independent reflections

  • 1789 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.100

  • S = 1.06

  • 2137 reflections

  • 145 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.87 (1) 1.90 (2) 2.6536 (16) 144 (2)
N2—H2N⋯O1i 0.85 (1) 2.12 (1) 2.9564 (16) 166 (2)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thiourea and its derivatives are known to exhibit a wide variety of biological activities. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Alkan et al., 2011; Bhat & Gowda, 2000; Bowes et al., 2003; Gowda et al., 2000; Saeed et al., 2010; Shahwar et al., 2012); N-(aryl)-methanesulfonamides (Gowda et al., 2007) and N-chloroarylamides (Gowda & Ramachandra, 1989; Jyothi & Gowda, 2004; Shetty & Gowda, 2004), in the present work, the crystal structure of 3-acetyl-1-(3-methylphenyl)thiourea, has been determined (Fig. 1).

The conformation of the two N–H bonds are anti to each other. The adjacent N–H bond is syn to the m-methyl group in the benzene ring, compared to the anti conformation observed between the N–H bond and the o-methyl group in the benzene ring in 3-acetyl-1-(2-methylphenyl)thiourea, I, (Shahwar et al., 2012). Furthermore, the conformation of the amide CO and the CS are anti to each other, similar to that observed in I.

The side chain is oriented itself with respect to the phenyl ring with the torsion angles of C2—C1–N1—C7 = -168.76 (14)° and C6—C1—N1—C7 = 14.71 (24)°. The dihedral angle between the phenyl ring and the side chain (N1/C7/N2/C8/O1/C9) is 14.30 (7)°.

The amide oxygen exhibits a bifurcated hydrogen bonding by showing the simultaneous intra- and intermolecular hydrogen bonding generating S(6) and C(4) motifs. In the crystal of the title compound, the molecules are linked via N—H···S hydrogen bonds with an R22(12) motif and N—H···O hydrogen bonds with a C(4) motif into a layered structure (Table 1, Fig. 2).

Related literature top

For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Alkan et al. (2011); Bhat & Gowda (2000); Bowes et al. (2003); Gowda et al. (2000); Saeed et al. (2010); Shahwar et al. (2012), of N-(aryl)-methanesulfonamides, see: Gowda et al. (2007) and of N-chloroarylsulfonamides, see: Gowda & Ramachandra (1989); Jyothi & Gowda (2004); Shetty & Gowda (2004).

Experimental top

3-Acetyl-1-(3-methylphenyl)thiourea was synthesized by adding a solution of acetyl chloride (0.10 mol) in acetone (30 ml) dropwise to a suspension of ammonium thiocyanate (0.10 mol) in acetone (30 ml). The reaction mixture was refluxed for 30 min. After cooling to room temperature, a solution of 3-methylaniline (0.10 mol) in acetone (10 ml) was added and refluxed for 3 h. The reaction mixture was poured into acidified cold water. The precipitated title compound was recrystallized to constant melting point from acetonitrile. The purity of the compound was checked and characterized by its infrared spectrum. The characteristic absorptions observed are 3163.7 cm-1, 1690.0 cm-1, 1269.5 cm-1 and 693.3 cm-1 for the stretching bands of N-H, CO, C-N and CS, respectively.

Prism like yellow single crystals used in X-ray diffraction studies were grown in acetonitrile solution by slow evaporation of the solvent at room temperature.

Refinement top

H atoms bonded to C were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93Å, methyl C—H = 0.96Å. The amino H atoms were freely refined with the N–H distances restrained to 0.86 (2)Å. All H atoms were refined with isotropic displacement parameters set at 1.2 Ueq(C-aromatic, N) and 1.5 Ueq (C-methyl) of the parent atom.

The S atom is disordered and was refined using a split model. The corresponding s.o.f.'s were refined so that their sum was unity: 0.56 (4) and 0.44.

Structure description top

Thiourea and its derivatives are known to exhibit a wide variety of biological activities. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Alkan et al., 2011; Bhat & Gowda, 2000; Bowes et al., 2003; Gowda et al., 2000; Saeed et al., 2010; Shahwar et al., 2012); N-(aryl)-methanesulfonamides (Gowda et al., 2007) and N-chloroarylamides (Gowda & Ramachandra, 1989; Jyothi & Gowda, 2004; Shetty & Gowda, 2004), in the present work, the crystal structure of 3-acetyl-1-(3-methylphenyl)thiourea, has been determined (Fig. 1).

The conformation of the two N–H bonds are anti to each other. The adjacent N–H bond is syn to the m-methyl group in the benzene ring, compared to the anti conformation observed between the N–H bond and the o-methyl group in the benzene ring in 3-acetyl-1-(2-methylphenyl)thiourea, I, (Shahwar et al., 2012). Furthermore, the conformation of the amide CO and the CS are anti to each other, similar to that observed in I.

The side chain is oriented itself with respect to the phenyl ring with the torsion angles of C2—C1–N1—C7 = -168.76 (14)° and C6—C1—N1—C7 = 14.71 (24)°. The dihedral angle between the phenyl ring and the side chain (N1/C7/N2/C8/O1/C9) is 14.30 (7)°.

The amide oxygen exhibits a bifurcated hydrogen bonding by showing the simultaneous intra- and intermolecular hydrogen bonding generating S(6) and C(4) motifs. In the crystal of the title compound, the molecules are linked via N—H···S hydrogen bonds with an R22(12) motif and N—H···O hydrogen bonds with a C(4) motif into a layered structure (Table 1, Fig. 2).

For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Alkan et al. (2011); Bhat & Gowda (2000); Bowes et al. (2003); Gowda et al. (2000); Saeed et al. (2010); Shahwar et al. (2012), of N-(aryl)-methanesulfonamides, see: Gowda et al. (2007) and of N-chloroarylsulfonamides, see: Gowda & Ramachandra (1989); Jyothi & Gowda (2004); Shetty & Gowda (2004).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. Only major moiety (S1A) are presented.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
3-Acetyl-1-(3-methylphenyl)thiourea top
Crystal data top
C10H12N2OSF(000) = 440
Mr = 208.29Dx = 1.325 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1948 reflections
a = 7.6841 (9) Åθ = 2.6–27.9°
b = 14.943 (1) ŵ = 0.28 mm1
c = 9.5358 (9) ÅT = 295 K
β = 107.49 (1)°Prism, yellow
V = 1044.32 (18) Å30.48 × 0.44 × 0.24 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire CCD.
diffractometer
2137 independent reflections
Radiation source: fine-focus sealed tube1789 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
Rotation method data acquisition using ω and φ scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 98
Tmin = 0.878, Tmax = 0.936k = 1318
4011 measured reflectionsl = 911
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.2352P]
where P = (Fo2 + 2Fc2)/3
2137 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.17 e Å3
2 restraintsΔρmin = 0.22 e Å3
Crystal data top
C10H12N2OSV = 1044.32 (18) Å3
Mr = 208.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6841 (9) ŵ = 0.28 mm1
b = 14.943 (1) ÅT = 295 K
c = 9.5358 (9) Å0.48 × 0.44 × 0.24 mm
β = 107.49 (1)°
Data collection top
Oxford Diffraction Xcalibur Sapphire CCD.
diffractometer
2137 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1789 reflections with I > 2σ(I)
Tmin = 0.878, Tmax = 0.936Rint = 0.011
4011 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0352 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.17 e Å3
2137 reflectionsΔρmin = 0.22 e Å3
145 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.20722 (18)1.01499 (9)0.39974 (15)0.0337 (3)
C20.23877 (19)1.03395 (10)0.54780 (17)0.0364 (3)
H20.31130.99530.61780.044*
C30.1649 (2)1.10903 (10)0.59419 (18)0.0413 (4)
C40.0590 (2)1.16622 (11)0.4881 (2)0.0494 (4)
H40.00851.21710.51630.059*
C50.0282 (2)1.14793 (11)0.3408 (2)0.0506 (4)
H50.04291.18710.27100.061*
C60.1008 (2)1.07243 (10)0.29439 (18)0.0428 (4)
H60.07851.06070.19480.051*
C70.30263 (18)0.89953 (9)0.24567 (15)0.0334 (3)
C80.4388 (2)0.76042 (10)0.38195 (15)0.0361 (3)
C90.5236 (3)0.67388 (11)0.35913 (18)0.0520 (4)
H9A0.64840.67240.41980.078*
H9B0.51900.66850.25770.078*
H9C0.45800.62510.38510.078*
C100.1971 (2)1.12586 (13)0.7555 (2)0.0539 (4)
H10A0.29481.08850.81170.081*
H10B0.08801.11230.78070.081*
H10C0.22891.18750.77720.081*
N10.28202 (17)0.93305 (8)0.36952 (13)0.0354 (3)
H1N0.323 (2)0.8973 (10)0.4440 (16)0.042*
N20.37949 (17)0.81347 (8)0.26055 (13)0.0344 (3)
H2N0.391 (2)0.7951 (11)0.1792 (16)0.041*
O10.42351 (17)0.78202 (7)0.50180 (11)0.0483 (3)
S1A0.2654 (12)0.9501 (3)0.0852 (7)0.0498 (10)0.56 (4)
S1B0.234 (2)0.9416 (8)0.0776 (9)0.0656 (16)0.44 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0337 (7)0.0314 (7)0.0377 (8)0.0023 (6)0.0131 (6)0.0005 (6)
C20.0353 (7)0.0366 (8)0.0373 (7)0.0019 (6)0.0106 (6)0.0014 (6)
C30.0392 (8)0.0389 (8)0.0495 (9)0.0076 (6)0.0191 (7)0.0089 (7)
C40.0506 (9)0.0353 (8)0.0676 (11)0.0024 (7)0.0256 (8)0.0049 (8)
C50.0517 (9)0.0398 (9)0.0612 (11)0.0092 (7)0.0182 (8)0.0120 (8)
C60.0461 (8)0.0421 (8)0.0402 (8)0.0039 (7)0.0129 (7)0.0052 (7)
C70.0344 (7)0.0363 (7)0.0299 (7)0.0020 (6)0.0103 (5)0.0014 (6)
C80.0471 (8)0.0337 (7)0.0297 (7)0.0007 (6)0.0150 (6)0.0016 (6)
C90.0795 (12)0.0421 (9)0.0397 (9)0.0143 (8)0.0256 (8)0.0051 (7)
C100.0549 (10)0.0569 (11)0.0547 (10)0.0057 (8)0.0238 (8)0.0196 (8)
N10.0451 (7)0.0337 (6)0.0273 (6)0.0047 (5)0.0108 (5)0.0027 (5)
N20.0456 (7)0.0344 (6)0.0254 (6)0.0008 (5)0.0140 (5)0.0008 (5)
O10.0791 (8)0.0417 (6)0.0292 (6)0.0119 (5)0.0242 (5)0.0047 (4)
S1A0.078 (2)0.043 (2)0.0358 (14)0.0165 (11)0.0274 (16)0.0155 (6)
S1B0.076 (3)0.091 (4)0.0285 (11)0.031 (2)0.0134 (15)0.0141 (17)
Geometric parameters (Å, º) top
C1—C61.386 (2)C7—S1A1.653 (5)
C1—C21.388 (2)C7—S1B1.654 (7)
C1—N11.4186 (18)C8—O11.2268 (17)
C2—C31.388 (2)C8—N21.3636 (18)
C2—H20.9300C8—C91.493 (2)
C3—C41.386 (2)C9—H9A0.9600
C3—C101.504 (2)C9—H9B0.9600
C4—C51.379 (3)C9—H9C0.9600
C4—H40.9300C10—H10A0.9600
C5—C61.389 (2)C10—H10B0.9600
C5—H50.9300C10—H10C0.9600
C6—H60.9300N1—H1N0.868 (13)
C7—N11.3354 (18)N2—H2N0.853 (14)
C7—N21.4044 (19)
C6—C1—C2119.71 (14)S1A—C7—S1B9.2 (7)
C6—C1—N1125.04 (13)O1—C8—N2122.46 (13)
C2—C1—N1115.17 (13)O1—C8—C9122.14 (13)
C3—C2—C1121.73 (14)N2—C8—C9115.40 (13)
C3—C2—H2119.1C8—C9—H9A109.5
C1—C2—H2119.1C8—C9—H9B109.5
C4—C3—C2118.18 (15)H9A—C9—H9B109.5
C4—C3—C10121.56 (15)C8—C9—H9C109.5
C2—C3—C10120.25 (15)H9A—C9—H9C109.5
C5—C4—C3120.29 (15)H9B—C9—H9C109.5
C5—C4—H4119.9C3—C10—H10A109.5
C3—C4—H4119.9C3—C10—H10B109.5
C4—C5—C6121.54 (16)H10A—C10—H10B109.5
C4—C5—H5119.2C3—C10—H10C109.5
C6—C5—H5119.2H10A—C10—H10C109.5
C1—C6—C5118.55 (15)H10B—C10—H10C109.5
C1—C6—H6120.7C7—N1—C1131.79 (12)
C5—C6—H6120.7C7—N1—H1N112.6 (11)
N1—C7—N2114.34 (12)C1—N1—H1N115.7 (11)
N1—C7—S1A127.9 (2)C8—N2—C7129.89 (12)
N2—C7—S1A117.58 (19)C8—N2—H2N119.0 (11)
N1—C7—S1B128.8 (3)C7—N2—H2N111.0 (11)
N2—C7—S1B116.6 (3)
C6—C1—C2—C30.6 (2)N2—C7—N1—C1178.23 (13)
N1—C1—C2—C3176.12 (12)S1A—C7—N1—C17.4 (5)
C1—C2—C3—C40.8 (2)S1B—C7—N1—C14.2 (10)
C1—C2—C3—C10178.03 (14)C6—C1—N1—C714.7 (2)
C2—C3—C4—C50.3 (2)C2—C1—N1—C7168.76 (14)
C10—C3—C4—C5178.41 (16)O1—C8—N2—C73.5 (2)
C3—C4—C5—C60.2 (3)C9—C8—N2—C7176.63 (14)
C2—C1—C6—C50.1 (2)N1—C7—N2—C81.4 (2)
N1—C1—C6—C5176.32 (14)S1A—C7—N2—C8173.5 (4)
C4—C5—C6—C10.3 (2)S1B—C7—N2—C8176.3 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.87 (1)1.90 (2)2.6536 (16)144 (2)
N2—H2N···O1i0.85 (1)2.12 (1)2.9564 (16)166 (2)
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC10H12N2OS
Mr208.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)7.6841 (9), 14.943 (1), 9.5358 (9)
β (°) 107.49 (1)
V3)1044.32 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.48 × 0.44 × 0.24
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire CCD.
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.878, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
4011, 2137, 1789
Rint0.011
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.100, 1.06
No. of reflections2137
No. of parameters145
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.22

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.868 (13)1.901 (15)2.6536 (16)144.0 (15)
N2—H2N···O1i0.853 (14)2.122 (14)2.9564 (16)165.8 (16)
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under the UGC–BSR one-time grant to faculty.

References

First citationAlkan, C., Tek, Y. & Kahraman, D. (2011). Turk. J. Chem. 35, 769–777.  CAS Google Scholar
First citationBhat, D. K. & Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279–284.  CAS Google Scholar
First citationBowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2337.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T. & Ramachandra, P. (1989). J. Chem. Soc. Perkin Trans. 2, pp. 1067–1071.  CrossRef Google Scholar
First citationGowda, B. T., Svoboda, I. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 779–790.  CAS Google Scholar
First citationJyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64–68.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSaeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808–o2809.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Chohan, M. M., Ahmad, N. & Raza, M. A. (2012). Acta Cryst. E68, o1160.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetty, M. & Gowda, B. T. (2004). Z. Naturforsch. Teil B, 59, 63–72.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds