organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2-Methyl­amino-1,3-thia­zol-4-yl)-2H-chromen-2-one

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 12 June 2012; accepted 2 July 2012; online 10 July 2012)

In the title compound, C13H10N2O2S, the essentially planar 2H-chromene ring system [maximum deviation = 0.0297 (13) Å] and the thia­zole ring [maximum deviation = 0.0062 (11) Å] form a dihedral angle of 3.47 (5)°. In the crystal, N—H⋯N and C—H⋯O hydrogen bonds link the mol­ecules into two-dimensional networks parallel to the bc plane. C—H⋯π and ππ [centroid–centroid separation = 3.6796 (8) Å] inter­actions further stabilize the crystal structure.

Related literature

For the biological activities of coumarin derivatives, see: Soine (1964[Soine, T. O. (1964). J. Pharm. Sci. 53, 231-264.]); Wattenberg et al. (1979[Wattenberg, L. W., Lam, L. K. T. & Fladmoe, A. V. (1979). Cancer Res. 39, 1651-1654.]); Jung et al. (1999[Jung, J., Kin, J. & Park, O. (1999). Synth. Commun. 29, 3587-3595.]); Rao et al. (1981[Rao, A. K., Raju, M. S. & Raju, K. M. J. (1981). Indian Chem. Soc. 58, 1021-1023.]). For a related structure, see: Arshad et al. (2010[Arshad, A., Osman, H., Lam, C. K., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o1632-o1633.], 2011[Arshad, A., Osman, H., Lam, C. K., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o1825.]); Asad et al. (2011[Asad, M., Oo, C.-W., Osman, H., Rosli, M. M. & Fun, H.-K. (2011). Acta Cryst. E67, o437-o438.]); Yusufzai, Osman, Sulaiman et al. (2012[Yusufzai, S. K., Osman, H., Sulaiman, O., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o473-o474.]); Yusufzai, Osman, Abdul Rahim et al. (2012[Yusufzai, S. K., Osman, H., Abdul Rahim, A. S., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o1056-o1057.]). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10N2O2S

  • Mr = 258.29

  • Monoclinic, P 21 /c

  • a = 14.5460 (3) Å

  • b = 4.9289 (1) Å

  • c = 18.3516 (3) Å

  • β = 120.307 (1)°

  • V = 1135.92 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 100 K

  • 0.47 × 0.40 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.881, Tmax = 0.946

  • 13265 measured reflections

  • 3303 independent reflections

  • 2851 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.095

  • S = 1.05

  • 3303 reflections

  • 168 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the S1/N1/C10–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯N1i 0.87 (2) 2.24 (2) 3.0331 (15) 152 (2)
C4—H4A⋯O2ii 0.95 2.44 3.3247 (16) 154
C13—H13CCg1iii 0.98 2.70 3.5026 (16) 139
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{5\over 2}}, z+{\script{1\over 2}}]; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Compounds containing the coumarin moiety exhibit useful and diverse biological activity and, in recent years, there has been a growing interest in their synthesis (Soine, 1964; Wattenberg et al., 1979). Some of these coumarin derivatives have been found to be useful in photochemotherapy, antitumour, anti-HIV therapy (Jung et al., 1999), as antibacterial (Rao et al., 1981) and as anticoagulant (Jung et al., 1999). In continuation of our previous work (Yusufzai, Osman, Sulaiman et al., 2012; Yusufzai, Osman, Abdul Rahim et al., 2012) we have synthesized 3-(2-methylamino-1,3-thiazol-4-yl)-3,4-dihydro-2H-chromen-2-one, a new compound which corresponds to the molecular formula C13H10N2O2S. Its melting point was found to be 192–194 °C. The structure of the newly synthesized compound was confirmed by its spectral data. Synthesis of other derivatives of coumarinthiourea and their biological activities are under progress.

The molecular structure of the title compound is shown in Fig. 1. The 2H-chromene ring (O1/C1–C9) and the thiazole ring (S1/N1/C10–C12) are essentially planar with maximum deviations of 0.0297 (13) Å at atom C7 and 0.0062 (11) Å at atom N1, respectively. The dihedral angle between the 2H-chromene and thiazole rings is 3.47 (5)°. Bond lengths and angles are within normal ranges and are comparable to those found in related structures (Arshad et al., 2010; Arshad et al., 2011; Asad et al., 2011).

In the crystal packing (Fig. 2), the intermolecular N2—H1N2···N1 and C4—H4A···O2 (Table 1) hydrogen bonds link the molecules into a two dimensional network parallel to bc plane. C13—H13C···Cg1 (Table 1) interactions and ππ interactions [Cg1···Cg2iii = 3.6796 (8) Å; symmetry code: (iii) x, -1+y, z] further stabilize the crystal structure (Cg1 and Cg2 are the centroids of the S1/N1/C10–C12 and O1/C1/C6–C9 rings, respectively).

Related literature top

For the biological activities of coumarin derivatives, see: Soine (1964); Wattenberg et al. (1979); Jung et al. (1999); Rao et al. (1981). For a related structure, see: Arshad et al. (2010, 2011); Asad et al. (2011); Yusufzai, Osman, Sulaiman et al. (2012); Yusufzai, Osman, Abdul Rahim et al. (2012). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986).

Experimental top

To a solution of 3-(2-bromoacetyl)-2H-chromen-2-one (0.001 mol) in absolute ethanol (20 mL), N-methylthiourea (0.001 mol) was added with stirring. The reaction mixture was refluxed for 3–4 hours. The precipitate formed on slow evaporation of solvent was collected by filtration, washed with cold ethanol and dried under vacuum. Recrystallization by ethanol gave the title compound as orange crystals.

Refinement top

The N-bound H atom was located in a difference Fourier map and refined freely [N–H = 0.87 (2) Å]. The remaining H atoms were positioned geometrically [C–H = 0.95 or 0.98 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl group.

Structure description top

Compounds containing the coumarin moiety exhibit useful and diverse biological activity and, in recent years, there has been a growing interest in their synthesis (Soine, 1964; Wattenberg et al., 1979). Some of these coumarin derivatives have been found to be useful in photochemotherapy, antitumour, anti-HIV therapy (Jung et al., 1999), as antibacterial (Rao et al., 1981) and as anticoagulant (Jung et al., 1999). In continuation of our previous work (Yusufzai, Osman, Sulaiman et al., 2012; Yusufzai, Osman, Abdul Rahim et al., 2012) we have synthesized 3-(2-methylamino-1,3-thiazol-4-yl)-3,4-dihydro-2H-chromen-2-one, a new compound which corresponds to the molecular formula C13H10N2O2S. Its melting point was found to be 192–194 °C. The structure of the newly synthesized compound was confirmed by its spectral data. Synthesis of other derivatives of coumarinthiourea and their biological activities are under progress.

The molecular structure of the title compound is shown in Fig. 1. The 2H-chromene ring (O1/C1–C9) and the thiazole ring (S1/N1/C10–C12) are essentially planar with maximum deviations of 0.0297 (13) Å at atom C7 and 0.0062 (11) Å at atom N1, respectively. The dihedral angle between the 2H-chromene and thiazole rings is 3.47 (5)°. Bond lengths and angles are within normal ranges and are comparable to those found in related structures (Arshad et al., 2010; Arshad et al., 2011; Asad et al., 2011).

In the crystal packing (Fig. 2), the intermolecular N2—H1N2···N1 and C4—H4A···O2 (Table 1) hydrogen bonds link the molecules into a two dimensional network parallel to bc plane. C13—H13C···Cg1 (Table 1) interactions and ππ interactions [Cg1···Cg2iii = 3.6796 (8) Å; symmetry code: (iii) x, -1+y, z] further stabilize the crystal structure (Cg1 and Cg2 are the centroids of the S1/N1/C10–C12 and O1/C1/C6–C9 rings, respectively).

For the biological activities of coumarin derivatives, see: Soine (1964); Wattenberg et al. (1979); Jung et al. (1999); Rao et al. (1981). For a related structure, see: Arshad et al. (2010, 2011); Asad et al. (2011); Yusufzai, Osman, Sulaiman et al. (2012); Yusufzai, Osman, Abdul Rahim et al. (2012). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the b axis. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
3-(2-Methylamino-1,3-thiazol-4-yl)-2H-chromen-2-one top
Crystal data top
C13H10N2O2SF(000) = 536
Mr = 258.29Dx = 1.510 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7338 reflections
a = 14.5460 (3) Åθ = 2.6–32.5°
b = 4.9289 (1) ŵ = 0.28 mm1
c = 18.3516 (3) ÅT = 100 K
β = 120.307 (1)°Block, orange
V = 1135.92 (4) Å30.47 × 0.40 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3303 independent reflections
Radiation source: fine-focus sealed tube2851 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 30.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2016
Tmin = 0.881, Tmax = 0.946k = 66
13265 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0472P)2 + 0.5573P]
where P = (Fo2 + 2Fc2)/3
3303 reflections(Δ/σ)max = 0.001
168 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C13H10N2O2SV = 1135.92 (4) Å3
Mr = 258.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.5460 (3) ŵ = 0.28 mm1
b = 4.9289 (1) ÅT = 100 K
c = 18.3516 (3) Å0.47 × 0.40 × 0.20 mm
β = 120.307 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3303 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2851 reflections with I > 2σ(I)
Tmin = 0.881, Tmax = 0.946Rint = 0.025
13265 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.45 e Å3
3303 reflectionsΔρmin = 0.21 e Å3
168 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.86394 (2)0.35198 (6)0.510226 (18)0.01927 (9)
O10.59607 (7)1.21689 (19)0.55233 (5)0.02025 (19)
O20.62018 (7)1.0170 (2)0.45629 (6)0.0226 (2)
N10.87142 (8)0.5208 (2)0.64688 (6)0.0167 (2)
N20.99500 (9)0.1750 (2)0.66837 (7)0.0209 (2)
C10.61748 (9)1.2526 (3)0.63378 (7)0.0174 (2)
C20.56079 (10)1.4526 (3)0.64782 (8)0.0215 (2)
H2A0.50901.55940.60260.026*
C30.58198 (10)1.4917 (3)0.72954 (9)0.0223 (3)
H3A0.54471.62880.74050.027*
C40.65730 (10)1.3329 (3)0.79635 (8)0.0220 (3)
H4A0.67071.36180.85200.026*
C50.71206 (10)1.1340 (3)0.78079 (8)0.0207 (2)
H5A0.76261.02450.82590.025*
C60.69360 (9)1.0923 (3)0.69871 (7)0.0170 (2)
C70.74892 (9)0.8943 (2)0.67830 (7)0.0172 (2)
H7A0.80000.78120.72190.021*
C80.73070 (9)0.8631 (2)0.59846 (7)0.0157 (2)
C90.64806 (9)1.0288 (3)0.53044 (7)0.0175 (2)
C100.79048 (9)0.6641 (2)0.57920 (7)0.0159 (2)
C110.77572 (10)0.6015 (3)0.50172 (7)0.0188 (2)
H11A0.72420.68340.45030.023*
C120.91583 (9)0.3476 (2)0.61957 (7)0.0167 (2)
C131.04154 (10)0.0065 (3)0.63373 (8)0.0228 (3)
H13A1.09340.12500.67850.034*
H13B1.07730.09990.61010.034*
H13C0.98540.11710.58910.034*
H1N21.0201 (16)0.177 (4)0.7226 (13)0.040 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01899 (15)0.02255 (16)0.01429 (14)0.00258 (11)0.00693 (11)0.00217 (10)
O10.0194 (4)0.0245 (4)0.0164 (4)0.0064 (3)0.0087 (3)0.0043 (3)
O20.0213 (4)0.0301 (5)0.0154 (4)0.0051 (4)0.0085 (3)0.0045 (4)
N10.0147 (4)0.0188 (5)0.0143 (4)0.0008 (4)0.0056 (4)0.0000 (4)
N20.0185 (5)0.0242 (5)0.0156 (5)0.0060 (4)0.0054 (4)0.0004 (4)
C10.0162 (5)0.0193 (5)0.0171 (5)0.0007 (4)0.0087 (4)0.0005 (4)
C20.0183 (5)0.0208 (6)0.0254 (6)0.0035 (5)0.0110 (5)0.0022 (5)
C30.0199 (6)0.0215 (6)0.0296 (6)0.0006 (5)0.0155 (5)0.0035 (5)
C40.0196 (6)0.0268 (6)0.0212 (6)0.0020 (5)0.0114 (5)0.0054 (5)
C50.0168 (5)0.0266 (6)0.0172 (5)0.0008 (5)0.0075 (4)0.0012 (5)
C60.0136 (5)0.0193 (5)0.0171 (5)0.0009 (4)0.0070 (4)0.0010 (4)
C70.0148 (5)0.0197 (5)0.0149 (5)0.0019 (4)0.0058 (4)0.0007 (4)
C80.0137 (5)0.0168 (5)0.0154 (5)0.0001 (4)0.0064 (4)0.0011 (4)
C90.0151 (5)0.0196 (5)0.0177 (5)0.0008 (4)0.0082 (4)0.0017 (4)
C100.0138 (5)0.0173 (5)0.0149 (5)0.0002 (4)0.0061 (4)0.0001 (4)
C110.0181 (5)0.0208 (6)0.0154 (5)0.0029 (4)0.0068 (4)0.0000 (4)
C120.0145 (5)0.0183 (5)0.0151 (5)0.0017 (4)0.0058 (4)0.0014 (4)
C130.0191 (5)0.0237 (6)0.0235 (6)0.0037 (5)0.0092 (5)0.0028 (5)
Geometric parameters (Å, º) top
S1—C111.7265 (13)C3—H3A0.9500
S1—C121.7517 (12)C4—C51.3807 (17)
O1—C11.3757 (14)C4—H4A0.9500
O1—C91.3781 (15)C5—C61.4054 (16)
O2—C91.2094 (15)C5—H5A0.9500
N1—C121.3129 (15)C6—C71.4296 (16)
N1—C101.3971 (15)C7—C81.3598 (16)
N2—C121.3457 (16)C7—H7A0.9500
N2—C131.4482 (16)C8—C101.4674 (16)
N2—H1N20.87 (2)C8—C91.4683 (16)
C1—C21.3903 (17)C10—C111.3621 (16)
C1—C61.3923 (16)C11—H11A0.9500
C2—C31.3838 (18)C13—H13A0.9800
C2—H2A0.9500C13—H13B0.9800
C3—C41.4001 (19)C13—H13C0.9800
C11—S1—C1289.04 (6)C8—C7—C6122.02 (11)
C1—O1—C9123.10 (9)C8—C7—H7A119.0
C12—N1—C10110.22 (10)C6—C7—H7A119.0
C12—N2—C13122.07 (11)C7—C8—C10121.21 (10)
C12—N2—H1N2118.6 (13)C7—C8—C9118.93 (11)
C13—N2—H1N2119.3 (13)C10—C8—C9119.84 (10)
O1—C1—C2117.51 (11)O2—C9—O1116.01 (11)
O1—C1—C6120.24 (11)O2—C9—C8126.56 (11)
C2—C1—C6122.25 (11)O1—C9—C8117.43 (10)
C3—C2—C1118.10 (12)C11—C10—N1115.57 (11)
C3—C2—H2A121.0C11—C10—C8127.05 (11)
C1—C2—H2A121.0N1—C10—C8117.38 (10)
C2—C3—C4121.28 (12)C10—C11—S1110.40 (9)
C2—C3—H3A119.4C10—C11—H11A124.8
C4—C3—H3A119.4S1—C11—H11A124.8
C5—C4—C3119.60 (12)N1—C12—N2125.28 (11)
C5—C4—H4A120.2N1—C12—S1114.75 (9)
C3—C4—H4A120.2N2—C12—S1119.97 (9)
C4—C5—C6120.49 (12)N2—C13—H13A109.5
C4—C5—H5A119.8N2—C13—H13B109.5
C6—C5—H5A119.8H13A—C13—H13B109.5
C1—C6—C5118.27 (11)N2—C13—H13C109.5
C1—C6—C7118.21 (11)H13A—C13—H13C109.5
C5—C6—C7123.52 (11)H13B—C13—H13C109.5
C9—O1—C1—C2178.87 (11)C7—C8—C9—O2177.09 (12)
C9—O1—C1—C60.99 (17)C10—C8—C9—O21.73 (19)
O1—C1—C2—C3179.64 (11)C7—C8—C9—O12.65 (16)
C6—C1—C2—C30.21 (19)C10—C8—C9—O1178.53 (10)
C1—C2—C3—C40.76 (19)C12—N1—C10—C111.08 (15)
C2—C3—C4—C50.3 (2)C12—N1—C10—C8178.73 (10)
C3—C4—C5—C60.75 (19)C7—C8—C10—C11175.76 (12)
O1—C1—C6—C5179.36 (11)C9—C8—C10—C113.03 (19)
C2—C1—C6—C50.79 (18)C7—C8—C10—N14.03 (17)
O1—C1—C6—C70.75 (17)C9—C8—C10—N1177.18 (10)
C2—C1—C6—C7179.10 (11)N1—C10—C11—S10.53 (14)
C4—C5—C6—C11.27 (18)C8—C10—C11—S1179.26 (10)
C4—C5—C6—C7178.62 (12)C12—S1—C11—C100.09 (10)
C1—C6—C7—C81.30 (18)C10—N1—C12—N2178.77 (12)
C5—C6—C7—C8178.59 (12)C10—N1—C12—S11.14 (13)
C6—C7—C8—C10178.23 (11)C13—N2—C12—N1178.67 (12)
C6—C7—C8—C92.98 (18)C13—N2—C12—S11.43 (17)
C1—O1—C9—O2179.07 (11)C11—S1—C12—N10.74 (10)
C1—O1—C9—C80.70 (16)C11—S1—C12—N2179.17 (11)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the S1/N1/C10–C12 ring
D—H···AD—HH···AD···AD—H···A
N2—H1N2···N1i0.87 (2)2.24 (2)3.0331 (15)152 (2)
C4—H4A···O2ii0.952.443.3247 (16)154
C13—H13C···Cg1iii0.982.703.5026 (16)139
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x, y+5/2, z+1/2; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC13H10N2O2S
Mr258.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.5460 (3), 4.9289 (1), 18.3516 (3)
β (°) 120.307 (1)
V3)1135.92 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.47 × 0.40 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.881, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
13265, 3303, 2851
Rint0.025
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.095, 1.05
No. of reflections3303
No. of parameters168
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.21

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the S1/N1/C10–C12 ring
D—H···AD—HH···AD···AD—H···A
N2—H1N2···N1i0.87 (2)2.24 (2)3.0331 (15)152 (2)
C4—H4A···O2ii0.952.443.3247 (16)154.1
C13—H13C···Cg1iii0.98002.703.5026 (16)139.0
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x, y+5/2, z+1/2; (iii) x, y1, z.
 

Footnotes

Additional correspondence author, e-mail: ohasnah@usm.my.

§Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the FRGS grant No. 203/PKIMIA/6711179 and the Research University Grant No. 1001/PFIZIK/811151 to conduct this work. SKY thanks USM for providing Graduate Assistance financial support. SA thanks the Malaysian Government and USM for the Academic Staff Training Scheme Fellowship (ASTS).

References

First citationArshad, A., Osman, H., Lam, C. K., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o1825.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, A., Osman, H., Lam, C. K., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o1632–o1633.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsad, M., Oo, C.-W., Osman, H., Rosli, M. M. & Fun, H.-K. (2011). Acta Cryst. E67, o437–o438.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJung, J., Kin, J. & Park, O. (1999). Synth. Commun. 29, 3587–3595.  Web of Science CrossRef CAS Google Scholar
First citationRao, A. K., Raju, M. S. & Raju, K. M. J. (1981). Indian Chem. Soc. 58, 1021–1023.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoine, T. O. (1964). J. Pharm. Sci. 53, 231–264.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWattenberg, L. W., Lam, L. K. T. & Fladmoe, A. V. (1979). Cancer Res. 39, 1651–1654.  PubMed CAS Web of Science Google Scholar
First citationYusufzai, S. K., Osman, H., Abdul Rahim, A. S., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o1056–o1057.  CSD CrossRef IUCr Journals Google Scholar
First citationYusufzai, S. K., Osman, H., Sulaiman, O., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o473–o474.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds