organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-{[(1S,2R)-2-Hy­dr­oxy­indan-1-yl]amino}­pent-3-en-2-one

aDepartment of Chemistry, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: leespy@jnu.ac.kr

(Received 28 June 2012; accepted 9 July 2012; online 14 July 2012)

In the mol­ecule of the title compound, C14H17NO2, the dihedral angle formed by the mean planes through the indan ring system and the amino­pentenone fragment is 83.26 (13)°. An intra­molecular N—H⋯O hydrogen bond is observed. In the crystal, mol­ecules are linked into one-dimensional chains extending along the [010] direction via O—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For metal complexes containing amino­indanol ligands, see: Lee et al. (2007[Lee, J., Kim, Y. & Do, Y. (2007). Inorg. Chem. 46, 7701-7703.]); Flores-Lopes et al. (2000[Flores-Lopes, L. Z., Parra-Hake, M., Somanathan, R. & Walsh, P. J. (2000). Organometallics, 19, 2153-2160.]). For metal comlexes with acetyl­acetonate-type ligands, see: Patra et al. (2004[Patra, S., Sarkar, B., Ghumaan, S., Fiedler, J., Kaim, W. & Lahiri, G. K. (2004). Inorg. Chem. 43, 6108-6113.]); Jackson et al. (2006[Jackson, A. B., White, P. S. & Templeton, J. L. (2006). Inorg. Chem. 45, 6205-6213.]); Young et al. (2011[Young, K. J. H., Mironov, O. A., Nielsen, R. J., Cheng, M.-J., Stewart, T., Goddard, W. A. III & Periana, R. A. (2011). Organometallics, 30, 5088-5094.]).

[Scheme 1]

Experimental

Crystal data
  • C14H17NO2

  • Mr = 231.29

  • Orthorhombic, P 21 21 21

  • a = 8.3472 (5) Å

  • b = 11.2211 (7) Å

  • c = 13.4104 (9) Å

  • V = 1256.08 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.15 × 0.12 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.988, Tmax = 0.992

  • 18304 measured reflections

  • 1551 independent reflections

  • 1198 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.095

  • S = 1.07

  • 1551 reflections

  • 164 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H101⋯O2i 0.80 (3) 2.03 (3) 2.829 (2) 179 (4)
N1—H201⋯O2 0.88 (2) 2.08 (2) 2.764 (3) 134 (2)
C9—H9A⋯O2i 0.97 2.44 3.254 (3) 141
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Acetylacetonate derivatives have been widely used as chelating ligand systems (Patra et al., 2004; Jackson et al., 2006; Young et al., 2011). Aminoindanol-type ligands have been also extensively used as chiral chelating ligands (Lee et al., 2007; Flores-Lopes et al., 2000). As part of our ongoing project on the synthesis of new O2N-type tridentate dianionic chelating ligand, the title compound was synthesized by the reaction of 2,4-pentanedione with (1S,2R)-(-)-cis-amino-2-indanol and 2,4-pentanedione, and its crystal structure is reported herein.

In the title compound (Fig. 1), the C8 carbon atom is displaced by 0.594 (2) Å from the mean plane defined by the C1–C7/C9 atoms of the indane ring system. The dihedral angle formed by the mean planes through the indane ring system and the approximately planar aminopentenone fragment [maximum deviation 0.063 (3) Å for atom C14] is 86.23 (13)°. The molecular conformation is stabilized by an intramolecular N—H···O hydrogen bond (Table 1). In the crystal structure (Fig. 2), molecules interact via intermolecular O—H···O and C—H···O hydrogen bonds to generate one-dimensional chains extending along the [0 1 0] direction.

Related literature top

For metal complexes containing aminoindanol ligands, see: Lee et al. (2007); Flores-Lopes et al. (2000). For metal comlexes with acetylacetonate-type ligands, see: Patra et al. (2004); Jackson et al. (2006); Young et al. (2011).

Experimental top

A mixture of (1S,2R)-(-)-amino-2-indanol(0.149 g,1 mmol) and 2,4-pentanedione(0.100 g,1 mmol) was stirred in ethanol for 24 h in the presence of catalytic amount of p-toluene sulfonic acid. The residue, obtained by removing the solvent under vacuum, was recrystallized in hexane. The desired product was isolated as white crystals after the solution remained at -20 °C in a refrigerator for a few days (yield 80%, 0.183 g).

Refinement top

In the absence of significant anomalous scattering effects, 1121 Friedel pairs were merged in the last cycles of refinement. The absolute configuration was assigned on the basis of the known configuration of the indanyl alcohol employed in the synthesis. The C-bound H-atoms were included in calculated positions and treated as riding atoms, with C—H = 0.93-0.97 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. The amine and hydroxy H atoms were located in a difference Fourier map and refined isotropically.

Structure description top

Acetylacetonate derivatives have been widely used as chelating ligand systems (Patra et al., 2004; Jackson et al., 2006; Young et al., 2011). Aminoindanol-type ligands have been also extensively used as chiral chelating ligands (Lee et al., 2007; Flores-Lopes et al., 2000). As part of our ongoing project on the synthesis of new O2N-type tridentate dianionic chelating ligand, the title compound was synthesized by the reaction of 2,4-pentanedione with (1S,2R)-(-)-cis-amino-2-indanol and 2,4-pentanedione, and its crystal structure is reported herein.

In the title compound (Fig. 1), the C8 carbon atom is displaced by 0.594 (2) Å from the mean plane defined by the C1–C7/C9 atoms of the indane ring system. The dihedral angle formed by the mean planes through the indane ring system and the approximately planar aminopentenone fragment [maximum deviation 0.063 (3) Å for atom C14] is 86.23 (13)°. The molecular conformation is stabilized by an intramolecular N—H···O hydrogen bond (Table 1). In the crystal structure (Fig. 2), molecules interact via intermolecular O—H···O and C—H···O hydrogen bonds to generate one-dimensional chains extending along the [0 1 0] direction.

For metal complexes containing aminoindanol ligands, see: Lee et al. (2007); Flores-Lopes et al. (2000). For metal comlexes with acetylacetonate-type ligands, see: Patra et al. (2004); Jackson et al. (2006); Young et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The one-dimensional chain structure extending along [010], with hydrogen bonds shown dotted lines. Displacement ellipsoids are drawn at the 50% probability level.
4-{[(1S,2R)-2-Hydroxyindan-1-yl]amino}pent-3-en-2-one top
Crystal data top
C14H17NO2Z = 4
Mr = 231.29F(000) = 496
Orthorhombic, P212121Dx = 1.223 Mg m3
Hall symbol: P 2ac 2abMo Kα radiation, λ = 0.71073 Å
a = 8.3472 (5) ŵ = 0.08 mm1
b = 11.2211 (7) ÅT = 296 K
c = 13.4104 (9) ÅBlock, white
V = 1256.08 (14) Å30.15 × 0.12 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
1551 independent reflections
Radiation source: fine-focus sealed tube1198 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
φ and ω scansθmax = 26.8°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.988, Tmax = 0.992k = 1414
18304 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.1264P]
where P = (Fo2 + 2Fc2)/3
1551 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.12 e Å3
Crystal data top
C14H17NO2V = 1256.08 (14) Å3
Mr = 231.29Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.3472 (5) ŵ = 0.08 mm1
b = 11.2211 (7) ÅT = 296 K
c = 13.4104 (9) Å0.15 × 0.12 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
1551 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1198 reflections with I > 2σ(I)
Tmin = 0.988, Tmax = 0.992Rint = 0.055
18304 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.12 e Å3
1551 reflectionsΔρmin = 0.12 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3729 (3)0.46783 (17)0.05082 (14)0.0483 (5)
H2010.397 (3)0.429 (2)0.1058 (17)0.051 (7)*
O10.5423 (2)0.58830 (16)0.19665 (13)0.0554 (5)
H1010.564 (4)0.634 (3)0.240 (2)0.073 (10)*
O20.3822 (2)0.25196 (16)0.14989 (12)0.0616 (5)
C10.1505 (4)0.8140 (3)0.2132 (2)0.0750 (9)
H10.17750.88520.24450.090*
C20.0019 (5)0.7674 (4)0.2230 (2)0.0906 (12)
H20.07810.80800.26060.109*
C30.0421 (4)0.6613 (4)0.1774 (2)0.0845 (10)
H30.14510.63110.18480.101*
C40.0692 (3)0.5991 (3)0.1208 (2)0.0629 (7)
H40.04200.52740.09040.075*
C50.2214 (3)0.6462 (2)0.11056 (16)0.0476 (6)
C60.2630 (3)0.7535 (2)0.15616 (16)0.0510 (6)
C70.3656 (3)0.5968 (2)0.05584 (16)0.0452 (5)
H70.36320.62750.01260.054*
C80.5060 (3)0.6566 (2)0.11036 (17)0.0505 (6)
H80.59970.66380.06670.061*
C90.4372 (3)0.7797 (2)0.13634 (19)0.0582 (7)
H9A0.48890.81270.19490.070*
H9B0.44950.83480.08120.070*
C100.2653 (4)0.4617 (2)0.11916 (16)0.0625 (7)
H10A0.18590.52160.10600.094*
H10B0.22240.40380.16460.094*
H10C0.35830.49820.14810.094*
C110.3113 (3)0.4010 (2)0.02268 (15)0.0464 (6)
C120.2908 (3)0.2795 (2)0.01416 (18)0.0533 (6)
H120.25330.23940.07020.064*
C130.3212 (3)0.2108 (2)0.07099 (19)0.0508 (6)
C140.2757 (4)0.0807 (2)0.0684 (2)0.0757 (9)
H14A0.35510.03490.10330.113*
H14B0.26970.05430.00050.113*
H14C0.17350.07010.10000.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0661 (13)0.0434 (11)0.0353 (9)0.0011 (11)0.0078 (10)0.0043 (9)
O10.0607 (11)0.0556 (11)0.0498 (10)0.0050 (9)0.0098 (9)0.0020 (9)
O20.0826 (12)0.0542 (10)0.0479 (9)0.0051 (10)0.0098 (10)0.0080 (9)
C10.110 (3)0.0578 (17)0.0568 (16)0.0261 (19)0.0156 (18)0.0162 (14)
C20.086 (3)0.102 (3)0.084 (2)0.044 (2)0.031 (2)0.039 (2)
C30.0562 (18)0.116 (3)0.081 (2)0.016 (2)0.0068 (17)0.041 (2)
C40.0527 (16)0.0772 (18)0.0587 (15)0.0003 (15)0.0092 (13)0.0167 (15)
C50.0506 (15)0.0525 (14)0.0398 (12)0.0034 (12)0.0039 (11)0.0123 (11)
C60.0691 (17)0.0434 (13)0.0406 (11)0.0078 (13)0.0052 (12)0.0107 (11)
C70.0595 (14)0.0417 (12)0.0344 (10)0.0033 (12)0.0017 (11)0.0053 (10)
C80.0526 (15)0.0533 (14)0.0455 (13)0.0084 (12)0.0072 (11)0.0022 (12)
C90.0829 (19)0.0444 (14)0.0473 (13)0.0088 (13)0.0013 (14)0.0063 (11)
C100.086 (2)0.0582 (15)0.0431 (12)0.0037 (16)0.0140 (14)0.0024 (12)
C110.0524 (14)0.0533 (14)0.0335 (11)0.0031 (12)0.0023 (10)0.0016 (10)
C120.0666 (16)0.0505 (15)0.0428 (12)0.0006 (13)0.0089 (12)0.0066 (11)
C130.0530 (15)0.0484 (14)0.0510 (14)0.0014 (12)0.0005 (12)0.0005 (11)
C140.096 (2)0.0504 (15)0.0802 (19)0.0035 (16)0.0055 (18)0.0013 (15)
Geometric parameters (Å, º) top
N1—C111.341 (3)C7—C81.536 (3)
N1—C71.450 (3)C7—H70.9800
N1—H2010.88 (2)C8—C91.536 (3)
O1—C81.421 (3)C8—H80.9800
O1—H1010.79 (3)C9—H9A0.9700
O2—C131.262 (3)C9—H9B0.9700
C1—C21.382 (5)C10—C111.512 (3)
C1—C61.389 (4)C10—H10A0.9600
C1—H10.9300C10—H10B0.9600
C2—C31.380 (5)C10—H10C0.9600
C2—H20.9300C11—C121.379 (3)
C3—C41.388 (4)C12—C131.401 (3)
C3—H30.9300C12—H120.9300
C4—C51.383 (4)C13—C141.509 (3)
C4—H40.9300C14—H14A0.9600
C5—C61.395 (4)C14—H14B0.9600
C5—C71.515 (3)C14—H14C0.9600
C6—C91.507 (4)
C11—N1—C7125.2 (2)O1—C8—H8111.1
C11—N1—H201115.0 (15)C7—C8—H8111.1
C7—N1—H201118.0 (15)C9—C8—H8111.1
C8—O1—H101107 (2)C6—C9—C8103.0 (2)
C2—C1—C6119.3 (3)C6—C9—H9A111.2
C2—C1—H1120.3C8—C9—H9A111.2
C6—C1—H1120.3C6—C9—H9B111.2
C3—C2—C1120.5 (3)C8—C9—H9B111.2
C3—C2—H2119.7H9A—C9—H9B109.1
C1—C2—H2119.7C11—C10—H10A109.5
C2—C3—C4120.9 (3)C11—C10—H10B109.5
C2—C3—H3119.5H10A—C10—H10B109.5
C4—C3—H3119.5C11—C10—H10C109.5
C5—C4—C3118.5 (3)H10A—C10—H10C109.5
C5—C4—H4120.8H10B—C10—H10C109.5
C3—C4—H4120.8N1—C11—C12122.7 (2)
C4—C5—C6121.0 (2)N1—C11—C10118.3 (2)
C4—C5—C7129.7 (2)C12—C11—C10119.0 (2)
C6—C5—C7109.3 (2)C11—C12—C13126.1 (2)
C1—C6—C5119.7 (3)C11—C12—H12117.0
C1—C6—C9130.8 (3)C13—C12—H12117.0
C5—C6—C9109.4 (2)O2—C13—C12123.7 (2)
N1—C7—C5114.9 (2)O2—C13—C14118.3 (2)
N1—C7—C8115.2 (2)C12—C13—C14117.9 (2)
C5—C7—C8102.48 (17)C13—C14—H14A109.5
N1—C7—H7107.9C13—C14—H14B109.5
C5—C7—H7107.9H14A—C14—H14B109.5
C8—C7—H7107.9C13—C14—H14C109.5
O1—C8—C7108.34 (18)H14A—C14—H14C109.5
O1—C8—C9112.34 (19)H14B—C14—H14C109.5
C7—C8—C9102.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H101···O2i0.80 (3)2.03 (3)2.829 (2)179 (4)
N1—H201···O20.88 (2)2.08 (2)2.764 (3)134 (2)
C9—H9A···O2i0.972.443.254 (3)141
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H17NO2
Mr231.29
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)8.3472 (5), 11.2211 (7), 13.4104 (9)
V3)1256.08 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.988, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
18304, 1551, 1198
Rint0.055
(sin θ/λ)max1)0.634
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.095, 1.07
No. of reflections1551
No. of parameters164
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.12, 0.12

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H101···O2i0.80 (3)2.03 (3)2.829 (2)179 (4)
N1—H201···O20.88 (2)2.08 (2)2.764 (3)134 (2)
C9—H9A···O2i0.96962.44023.254 (3)141
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by a research grant from Chonnam National University.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlores-Lopes, L. Z., Parra-Hake, M., Somanathan, R. & Walsh, P. J. (2000). Organometallics, 19, 2153–2160.  Google Scholar
First citationJackson, A. B., White, P. S. & Templeton, J. L. (2006). Inorg. Chem. 45, 6205–6213.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLee, J., Kim, Y. & Do, Y. (2007). Inorg. Chem. 46, 7701–7703.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPatra, S., Sarkar, B., Ghumaan, S., Fiedler, J., Kaim, W. & Lahiri, G. K. (2004). Inorg. Chem. 43, 6108–6113.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoung, K. J. H., Mironov, O. A., Nielsen, R. J., Cheng, M.-J., Stewart, T., Goddard, W. A. III & Periana, R. A. (2011). Organometallics, 30, 5088–5094.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds