organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′,6,6′-Tetra­bromo-2,2′-[(E,E)-ethane-1,2-diylbis(nitrilo­methanylyl­­idene)]di­phenol

aDepartment of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, I. R. of IRAN, bDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and cDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: zsrkk@yahoo.com, dmntahir_uos@yahoo.com

(Received 28 June 2012; accepted 30 June 2012; online 7 July 2012)

The asymmetric unit of the title compound, C16H12Br4N2O2, comprises half of a potential tetra­dentate Schiff base ligand. The whole mol­ecule is generated by an inversion center located in the middle of the C—C bond of the ethyl­ene segment. There are intra­molecular O—H⋯N hydrogen bonds making S(6) ring motifs. In the crystal, no significant inter­molecular inter­actions are observed.

Related literature

For standard values of bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the crystal structure of a similar compound, see: Kia et al. (2012[Kia, R., Kargar, H., Adabi Ardakani, A. & Tahir, M. N. (2012). Acta Cryst. E68, o2242-o2243.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12Br4N2O2

  • Mr = 583.92

  • Monoclinic, P 21 /c

  • a = 12.723 (3) Å

  • b = 10.291 (2) Å

  • c = 6.9428 (18) Å

  • β = 97.046 (15)°

  • V = 902.2 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 8.93 mm−1

  • T = 291 K

  • 0.21 × 0.14 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.256, Tmax = 0.535

  • 6730 measured reflections

  • 1981 independent reflections

  • 1086 reflections with I > 2σ(I)

  • Rint = 0.075

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.202

  • S = 0.98

  • 1981 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 1.40 e Å−3

  • Δρmin = −0.90 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.83 2.573 (7) 151

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on the crystal structure analyses of Schiff base ligands (Kargar et al., (2011); Kia et al., (2010), we synthesized the title compound and report herein on its crystal structure.

The asymmetric unit of the title compound, Fig. 1, comprises half of a potentially tetradentate Schiff base ligand. The molecule is located about an inversion center, located in the middle of the C8—C8A bond of the ethylene segment. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to those reported for a similar compound (Kia et al., 2012). The intramolecular O—H···N hydrogen bonds (Table 1) make S(6) ring motifs (Bernstein et al., 1995).

In the crystal, there are no significant intermolecular interactions present.

Related literature top

For standard values of bond lengths, see: Allen et al. (1987). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For background on Schiff base ligands, see, for example: Kargar et al. (2011); Kia et al. (2010). For the crystal structure of a similar compound, see: Kia et al. (2012).

Experimental top

The title compound was synthesized by adding 3,5-dibromosalicylaldehyde (2 mmol) to a solution of ethylenediamine (1 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for 30 min. The resultant solution was filtered. Yellow single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement top

The O-bound H atom was located in a difference Fourier map and constrained to refine on the parent O atom with Uiso(H) = 1.5Ueq(O). The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 and 0.97 Å for CH and CH2 H-atoms, respectively, with Uiso(H) = 1.2Ueq(C).

Structure description top

In continuation of our work on the crystal structure analyses of Schiff base ligands (Kargar et al., (2011); Kia et al., (2010), we synthesized the title compound and report herein on its crystal structure.

The asymmetric unit of the title compound, Fig. 1, comprises half of a potentially tetradentate Schiff base ligand. The molecule is located about an inversion center, located in the middle of the C8—C8A bond of the ethylene segment. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to those reported for a similar compound (Kia et al., 2012). The intramolecular O—H···N hydrogen bonds (Table 1) make S(6) ring motifs (Bernstein et al., 1995).

In the crystal, there are no significant intermolecular interactions present.

For standard values of bond lengths, see: Allen et al. (1987). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For background on Schiff base ligands, see, for example: Kargar et al. (2011); Kia et al. (2010). For the crystal structure of a similar compound, see: Kia et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering [symmetry code for suffix A: -x + 1, -y, -z + 1]. The intramolecular O-H···N hydrogen bonds are shown as dashed lines.
4,4',6,6'-Tetrabromo-2,2'-[(E,E)-ethane-1,2- diylbis(nitrilomethanylylidene)]diphenol top
Crystal data top
C16H12Br4N2O2F(000) = 556
Mr = 583.92Dx = 2.150 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1563 reflections
a = 12.723 (3) Åθ = 2.5–27.4°
b = 10.291 (2) ŵ = 8.93 mm1
c = 6.9428 (18) ÅT = 291 K
β = 97.046 (15)°Block, pale-yellow
V = 902.2 (4) Å30.21 × 0.14 × 0.08 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1981 independent reflections
Radiation source: fine-focus sealed tube1086 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
φ and ω scansθmax = 27.1°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1613
Tmin = 0.256, Tmax = 0.535k = 1312
6730 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.202H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.1116P)2]
where P = (Fo2 + 2Fc2)/3
1981 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 1.40 e Å3
0 restraintsΔρmin = 0.90 e Å3
Crystal data top
C16H12Br4N2O2V = 902.2 (4) Å3
Mr = 583.92Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.723 (3) ŵ = 8.93 mm1
b = 10.291 (2) ÅT = 291 K
c = 6.9428 (18) Å0.21 × 0.14 × 0.08 mm
β = 97.046 (15)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1981 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1086 reflections with I > 2σ(I)
Tmin = 0.256, Tmax = 0.535Rint = 0.075
6730 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.202H-atom parameters constrained
S = 0.98Δρmax = 1.40 e Å3
1981 reflectionsΔρmin = 0.90 e Å3
109 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.30804 (8)0.64680 (8)0.49803 (17)0.0684 (4)
Br20.05455 (7)0.36429 (9)0.18237 (15)0.0615 (4)
O10.4014 (4)0.3794 (5)0.5301 (8)0.0514 (14)
H10.41980.30420.55270.077*
N10.3995 (5)0.1295 (5)0.5201 (10)0.0456 (17)
C10.3005 (5)0.3720 (7)0.4544 (11)0.0373 (17)
C20.2407 (6)0.4862 (7)0.4249 (11)0.0408 (18)
C30.1366 (6)0.4860 (7)0.3445 (11)0.0443 (19)
H3A0.09910.56330.32360.053*
C40.0901 (6)0.3697 (7)0.2964 (12)0.0417 (18)
C50.1429 (5)0.2529 (7)0.3262 (10)0.0399 (18)
H5A0.10870.17480.29260.048*
C60.2490 (6)0.2542 (7)0.4080 (11)0.0398 (18)
C70.3031 (6)0.1305 (8)0.4442 (11)0.044 (2)
H7A0.26770.05290.41240.053*
C80.4522 (6)0.0026 (8)0.5551 (13)0.053 (2)
H8A0.40340.06680.51180.063*
H8B0.47430.00870.69280.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0479 (6)0.0445 (6)0.1087 (9)0.0044 (4)0.0059 (5)0.0085 (5)
Br20.0317 (5)0.0595 (7)0.0885 (8)0.0053 (3)0.0116 (4)0.0005 (5)
O10.032 (3)0.051 (3)0.067 (4)0.002 (2)0.009 (3)0.001 (3)
N10.040 (4)0.041 (4)0.055 (4)0.014 (3)0.006 (3)0.003 (3)
C10.022 (4)0.046 (5)0.043 (4)0.004 (3)0.004 (3)0.001 (3)
C20.032 (4)0.043 (4)0.048 (5)0.002 (3)0.002 (3)0.004 (4)
C30.035 (4)0.040 (5)0.055 (5)0.011 (3)0.003 (3)0.001 (4)
C40.025 (4)0.046 (5)0.054 (5)0.003 (3)0.002 (3)0.001 (4)
C50.033 (4)0.046 (5)0.040 (4)0.004 (3)0.000 (3)0.004 (3)
C60.038 (4)0.041 (4)0.040 (4)0.007 (3)0.003 (3)0.001 (3)
C70.038 (5)0.052 (5)0.042 (4)0.008 (3)0.003 (3)0.003 (4)
C80.031 (4)0.052 (5)0.074 (6)0.017 (4)0.004 (4)0.013 (4)
Geometric parameters (Å, º) top
Br1—C21.902 (7)C3—H3A0.9300
Br2—C41.913 (8)C4—C51.381 (10)
O1—C11.328 (9)C5—C61.399 (10)
O1—H10.8184C5—H5A0.9300
N1—C71.274 (10)C6—C71.455 (10)
N1—C81.474 (9)C7—H7A0.9300
C1—C61.396 (10)C8—C8i1.515 (15)
C1—C21.401 (10)C8—H8A0.9700
C2—C31.372 (10)C8—H8B0.9700
C3—C41.359 (10)
C1—O1—H1105.2C4—C5—H5A120.7
C7—N1—C8118.1 (7)C6—C5—H5A120.7
O1—C1—C6123.0 (6)C1—C6—C5120.3 (7)
O1—C1—C2119.4 (6)C1—C6—C7121.4 (7)
C6—C1—C2117.6 (7)C5—C6—C7118.3 (7)
C3—C2—C1122.5 (7)N1—C7—C6119.3 (7)
C3—C2—Br1119.3 (5)N1—C7—H7A120.4
C1—C2—Br1118.1 (6)C6—C7—H7A120.4
C4—C3—C2118.1 (7)N1—C8—C8i109.0 (8)
C4—C3—H3A120.9N1—C8—H8A109.9
C2—C3—H3A120.9C8i—C8—H8A109.9
C3—C4—C5122.7 (7)N1—C8—H8B109.9
C3—C4—Br2119.7 (5)C8i—C8—H8B109.9
C5—C4—Br2117.5 (6)H8A—C8—H8B108.3
C4—C5—C6118.7 (7)
O1—C1—C2—C3179.0 (7)O1—C1—C6—C5179.2 (7)
C6—C1—C2—C33.2 (12)C2—C1—C6—C53.1 (11)
O1—C1—C2—Br10.6 (10)O1—C1—C6—C71.3 (12)
C6—C1—C2—Br1177.2 (5)C2—C1—C6—C7176.4 (7)
C1—C2—C3—C41.5 (12)C4—C5—C6—C11.3 (11)
Br1—C2—C3—C4179.0 (6)C4—C5—C6—C7178.2 (7)
C2—C3—C4—C50.4 (13)C8—N1—C7—C6180.0 (7)
C2—C3—C4—Br2179.6 (6)C1—C6—C7—N10.1 (12)
C3—C4—C5—C60.5 (12)C5—C6—C7—N1179.5 (7)
Br2—C4—C5—C6179.5 (6)C7—N1—C8—C8i121.0 (10)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.832.573 (7)151

Experimental details

Crystal data
Chemical formulaC16H12Br4N2O2
Mr583.92
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)12.723 (3), 10.291 (2), 6.9428 (18)
β (°) 97.046 (15)
V3)902.2 (4)
Z2
Radiation typeMo Kα
µ (mm1)8.93
Crystal size (mm)0.21 × 0.14 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.256, 0.535
No. of measured, independent and
observed [I > 2σ(I)] reflections
6730, 1981, 1086
Rint0.075
(sin θ/λ)max1)0.642
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.202, 0.98
No. of reflections1981
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.40, 0.90

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.832.573 (7)151
 

Footnotes

Present address: Structural Dynamics of (Bio)Chemical Systems, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.

Acknowledgements

HK and AAA thank PNU for financial support. MNT thanks GC University of Sargodha, Pakistan, for research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKia, R., Kargar, H., Adabi Ardakani, A. & Tahir, M. N. (2012). Acta Cryst. E68, o2242–o2243.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds