organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-3-(2-Hy­dr­oxy­eth­yl)-2-(phenyl­imino)-1,3-thia­zolidin-4-one

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt, and cDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz

(Received 2 July 2012; accepted 2 July 2012; online 7 July 2012)

In the title compound, C11H12N2O2S, the thia­zole and phenyl rings are inclined at 56.99 (6)° to one another. The thia­zole ring is planar with an r.m.s. deviation for the five ring atoms of 0.0274 Å. The presence of the phenyl­imine substituent is confirmed with the C=N distance to the thia­zole ring of 1.2638 (19) Å. The mol­ecule adopts a Z conformation with respect to this bond. The –OH group of the hy­droxy­ethyl substituent is disordered over two positions with relative occupancies 0.517 (4) and 0.483 (4). In the crystal, O—H⋯O hydrogen bonds, augmented by C—H⋯N contacts, form dimers with R22(11) rings and generate chains along the b axis. Parallel chains are linked in an obverse fashion by weak C—H⋯S hydrogen bonds. C—H⋯O hydrogen bonds together with C—H⋯π contacts further consolidate the structure, stacking mol­ecules along the b axis.

Related literature

For pharmaceutical background to thia­zolidinone compounds, see: Shah & Desai (2007[Shah, T. J. & Desai, V. A. (2007). Arkivoc, xiv, 218-228.]); Subudhi et al. (2007[Subudhi, B. B., Panda, P. K., Kundu, T., Sahoo, S. & Pradhan, D. (2007). J. Pharm. Res. 6, 114-118.]); Kuecuekguezel et al. (2006[Kuecuekguezel, G., Kocatepe, A., De Clercq, E., Sahin, F. & Guelluece, M. (2006). Eur. J. Med. Chem. 41, 353-359.]); Mehta et al. (2006[Mehta, P. D., Sengar, N. P., Subrahmanyam, E. V. S. & Satyanarayana, D. (2006). Indian J. Pharm. Sci. 68, 103-106.]); Srivastava et al. (2006[Srivastava, S. K., Jain, A. & Srivastava, S. D. (2006). J. Indian Chem. Soc. 83, 1118-1123.]); Zhou et al. (2008[Zhou, H., Wu, S., Zhai, S., Liu, A., Sun, Y., Li, R., Zhang, Y., Ekins, S., Swaan, P. W., Fang, B., Zhang, B. & Yan, B. (2008). J. Med. Chem. 51, 1242-1250.]). For our recent work on the synthesis of bio-selective mol­ecules, see: Mohamed et al. (2012[Mohamed, S. K., Akkurt, M., Tahir, M. N., Abdelhamid, A. A. & Khalilov, A. N. (2012). Acta Cryst. E68, o1881-o1882.]). For related structures, see: Bally & Mornon (1973[Bally, R. & Mornon, J.-P. (1973). Acta Cryst. B29, 1160-1162.]); Moghaddam & Hojabri (2007[Moghaddam, F. M. & Hojabri, L. (2007). J. Heterocycl. Chem. 44, 35-38.]); Yella et al. (2008[Yella, R., Ghosh, H. & Patel, B. K. (2008). Green Chem. 10, 1307-1312.]); Abdel-Aziz et al. (2012[Abdel-Aziz, H. A., Ghabbour, H. A., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o1143.]). For standard bond distances, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12N2O2S

  • Mr = 236.29

  • Monoclinic, P 21 /c

  • a = 11.9612 (6) Å

  • b = 6.9478 (3) Å

  • c = 13.1554 (6) Å

  • β = 91.244 (2)°

  • V = 1093.01 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 91 K

  • 0.40 × 0.26 × 0.11 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.693, Tmax = 0.746

  • 17811 measured reflections

  • 2547 independent reflections

  • 2150 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.100

  • S = 1.08

  • 2547 reflections

  • 157 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C6–C11 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.84 1.98 2.802 (3) 168
C13—H13B⋯O1ii 0.99 2.67 3.407 (3) 131
C1—H1A⋯O1iii 0.99 2.56 3.472 (3) 153
C12—H12B⋯S1iv 0.99 2.92 3.613 (2) 128
C1—H1B⋯N5v 0.99 2.57 3.519 (3) 162
C9—H9⋯Cg2vi 0.95 2.77 3.5731 (16) 142
Symmetry codes: (i) x, y+1, z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{5\over 2}}]; (iii) -x, -y, -z+2; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) x, y-1, z; (vi) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and TITAN; molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Compounds incorporating the thiazolidinone core structure are of great interest to chemists and biologists due to their extensive bioactivities (Shah & Desai, 2007). These include anti-microbial (Subudhi et al., 2007), anti-mycobacterial (Kuecuekguezel et al., 2006), anti-inflammatory (Srivastava et al., 2006), anti-fungal (Mehta et al., 2006) and anti-cancer effects (Zhou et al., 2008). In this context and following our on-going study of the synthesis of bio-selective molecules we were interested in investigating the microbial inhibiting effect of a newly synthesized series of compounds incorporating thiazolidinone ring systems. The synthesis of such compounds was carried out via a three component reaction technique using amino alcohols as precursors (Mohamed et al., 2012). In this study, the crystal structure determination of the title compound (I) was undertaken to investigate the relationship between its structure and anti-bacterial activity.

The title compound (I), a phenylimino-thiazolidinone derivative, crystallizes with the S1/C1/C2/N1/C4 thiazole and C6···C11 phenyl rings inclined at 56.99 (6) ° to one another. The thiazole ring is planar with an r.m.s. deviation for the five ring atoms of 0.0274 Å. The C4N5 distance, 1.2638 (19) Å, confirms this as a double bond and the molecule adopts a Z conformation with respect to this bond. The OH group of the hydroxyethyl substituent is disordered over two positions with relative occupancies 0.517 (4) for O2–H2 and 0.483 (4) for O3–H3. Bond distances (Allen et al., 1987) and angles in the molecule are normal and similar to those found in related structures (Bally & Mornon, 1973; Moghaddam & Hojabri, 2007; Yella et al., 2008; Abdel-Aziz et al., 2012).

In the crystal structure head to tail dimers are formed from O2–H2···O1 hydrogen bonds, bolstered by weaker C1–H1B···N1 interactions, Table 1, forming R22(11) rings (Bernstein et al., 1995). These also link pairs of molecules into chains along b. Weak C12–H1B···S1 contacts join each chain to an equivalent one progressing in the opposite direction, Fig. 2. Two additional C–H···O hydrogen bonds together with C9–H9···π contacts further consolidate the structure forming stacks along b, Fig. 3.

Related literature top

For pharmaceutical background to thiazolidinone compounds, see: Shah & Desai (2007); Subudhi et al. (2007); Kuecuekguezel et al. (2006); Mehta et al. (2006); Srivastava et al. (2006); Zhou et al. (2008). For our recent work on the synthesis of bio-selective molecules, see: Mohamed et al. (2012). For related structures, see: Bally & Mornon (1973); Moghaddam & Hojabri (2007); Yella et al. (2008); Abdel-Aziz et al. (2012). For standard bond distances, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

To a well stirred mixture of 135 mg (1 mmol) phenylisothiocyanate and 61 mg (1 mmol) 2-aminoethanol in 50 ml dioxane, 167 mg (1 mmol) of bromo ethylacetate was added. The reaction mixture was refluxed and monitored by TLC until completion after 3 h. A solid product was deposited on cooling to room temperature and collected by filtration. The crude product was recrystallized from ethanol to give a high quality crystals (M.p. 327 K) suitable for X-ray analysis in an excellent yield (92%).

Refinement top

The OH group of the hydroxyethyl substituent is disordered over two positions O2 and O3 with relative occupancies that converged to 0.517 (4) and 0.483 (4). Displacement parameters for the C13 atom bound to the disordered OH groups were slightly higher than normal but a suitable additional disorder model could not be found. All H-atoms bound to carbon were refined using a riding model with d(C—H) = 0.95 Å for aromatic and 0.99 Å for CH2 H atoms, and with Uiso = 1.2Ueq (C). For the disordered O—H atoms d(O—H) = 0.84 Å, with Uiso = 1.5Ueq (O).

Structure description top

Compounds incorporating the thiazolidinone core structure are of great interest to chemists and biologists due to their extensive bioactivities (Shah & Desai, 2007). These include anti-microbial (Subudhi et al., 2007), anti-mycobacterial (Kuecuekguezel et al., 2006), anti-inflammatory (Srivastava et al., 2006), anti-fungal (Mehta et al., 2006) and anti-cancer effects (Zhou et al., 2008). In this context and following our on-going study of the synthesis of bio-selective molecules we were interested in investigating the microbial inhibiting effect of a newly synthesized series of compounds incorporating thiazolidinone ring systems. The synthesis of such compounds was carried out via a three component reaction technique using amino alcohols as precursors (Mohamed et al., 2012). In this study, the crystal structure determination of the title compound (I) was undertaken to investigate the relationship between its structure and anti-bacterial activity.

The title compound (I), a phenylimino-thiazolidinone derivative, crystallizes with the S1/C1/C2/N1/C4 thiazole and C6···C11 phenyl rings inclined at 56.99 (6) ° to one another. The thiazole ring is planar with an r.m.s. deviation for the five ring atoms of 0.0274 Å. The C4N5 distance, 1.2638 (19) Å, confirms this as a double bond and the molecule adopts a Z conformation with respect to this bond. The OH group of the hydroxyethyl substituent is disordered over two positions with relative occupancies 0.517 (4) for O2–H2 and 0.483 (4) for O3–H3. Bond distances (Allen et al., 1987) and angles in the molecule are normal and similar to those found in related structures (Bally & Mornon, 1973; Moghaddam & Hojabri, 2007; Yella et al., 2008; Abdel-Aziz et al., 2012).

In the crystal structure head to tail dimers are formed from O2–H2···O1 hydrogen bonds, bolstered by weaker C1–H1B···N1 interactions, Table 1, forming R22(11) rings (Bernstein et al., 1995). These also link pairs of molecules into chains along b. Weak C12–H1B···S1 contacts join each chain to an equivalent one progressing in the opposite direction, Fig. 2. Two additional C–H···O hydrogen bonds together with C9–H9···π contacts further consolidate the structure forming stacks along b, Fig. 3.

For pharmaceutical background to thiazolidinone compounds, see: Shah & Desai (2007); Subudhi et al. (2007); Kuecuekguezel et al. (2006); Mehta et al. (2006); Srivastava et al. (2006); Zhou et al. (2008). For our recent work on the synthesis of bio-selective molecules, see: Mohamed et al. (2012). For related structures, see: Bally & Mornon (1973); Moghaddam & Hojabri (2007); Yella et al. (2008); Abdel-Aziz et al. (2012). For standard bond distances, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: APEX2 and SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of I with ellipsoids drawn at the 50% probability level. Only the major disorder component is shown.
[Figure 2] Fig. 2. A view of the packing along the a axis showing chains of molecules linked by C–H···S hydrogen bonds. Hydrogen bonds are drawn as dashed lines and only the major disorder component is shown.
[Figure 3] Fig. 3. Overall packing for (1) viewed along the b axis showing a representative C–H···π contact as a dotted line. The red sphere represents the centroid of the C6···C11 phenyl ring. Hydrogen bonds are drawn as dashed lines and only the major disorder component is shown.
(Z)-3-(2-Hydroxyethyl)-2-(phenylimino)-1,3-thiazolidin-4-one top
Crystal data top
C11H12N2O2SF(000) = 496
Mr = 236.29Dx = 1.436 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5327 reflections
a = 11.9612 (6) Åθ = 3.3–27.6°
b = 6.9478 (3) ŵ = 0.28 mm1
c = 13.1554 (6) ÅT = 91 K
β = 91.244 (2)°Irregular block, yellow
V = 1093.01 (9) Å30.40 × 0.26 × 0.11 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2547 independent reflections
Radiation source: fine-focus sealed tube2150 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
φ and ω scansθmax = 27.7°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
h = 1515
Tmin = 0.693, Tmax = 0.746k = 99
17811 measured reflectionsl = 1715
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0373P)2 + 0.9645P]
where P = (Fo2 + 2Fc2)/3
2547 reflections(Δ/σ)max < 0.001
157 parametersΔρmax = 0.79 e Å3
6 restraintsΔρmin = 0.68 e Å3
Crystal data top
C11H12N2O2SV = 1093.01 (9) Å3
Mr = 236.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.9612 (6) ŵ = 0.28 mm1
b = 6.9478 (3) ÅT = 91 K
c = 13.1554 (6) Å0.40 × 0.26 × 0.11 mm
β = 91.244 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2547 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
2150 reflections with I > 2σ(I)
Tmin = 0.693, Tmax = 0.746Rint = 0.038
17811 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0416 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.08Δρmax = 0.79 e Å3
2547 reflectionsΔρmin = 0.68 e Å3
157 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.27696 (4)0.19764 (7)0.90742 (4)0.02132 (14)
C10.18673 (18)0.0254 (3)0.96766 (16)0.0261 (4)
H1A0.12320.00830.92160.031*
H1B0.22870.09370.98430.031*
C20.14480 (17)0.1172 (3)1.06312 (15)0.0248 (4)
O10.08555 (15)0.0341 (2)1.12382 (12)0.0393 (4)
N10.17971 (13)0.3030 (2)1.07448 (12)0.0204 (3)
C40.24668 (14)0.3775 (3)0.99792 (13)0.0172 (4)
N50.28128 (12)0.5494 (2)1.00068 (11)0.0180 (3)
C60.34388 (14)0.6235 (3)0.91831 (14)0.0171 (4)
C70.29991 (15)0.6270 (3)0.81901 (14)0.0196 (4)
H70.22980.56820.80390.023*
C80.35896 (16)0.7167 (3)0.74242 (15)0.0213 (4)
H80.32920.71790.67490.026*
C90.46134 (17)0.8049 (3)0.76381 (15)0.0234 (4)
H90.50140.86610.71130.028*
C100.50430 (16)0.8025 (3)0.86274 (15)0.0233 (4)
H100.57420.86230.87770.028*
C110.44593 (15)0.7135 (3)0.94010 (14)0.0201 (4)
H110.47550.71391.00770.024*
C120.14901 (17)0.4171 (3)1.16360 (15)0.0255 (4)
H12A0.21130.50571.18120.031*
H12B0.13930.32921.22200.031*
C130.0447 (2)0.5319 (4)1.14846 (19)0.0439 (6)
H13A0.01670.43641.14690.053*
H13B0.03630.60541.21230.053*
O20.0188 (2)0.6593 (4)1.0724 (2)0.0241 (8)0.517 (4)
H20.04830.76631.08560.036*0.517 (4)
O30.0418 (2)0.4527 (5)1.1267 (2)0.0316 (9)0.483 (4)
H30.04090.41681.06580.047*0.483 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0221 (2)0.0226 (3)0.0195 (2)0.00206 (18)0.00538 (17)0.00315 (18)
C10.0326 (10)0.0206 (10)0.0254 (10)0.0003 (8)0.0066 (8)0.0018 (8)
C20.0280 (10)0.0244 (10)0.0221 (10)0.0040 (8)0.0038 (8)0.0013 (8)
O10.0548 (10)0.0346 (9)0.0292 (8)0.0195 (8)0.0170 (7)0.0056 (7)
N10.0211 (8)0.0236 (8)0.0166 (8)0.0037 (6)0.0043 (6)0.0034 (6)
C40.0140 (8)0.0230 (9)0.0146 (8)0.0029 (7)0.0001 (6)0.0010 (7)
N50.0161 (7)0.0229 (8)0.0150 (7)0.0014 (6)0.0010 (6)0.0006 (6)
C60.0181 (8)0.0163 (8)0.0170 (9)0.0037 (7)0.0029 (7)0.0007 (7)
C70.0197 (8)0.0203 (9)0.0187 (9)0.0040 (7)0.0008 (7)0.0016 (7)
C80.0280 (9)0.0186 (9)0.0172 (9)0.0058 (7)0.0014 (7)0.0014 (7)
C90.0302 (10)0.0182 (9)0.0220 (10)0.0017 (8)0.0066 (8)0.0043 (8)
C100.0221 (9)0.0205 (9)0.0272 (10)0.0028 (7)0.0018 (8)0.0020 (8)
C110.0223 (9)0.0191 (9)0.0187 (9)0.0009 (7)0.0014 (7)0.0013 (7)
C120.0322 (10)0.0290 (10)0.0157 (9)0.0098 (8)0.0084 (8)0.0067 (8)
C130.0564 (10)0.0410 (10)0.0346 (9)0.0164 (8)0.0045 (8)0.0037 (8)
O20.0295 (15)0.0209 (14)0.0217 (15)0.0021 (11)0.0001 (11)0.0017 (11)
O30.0208 (15)0.054 (2)0.0197 (16)0.0020 (14)0.0030 (11)0.0044 (15)
Geometric parameters (Å, º) top
S1—C41.7689 (19)C8—H80.9500
S1—C11.806 (2)C9—C101.389 (3)
C1—C21.504 (3)C9—H90.9500
C1—H1A0.9900C10—C111.392 (3)
C1—H1B0.9900C10—H100.9500
C2—O11.224 (2)C11—H110.9500
C2—N11.364 (3)C12—C131.490 (3)
N1—C41.400 (2)C12—H12A0.9900
N1—C121.469 (2)C12—H12B0.9900
C4—N51.264 (2)C13—O31.202 (4)
N5—C61.427 (2)C13—O21.367 (4)
C6—C111.396 (3)C13—H13A0.9900
C6—C71.398 (3)C13—H13B0.9900
C7—C81.391 (3)O2—H20.8400
C7—H70.9500O3—H30.8400
C8—C91.393 (3)
C4—S1—C192.29 (9)C10—C9—C8119.34 (18)
C2—C1—S1107.38 (14)C10—C9—H9120.3
C2—C1—H1A110.2C8—C9—H9120.3
S1—C1—H1A110.2C9—C10—C11120.61 (18)
C2—C1—H1B110.2C9—C10—H10119.7
S1—C1—H1B110.2C11—C10—H10119.7
H1A—C1—H1B108.5C10—C11—C6119.96 (17)
O1—C2—N1123.72 (18)C10—C11—H11120.0
O1—C2—C1123.58 (19)C6—C11—H11120.0
N1—C2—C1112.69 (17)N1—C12—C13113.91 (18)
C2—N1—C4116.73 (16)N1—C12—H12A108.8
C2—N1—C12121.13 (16)C13—C12—H12A108.8
C4—N1—C12122.13 (16)N1—C12—H12B108.8
N5—C4—N1121.38 (16)C13—C12—H12B108.8
N5—C4—S1127.96 (14)H12A—C12—H12B107.7
N1—C4—S1110.59 (13)O3—C13—O286.7 (3)
C4—N5—C6119.74 (16)O3—C13—C12120.0 (3)
C11—C6—C7119.60 (17)O2—C13—C12128.4 (2)
C11—C6—N5118.48 (16)O2—C13—H13A105.2
C7—C6—N5121.54 (16)C12—C13—H13A105.2
C8—C7—C6119.88 (17)O3—C13—H13B109.6
C8—C7—H7120.1O2—C13—H13B105.2
C6—C7—H7120.1C12—C13—H13B105.2
C7—C8—C9120.61 (18)H13A—C13—H13B105.9
C7—C8—H8119.7C13—O2—H2109.5
C9—C8—H8119.7C13—O3—H3109.5
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C6–C11 phenyl ring.
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.841.982.802 (3)168
C13—H13B···O1ii0.992.673.407 (3)131
C1—H1A···O1iii0.992.563.472 (3)153
C12—H12B···S1iv0.992.923.613 (2)128
C1—H1B···N5v0.992.573.519 (3)162
C9—H9···Cg2vi0.952.773.5731 (16)142
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+5/2; (iii) x, y, z+2; (iv) x, y+1/2, z+1/2; (v) x, y1, z; (vi) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H12N2O2S
Mr236.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)91
a, b, c (Å)11.9612 (6), 6.9478 (3), 13.1554 (6)
β (°) 91.244 (2)
V3)1093.01 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.40 × 0.26 × 0.11
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2011)
Tmin, Tmax0.693, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
17811, 2547, 2150
Rint0.038
(sin θ/λ)max1)0.654
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.100, 1.08
No. of reflections2547
No. of parameters157
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.68

Computer programs: APEX2 (Bruker, 2011), APEX2 and SAINT (Bruker, 2011), SAINT (Bruker, 2011), SHELXS97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999), SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C6–C11 phenyl ring.
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.841.982.802 (3)168
C13—H13B···O1ii0.992.673.407 (3)131
C1—H1A···O1iii0.992.563.472 (3)153
C12—H12B···S1iv0.992.923.613 (2)128
C1—H1B···N5v0.992.573.519 (3)162
C9—H9···Cg2vi0.952.773.5731 (16)142
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+5/2; (iii) x, y, z+2; (iv) x, y+1/2, z+1/2; (v) x, y1, z; (vi) x+1, y1/2, z+1/2.
 

Acknowledgements

The financial support of the Egyptian Higher Education authority is gratefully acknowledged. We extend also our thanks to Manchester Metropolitan University for supporting this study and the University of Otago for the purchase of the diffractometer.

References

First citationAbdel-Aziz, H. A., Ghabbour, H. A., Chia, T. S. & Fun, H.-K. (2012). Acta Cryst. E68, o1143.  CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBally, R. & Mornon, J.-P. (1973). Acta Cryst. B29, 1160–1162.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationKuecuekguezel, G., Kocatepe, A., De Clercq, E., Sahin, F. & Guelluece, M. (2006). Eur. J. Med. Chem. 41, 353–359.  Web of Science PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMehta, P. D., Sengar, N. P., Subrahmanyam, E. V. S. & Satyanarayana, D. (2006). Indian J. Pharm. Sci. 68, 103–106.  CrossRef CAS Google Scholar
First citationMoghaddam, F. M. & Hojabri, L. (2007). J. Heterocycl. Chem. 44, 35–38.  CrossRef CAS Google Scholar
First citationMohamed, S. K., Akkurt, M., Tahir, M. N., Abdelhamid, A. A. & Khalilov, A. N. (2012). Acta Cryst. E68, o1881–o1882.  CSD CrossRef IUCr Journals Google Scholar
First citationShah, T. J. & Desai, V. A. (2007). Arkivoc, xiv, 218–228.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrivastava, S. K., Jain, A. & Srivastava, S. D. (2006). J. Indian Chem. Soc. 83, 1118–1123.  CAS Google Scholar
First citationSubudhi, B. B., Panda, P. K., Kundu, T., Sahoo, S. & Pradhan, D. (2007). J. Pharm. Res. 6, 114–118.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYella, R., Ghosh, H. & Patel, B. K. (2008). Green Chem. 10, 1307–1312.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, H., Wu, S., Zhai, S., Liu, A., Sun, Y., Li, R., Zhang, Y., Ekins, S., Swaan, P. W., Fang, B., Zhang, B. & Yan, B. (2008). J. Med. Chem. 51, 1242–1250.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds