metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(N-Benzoyl-N′,N′-di­phenyl­thio­ureato-κ2S,O)(η4-cyclo­octa-1,5-diene)rhodium(I)

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: 2011009426@ufs4life.ac.za

(Received 27 June 2012; accepted 29 June 2012; online 10 July 2012)

The title complex, [Rh(C20H15N2OS)(C8H12)], exhibits an essentially square-planar coordination environment around the RhI atom, which bears a bidentate cyclo­octa­diene ligand as well as a monoanionic bidentate benzoyl­thio­ureate ligand. The RhI atom, the S- and O-donor atoms and the alkene centroids of the cyclo­octa­diene ligand do not deviate by more than 0.031 Å from their least mean-squares plane.

Related literature

For rhodium complexes containing related monoanionic bidentate ligands, see: Trzeciak et al. (2004[Trzeciak, A. M., Borak, B., Cinnik, Z., Ziolkowski, J. J., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2004). Eur. J. Inorg. Chem. pp. 1411-1419.]); Roodt et al. (2011[Roodt, A., Visser, H. G. & Brink, A. (2011). Crystallogr. Rev. 17, 241-280.]); Crous et al. (2005[Crous, R., Datt, M., Foster, D., Bennie, L., Steenkamp, C., Huyser, J., Kirsten, L., Steyl, G. & Roodt, A. (2005). Dalton Trans. pp. 1108-1116.]); Guiseppe et al. (2011[Guiseppe, A. D., Casterlenas, R., Perez-Torrente, J. J., Lahoz, F. H., Polo, V. & Oro, L. A. (2011). Angew. Chem. Int. Ed. 50, 3938-3942.]); Venter et al. (2009[Venter, J. A., Purcell, W., Visser, H. G. & Muller, T. J. (2009). Acta Cryst. E65, m1578.]). For bidentate thio­ureato ligands, see: Sacht et al. (2000a[Sacht, C. I., Datt, M. S., Otto, S. & Roodt, A. (2000a). J. Chem. Soc. Dalton Trans. pp. 727-73.],b[Sacht, C. I., Datt, M. S., Otto, S. & Roodt, A. (2000b). J. Chem. Soc. Dalton Trans. pp. 4579-4586.]); Kemp et al. (1997[Kemp, G., Purcell, W., Roodt, A. & Koch, K. R. (1997). J. Chem. Soc. Dalton Trans. pp. 4481-4483.]). For RhI complexes bearing cyclo­octa­diene and S,O-bidentate ligands, see: Grim et al. (1991[Grim, S. O., Kettler, P. B. & Thoden, J. B. (1991). Organometallics, 10, 2399-2403.]); Hesp et al. (2007[Hesp, K. D., Wechsler, D., Cipot, J., Myers, A., McDonald, R., Ferguson, M. J., Schatte, G. & Stradiotto, M. (2007). Organometallics, 26, 5430-5437.]). For RhI complexes bearing a thio­urea ligand and cyclo­octa­diene, see: Kotze et al. (2010[Kotze, P. D. R., Roodt, A., Venter, J. A. & Otto, S. (2010). Acta Cryst. E66, m1028-m1029.]); Cauzzi et al. (1995[Cauzzi, D., Lanfranchi, M., Marzolini, G., Predieri, G., Tiripicchio, A., Costa, M. & Zanoni, R. (1995). J. Organomet. Chem. 488, 115-125.]). For tris­ubstituted thio­urea ligands, see: Hernandez et al. (2003[Hernandez, W., Spodine, E., Munoz, J. C., Beyer, L., Schroder, U., Ferreira, J. & Pavani, M. (2003). Bioinorg. Chem. Appl. 1, 271-284.]); Arslan et al. (2003[Arslan, H., Flörke, U. & Külcü, N. (2003). Acta Cryst. E59, o641-o642.]).

[Scheme 1]

Experimental

Crystal data
  • [Rh(C20H15N2OS)(C8H12)]

  • Mr = 542.50

  • Triclinic, [P \overline 1]

  • a = 9.8028 (4) Å

  • b = 11.2293 (5) Å

  • c = 11.5316 (5) Å

  • α = 90.408 (2)°

  • β = 91.684 (2)°

  • γ = 112.1831 (18)°

  • V = 1174.69 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.84 mm−1

  • T = 100 K

  • 0.22 × 0.17 × 0.09 mm

Data collection
  • Bruker X8 APEXII 4K KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.843, Tmax = 0.927

  • 12388 measured reflections

  • 5583 independent reflections

  • 5014 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.07

  • S = 1.04

  • 5583 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −1.01 e Å−3

Table 1
Selected bond lengths (Å)

Rh1—O5 2.0537 (16)
Rh1—C21 2.116 (2)
Rh1—C22 2.131 (2)
Rh1—C25 2.148 (2)
Rh1—C26 2.155 (2)
Rh1—S1 2.2942 (10)
C01—O5 1.263 (2)
C01—N1 1.330 (3)
C02—N1 1.346 (3)
C02—S1 1.726 (2)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Rhodium complexes bearing bidentate ligands that bond through σ-interactions, such as β-diketonates and 8-hydroxyquinolates are well known (Trzeciak et al., 2004; Guiseppe et al., 2011). These bidentate ligands are compatible with a wide range of other ligands such as carbonyls and phosphines (Crous et al., 2005; Venter et al., 2009; Roodt et al., 2011). Also regularly employed are thioureato ligands (Sacht et al., 2000a,b; Kemp et al., 1997).

The title compound [Rh(C8H12)(C20H15N2OS)], (I), bears a benzoyl-functionalized thioureato moiety (Arslan et al., 2003), which can coordinate as a mono- or a bidentate ligand, depending on the metal and the other ligands present. With this specific ligand class, it was found that the peripheral substitution pattern significantly influences the coordination behaviour. When an N,N',N'-trisubstituted thiourea ligand was employed, as is the case in this study, the thiourea coordinates as a monoanionic bidentate ligand, whereas an N,N'-disubstituted thiourea coordinates only through its sulfur-atom as a neutral monodentate ligand which is stabilized through intramolecular hydrogen bonding (Cauzzi et al., 1995; Kotze et al., 2010). One of these hydrogen bonds ensures that the sulfur and oxygen atoms are in a mutual trans-position, which stabilizes the pre-ligand in such a way that bidentate coordination is prevented. In the trisubstituted variation used in this study, this intramolecular interaction is not possible (Hernandez et al., 2003), which enables the ligand to coordinate through its sulfur and oxygen atoms simultaneously. This structural report is only the third in which a rhodium complex bears both cyclooctadiene and S,O-bidentate ligands (Grim et al., 1991; Hesp et al., 2007).

The geometric parameters show that the rhodium(I) atom in the title compound has an essentially square planar coordination sphere. The deviation of the rhodium ion from the least mean squares plane, defined by the rhodium, oxygen and sulfur atoms and the centroids of the cyclooctadiene alkene bonds, is 0.001 Å. The donor atoms of the thioureato ligand and the centroids do not deviate more than 0.031 and 0.011 Å, respectively. The S,O-ligand exhibits a bite angle of 92.60 (5)°, and the cyclooctadiene ligand shows a bite angle of 87.90 (8)°. The bond lengths of the ligands to rhodium are all within the expected range for a compound of this type. The monoanionic ligand shows electron delocalization so that the bond lengths fall between those of single and double C—O, C—S and C—N bonds. There are no significant intermolecular interactions.

Related literature top

For rhodium complexes containing related monoanionic bidentate ligands, see: Trzeciak et al. (2004); Roodt et al. (2011); Crous et al. (2005); Guiseppe et al. (2011); Venter et al. (2009). For bidentate thioureato ligands, see: Sacht et al. (2000a,b); Kemp et al. (1997). For RhI complexes bearing cyclooctadiene and S,O-bidentate ligands, see: Grim et al. (1991); Hesp et al. (2007). For RhI complexes bearing a thiourea ligand and cyclooctadiene, see: Kotze et al. (2010); Cauzzi et al. (1995). For trisubstituted thiourea ligands, see: Hernandez et al. (2003); Arslan et al. (2003).

Experimental top

The title compound was prepared by adding 0.4 mmol of N-benzoyl-N,N'-diphenyl thiourea to a suspension of 0.2 mmol [RhCl(cod)]2 (cod is cyclooctadiene) in 5 ml of dichloromethane. The orange suspension changed into an orange solution, from which a yellow precipitate formed. After one hour of stirring, the yellow solid was isolated by filtration with a yield of 197 mg (90%, 0.36 mmol). 1H NMR (300 MHz, CDCl3): δ 7.66 (d, 3J(HH) = 7.4 Hz, 2H, o-benzoyl-H), 7.5–7.2 (m, 13H, 2x Ph, benzoyl), 4.71 (m, 2H, cod-alkene), 3.84 (m, 2H, cod-alkene), 2.6–2.4 (m, 4H, cod-alkane), 2.1–1.9 (m, 4H, cod-alkane). Yellow crystals of (I) were obtained by slow evaporation of a dichloromethane solution.

Refinement top

The hydrogen atoms were added geometrically and refined as riding on their parent atoms, with C—H distances of 0.95 Å for phenyl H atoms, of 1.00 Å for those bonded to sp2 C atoms and of 0.99 Å for those bonded to sp2 C atoms of the cyclooctadiene ligand. The thermal displacement coefficients Uiso(H) were set to 1.2Ueq(C) of the corresponding parent atoms.

Structure description top

Rhodium complexes bearing bidentate ligands that bond through σ-interactions, such as β-diketonates and 8-hydroxyquinolates are well known (Trzeciak et al., 2004; Guiseppe et al., 2011). These bidentate ligands are compatible with a wide range of other ligands such as carbonyls and phosphines (Crous et al., 2005; Venter et al., 2009; Roodt et al., 2011). Also regularly employed are thioureato ligands (Sacht et al., 2000a,b; Kemp et al., 1997).

The title compound [Rh(C8H12)(C20H15N2OS)], (I), bears a benzoyl-functionalized thioureato moiety (Arslan et al., 2003), which can coordinate as a mono- or a bidentate ligand, depending on the metal and the other ligands present. With this specific ligand class, it was found that the peripheral substitution pattern significantly influences the coordination behaviour. When an N,N',N'-trisubstituted thiourea ligand was employed, as is the case in this study, the thiourea coordinates as a monoanionic bidentate ligand, whereas an N,N'-disubstituted thiourea coordinates only through its sulfur-atom as a neutral monodentate ligand which is stabilized through intramolecular hydrogen bonding (Cauzzi et al., 1995; Kotze et al., 2010). One of these hydrogen bonds ensures that the sulfur and oxygen atoms are in a mutual trans-position, which stabilizes the pre-ligand in such a way that bidentate coordination is prevented. In the trisubstituted variation used in this study, this intramolecular interaction is not possible (Hernandez et al., 2003), which enables the ligand to coordinate through its sulfur and oxygen atoms simultaneously. This structural report is only the third in which a rhodium complex bears both cyclooctadiene and S,O-bidentate ligands (Grim et al., 1991; Hesp et al., 2007).

The geometric parameters show that the rhodium(I) atom in the title compound has an essentially square planar coordination sphere. The deviation of the rhodium ion from the least mean squares plane, defined by the rhodium, oxygen and sulfur atoms and the centroids of the cyclooctadiene alkene bonds, is 0.001 Å. The donor atoms of the thioureato ligand and the centroids do not deviate more than 0.031 and 0.011 Å, respectively. The S,O-ligand exhibits a bite angle of 92.60 (5)°, and the cyclooctadiene ligand shows a bite angle of 87.90 (8)°. The bond lengths of the ligands to rhodium are all within the expected range for a compound of this type. The monoanionic ligand shows electron delocalization so that the bond lengths fall between those of single and double C—O, C—S and C—N bonds. There are no significant intermolecular interactions.

For rhodium complexes containing related monoanionic bidentate ligands, see: Trzeciak et al. (2004); Roodt et al. (2011); Crous et al. (2005); Guiseppe et al. (2011); Venter et al. (2009). For bidentate thioureato ligands, see: Sacht et al. (2000a,b); Kemp et al. (1997). For RhI complexes bearing cyclooctadiene and S,O-bidentate ligands, see: Grim et al. (1991); Hesp et al. (2007). For RhI complexes bearing a thiourea ligand and cyclooctadiene, see: Kotze et al. (2010); Cauzzi et al. (1995). For trisubstituted thiourea ligands, see: Hernandez et al. (2003); Arslan et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. H-atoms have been omitted for clarity.
(N-Benzoyl-N',N'-diphenylthioureato- κ2S,O)(η4-cycloocta-1,5-diene)rhodium(I) top
Crystal data top
[Rh(C20H15N2OS)(C8H12)]Z = 2
Mr = 542.50F(000) = 556
Triclinic, P1Dx = 1.534 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 9.8028 (4) ÅCell parameters from 7390 reflections
b = 11.2293 (5) Åθ = 2.7–28.4°
c = 11.5316 (5) ŵ = 0.84 mm1
α = 90.408 (2)°T = 100 K
β = 91.684 (2)°Cuboid, yellow
γ = 112.1831 (18)°0.22 × 0.17 × 0.09 mm
V = 1174.69 (9) Å3
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
5583 independent reflections
Radiation source: fine-focus sealed tube5014 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and φ scansθmax = 28°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1212
Tmin = 0.843, Tmax = 0.927k = 1414
12388 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.07H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0309P)2 + 0.9591P]
where P = (Fo2 + 2Fc2)/3
5583 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 1.01 e Å3
0 constraints
Crystal data top
[Rh(C20H15N2OS)(C8H12)]γ = 112.1831 (18)°
Mr = 542.50V = 1174.69 (9) Å3
Triclinic, P1Z = 2
a = 9.8028 (4) ÅMo Kα radiation
b = 11.2293 (5) ŵ = 0.84 mm1
c = 11.5316 (5) ÅT = 100 K
α = 90.408 (2)°0.22 × 0.17 × 0.09 mm
β = 91.684 (2)°
Data collection top
Bruker X8 APEXII 4K KappaCCD
diffractometer
5583 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
5014 reflections with I > 2σ(I)
Tmin = 0.843, Tmax = 0.927Rint = 0.025
12388 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.07H-atom parameters constrained
S = 1.04Δρmax = 0.66 e Å3
5583 reflectionsΔρmin = 1.01 e Å3
298 parameters
Special details top

Experimental. The intensity data was collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 10 s/frame. A total of 1166 frames was collected with a frame width of 0.5° covering up to θ = 28.00° with 98.3% completeness accomplished.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh10.208984 (18)0.353095 (14)0.129434 (13)0.01276 (6)
C010.2830 (2)0.59145 (18)0.28171 (17)0.0130 (4)
C020.2300 (2)0.41377 (19)0.40937 (17)0.0140 (4)
C030.3203 (2)0.73436 (19)0.28531 (18)0.0140 (4)
C040.3589 (2)0.8052 (2)0.18426 (19)0.0171 (4)
H040.36210.76310.11320.02*
C050.3927 (3)0.9370 (2)0.1869 (2)0.0219 (5)
H050.420.98490.1180.026*
C060.3866 (3)0.9989 (2)0.2904 (2)0.0229 (5)
H060.40891.08890.29210.027*
C070.3477 (3)0.9289 (2)0.3912 (2)0.0212 (5)
H070.34310.97130.46170.025*
C080.3154 (2)0.7970 (2)0.38982 (19)0.0181 (4)
H080.29010.74980.45930.022*
C090.1983 (2)0.26329 (18)0.56941 (17)0.0139 (4)
C100.0552 (2)0.1837 (2)0.59464 (18)0.0175 (4)
H100.02430.21120.58090.021*
C110.0300 (3)0.0630 (2)0.64042 (19)0.0206 (4)
H110.06750.0070.65680.025*
C120.1464 (3)0.0243 (2)0.66217 (18)0.0191 (4)
H120.12860.05810.69340.023*
C130.2891 (3)0.1056 (2)0.63844 (18)0.0177 (4)
H130.36880.07910.65460.021*
C140.3161 (2)0.22573 (19)0.59104 (18)0.0160 (4)
H140.41350.28110.57380.019*
C150.2466 (2)0.49150 (19)0.60976 (17)0.0146 (4)
C160.1290 (3)0.5237 (2)0.63976 (19)0.0193 (4)
H160.03460.48060.60350.023*
C170.1497 (3)0.6194 (2)0.7232 (2)0.0229 (5)
H170.06960.64230.74370.028*
C180.2883 (3)0.6818 (2)0.77667 (19)0.0226 (5)
H180.30280.74770.83320.027*
C190.4047 (3)0.6476 (2)0.74738 (19)0.0206 (5)
H190.49880.68950.78460.025*
C200.3844 (2)0.5520 (2)0.66356 (19)0.0179 (4)
H200.46420.52840.64340.021*
C210.2178 (3)0.17668 (19)0.07235 (18)0.0182 (4)
H210.2350.12390.13640.022*
C220.0719 (2)0.16845 (19)0.06089 (18)0.0170 (4)
H220.00450.11120.11830.02*
C230.0034 (3)0.1745 (2)0.0552 (2)0.0214 (5)
H23A0.1090.11820.05310.026*
H23B0.04110.14120.11720.026*
C240.0098 (3)0.3117 (2)0.0848 (2)0.0220 (5)
H24A0.00750.31990.17010.026*
H24B0.0760.32660.05460.026*
C250.1499 (3)0.4135 (2)0.03437 (18)0.0178 (4)
H250.14770.50180.0320.021*
C260.2907 (3)0.4124 (2)0.04074 (18)0.0186 (4)
H260.37090.49980.04230.022*
C270.3242 (3)0.3089 (2)0.10575 (19)0.0213 (5)
H27A0.42150.34810.14120.026*
H27B0.2490.27210.1690.026*
C280.3250 (3)0.2003 (2)0.0247 (2)0.0228 (5)
H28A0.30.11990.07120.027*
H28B0.42570.22270.00930.027*
N10.2633 (2)0.53861 (16)0.38583 (15)0.0151 (3)
N20.2253 (2)0.38996 (16)0.52418 (15)0.0144 (3)
O50.27726 (18)0.54244 (13)0.18189 (12)0.0178 (3)
S10.19325 (6)0.28310 (5)0.31682 (4)0.01539 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.01427 (9)0.00972 (8)0.01327 (9)0.00346 (6)0.00045 (6)0.00109 (5)
C010.0090 (9)0.0108 (9)0.0177 (10)0.0020 (7)0.0010 (7)0.0010 (7)
C020.0112 (10)0.0144 (9)0.0156 (10)0.0042 (8)0.0005 (7)0.0005 (7)
C030.0096 (9)0.0101 (9)0.0210 (10)0.0025 (7)0.0025 (8)0.0006 (7)
C040.0155 (10)0.0154 (10)0.0194 (10)0.0049 (8)0.0023 (8)0.0003 (8)
C050.0198 (11)0.0154 (10)0.0285 (12)0.0045 (9)0.0034 (9)0.0055 (9)
C060.0176 (11)0.0113 (9)0.0398 (14)0.0062 (9)0.0055 (10)0.0026 (9)
C070.0174 (11)0.0167 (10)0.0294 (12)0.0070 (9)0.0037 (9)0.0087 (9)
C080.0153 (10)0.0154 (10)0.0225 (11)0.0046 (8)0.0008 (8)0.0015 (8)
C090.0178 (10)0.0105 (9)0.0117 (9)0.0037 (8)0.0011 (8)0.0017 (7)
C100.0146 (10)0.0185 (10)0.0194 (10)0.0064 (9)0.0012 (8)0.0001 (8)
C110.0188 (11)0.0147 (10)0.0240 (11)0.0013 (9)0.0023 (9)0.0010 (8)
C120.0278 (12)0.0131 (9)0.0157 (10)0.0066 (9)0.0030 (9)0.0017 (8)
C130.0214 (11)0.0173 (10)0.0161 (10)0.0096 (9)0.0031 (8)0.0031 (8)
C140.0146 (10)0.0147 (10)0.0169 (10)0.0036 (8)0.0007 (8)0.0020 (8)
C150.0169 (10)0.0122 (9)0.0133 (9)0.0038 (8)0.0006 (8)0.0020 (7)
C160.0172 (11)0.0208 (11)0.0198 (10)0.0074 (9)0.0018 (8)0.0012 (8)
C170.0240 (12)0.0252 (11)0.0242 (11)0.0144 (10)0.0032 (9)0.0010 (9)
C180.0310 (13)0.0164 (10)0.0198 (11)0.0085 (10)0.0004 (9)0.0028 (8)
C190.0206 (11)0.0144 (10)0.0221 (11)0.0015 (9)0.0025 (9)0.0022 (8)
C200.0179 (11)0.0148 (10)0.0207 (10)0.0058 (8)0.0005 (8)0.0000 (8)
C210.0263 (12)0.0120 (9)0.0171 (10)0.0084 (9)0.0016 (9)0.0026 (8)
C220.0198 (11)0.0089 (9)0.0196 (10)0.0025 (8)0.0016 (8)0.0035 (7)
C230.0216 (12)0.0159 (10)0.0236 (11)0.0040 (9)0.0057 (9)0.0037 (8)
C240.0233 (12)0.0205 (11)0.0226 (11)0.0094 (9)0.0064 (9)0.0014 (9)
C250.0256 (12)0.0125 (9)0.0145 (10)0.0068 (9)0.0045 (8)0.0008 (7)
C260.0232 (12)0.0158 (10)0.0140 (10)0.0040 (9)0.0018 (8)0.0014 (8)
C270.0249 (12)0.0232 (11)0.0169 (10)0.0099 (10)0.0043 (9)0.0005 (8)
C280.0254 (12)0.0251 (11)0.0218 (11)0.0142 (10)0.0001 (9)0.0044 (9)
N10.0148 (9)0.0123 (8)0.0174 (9)0.0044 (7)0.0007 (7)0.0003 (6)
N20.0151 (9)0.0104 (8)0.0152 (8)0.0023 (7)0.0012 (7)0.0016 (6)
O50.0244 (8)0.0101 (7)0.0153 (7)0.0026 (6)0.0004 (6)0.0016 (5)
S10.0199 (3)0.0101 (2)0.0143 (2)0.0037 (2)0.00070 (19)0.00073 (18)
Geometric parameters (Å, º) top
Rh1—O52.0537 (16)C14—H140.95
Rh1—C212.116 (2)C15—C161.384 (3)
Rh1—C222.131 (2)C15—C201.387 (3)
Rh1—C252.148 (2)C15—N21.453 (3)
Rh1—C262.155 (2)C16—C171.390 (3)
Rh1—S12.2942 (10)C16—H160.95
C01—O51.263 (2)C17—C181.393 (3)
C01—N11.330 (3)C17—H170.95
C01—C031.505 (3)C18—C191.384 (3)
C02—N11.346 (3)C18—H180.95
C02—N21.351 (3)C19—C201.393 (3)
C02—S11.726 (2)C19—H190.95
C03—C041.395 (3)C20—H200.95
C03—C081.403 (3)C21—C221.400 (3)
C04—C051.389 (3)C21—C281.514 (3)
C04—H040.95C21—H211
C05—C061.390 (3)C22—C231.524 (3)
C05—H050.95C22—H221
C06—C071.389 (3)C23—C241.538 (3)
C06—H060.95C23—H23A0.99
C07—C081.392 (3)C23—H23B0.99
C07—H070.95C24—C251.512 (3)
C08—H080.95C24—H24A0.99
C09—C141.388 (3)C24—H24B0.99
C09—C101.390 (3)C25—C261.389 (3)
C09—N21.449 (2)C25—H251
C10—C111.394 (3)C26—C271.520 (3)
C10—H100.95C26—H261
C11—C121.382 (3)C27—C281.544 (3)
C11—H110.95C27—H27A0.99
C12—C131.388 (3)C27—H27B0.99
C12—H120.95C28—H28A0.99
C13—C141.392 (3)C28—H28B0.99
C13—H130.95
O5—Rh1—C21160.27 (8)C18—C17—H17120.1
O5—Rh1—C22160.44 (8)C19—C18—C17120.0 (2)
C21—Rh1—C2238.48 (9)C19—C18—H18120
O5—Rh1—C2586.38 (7)C17—C18—H18120
C21—Rh1—C2598.03 (8)C18—C19—C20120.3 (2)
C22—Rh1—C2581.92 (8)C18—C19—H19119.9
O5—Rh1—C2689.94 (7)C20—C19—H19119.9
C21—Rh1—C2682.25 (8)C15—C20—C19119.4 (2)
C22—Rh1—C2690.31 (9)C15—C20—H20120.3
C25—Rh1—C2637.66 (9)C19—C20—H20120.3
O5—Rh1—S192.60 (5)C22—C21—C28125.9 (2)
C21—Rh1—S189.41 (6)C22—C21—Rh171.31 (12)
C22—Rh1—S193.30 (6)C28—C21—Rh1109.86 (14)
C25—Rh1—S1160.68 (7)C22—C21—H21113.9
C26—Rh1—S1161.63 (7)C28—C21—H21113.9
O5—C01—N1131.01 (18)Rh1—C21—H21113.9
O5—C01—C03115.41 (17)C21—C22—C23123.5 (2)
N1—C01—C03113.57 (18)C21—C22—Rh170.21 (12)
N1—C02—N2113.29 (18)C23—C22—Rh1113.14 (14)
N1—C02—S1130.18 (16)C21—C22—H22114.1
N2—C02—S1116.53 (15)C23—C22—H22114.1
C04—C03—C08119.53 (19)Rh1—C22—H22114.1
C04—C03—C01120.11 (19)C22—C23—C24112.68 (18)
C08—C03—C01120.36 (18)C22—C23—H23A109.1
C05—C04—C03120.4 (2)C24—C23—H23A109.1
C05—C04—H04119.8C22—C23—H23B109.1
C03—C04—H04119.8C24—C23—H23B109.1
C04—C05—C06120.1 (2)H23A—C23—H23B107.8
C04—C05—H05120C25—C24—C23112.62 (18)
C06—C05—H05120C25—C24—H24A109.1
C07—C06—C05119.9 (2)C23—C24—H24A109.1
C07—C06—H06120.1C25—C24—H24B109.1
C05—C06—H06120.1C23—C24—H24B109.1
C06—C07—C08120.5 (2)H24A—C24—H24B107.8
C06—C07—H07119.7C26—C25—C24125.8 (2)
C08—C07—H07119.7C26—C25—Rh171.44 (12)
C07—C08—C03119.6 (2)C24—C25—Rh1110.18 (14)
C07—C08—H08120.2C26—C25—H25113.8
C03—C08—H08120.2C24—C25—H25113.8
C14—C09—C10121.27 (19)Rh1—C25—H25113.8
C14—C09—N2119.49 (19)C25—C26—C27123.3 (2)
C10—C09—N2119.20 (19)C25—C26—Rh170.90 (12)
C09—C10—C11119.0 (2)C27—C26—Rh1112.49 (14)
C09—C10—H10120.5C25—C26—H26114.2
C11—C10—H10120.5C27—C26—H26114.2
C12—C11—C10120.3 (2)Rh1—C26—H26114.2
C12—C11—H11119.9C26—C27—C28111.68 (18)
C10—C11—H11119.9C26—C27—H27A109.3
C11—C12—C13120.1 (2)C28—C27—H27A109.3
C11—C12—H12119.9C26—C27—H27B109.3
C13—C12—H12119.9C28—C27—H27B109.3
C12—C13—C14120.4 (2)H27A—C27—H27B107.9
C12—C13—H13119.8C21—C28—C27113.09 (19)
C14—C13—H13119.8C21—C28—H28A109
C09—C14—C13118.9 (2)C27—C28—H28A109
C09—C14—H14120.6C21—C28—H28B109
C13—C14—H14120.6C27—C28—H28B109
C16—C15—C20120.8 (2)H28A—C28—H28B107.8
C16—C15—N2120.08 (19)C01—N1—C02126.80 (18)
C20—C15—N2119.10 (19)C02—N2—C09122.68 (17)
C15—C16—C17119.7 (2)C02—N2—C15121.22 (17)
C15—C16—H16120.1C09—N2—C15116.10 (16)
C17—C16—H16120.1C01—O5—Rh1130.27 (13)
C16—C17—C18119.9 (2)C02—S1—Rh1108.49 (7)
C16—C17—H17120.1
O5—C01—C03—C045.8 (3)C21—Rh1—C25—C2666.06 (14)
N1—C01—C03—C04173.41 (18)C22—Rh1—C25—C26101.12 (14)
O5—C01—C03—C08173.64 (19)S1—Rh1—C25—C26177.86 (13)
N1—C01—C03—C087.2 (3)O5—Rh1—C25—C24143.13 (16)
C08—C03—C04—C050.2 (3)C21—Rh1—C25—C2456.21 (17)
C01—C03—C04—C05179.6 (2)C22—Rh1—C25—C2421.15 (16)
C03—C04—C05—C060.7 (3)C26—Rh1—C25—C24122.3 (2)
C04—C05—C06—C070.5 (3)S1—Rh1—C25—C2455.6 (3)
C05—C06—C07—C080.3 (3)C24—C25—C26—C273.0 (3)
C06—C07—C08—C030.8 (3)Rh1—C25—C26—C27104.9 (2)
C04—C03—C08—C070.6 (3)C24—C25—C26—Rh1101.9 (2)
C01—C03—C08—C07178.84 (19)O5—Rh1—C26—C2584.15 (13)
C14—C09—C10—C111.3 (3)C21—Rh1—C26—C25114.02 (13)
N2—C09—C10—C11178.66 (19)C22—Rh1—C26—C2576.28 (13)
C09—C10—C11—C121.1 (3)S1—Rh1—C26—C25177.75 (14)
C10—C11—C12—C130.0 (3)O5—Rh1—C26—C27156.78 (16)
C11—C12—C13—C141.0 (3)C21—Rh1—C26—C275.04 (16)
C10—C09—C14—C130.3 (3)C22—Rh1—C26—C2742.78 (17)
N2—C09—C14—C13177.69 (18)C25—Rh1—C26—C27119.1 (2)
C12—C13—C14—C090.8 (3)S1—Rh1—C26—C2758.7 (3)
C20—C15—C16—C171.2 (3)C25—C26—C27—C2894.1 (3)
N2—C15—C16—C17178.88 (19)Rh1—C26—C27—C2812.9 (2)
C15—C16—C17—C180.4 (3)C22—C21—C28—C2744.9 (3)
C16—C17—C18—C190.6 (3)Rh1—C21—C28—C2735.9 (2)
C17—C18—C19—C200.7 (3)C26—C27—C28—C2132.2 (3)
C16—C15—C20—C191.0 (3)O5—C01—N1—C020.6 (4)
N2—C15—C20—C19178.70 (18)C03—C01—N1—C02179.59 (19)
C18—C19—C20—C150.0 (3)N2—C02—N1—C01176.38 (19)
O5—Rh1—C21—C22167.87 (17)S1—C02—N1—C013.7 (3)
C25—Rh1—C21—C2266.06 (14)N1—C02—N2—C09177.07 (18)
C26—Rh1—C21—C22100.37 (14)S1—C02—N2—C093.0 (3)
S1—Rh1—C21—C2296.05 (12)N1—C02—N2—C153.3 (3)
O5—Rh1—C21—C2845.4 (3)S1—C02—N2—C15176.63 (15)
C22—Rh1—C21—C28122.4 (2)C14—C09—N2—C0288.4 (2)
C25—Rh1—C21—C2856.38 (17)C10—C09—N2—C0294.2 (2)
C26—Rh1—C21—C2822.07 (15)C14—C09—N2—C1592.0 (2)
S1—Rh1—C21—C28141.51 (15)C10—C09—N2—C1585.4 (2)
C28—C21—C22—C233.8 (3)C16—C15—N2—C0284.2 (3)
Rh1—C21—C22—C23105.22 (19)C20—C15—N2—C0298.1 (2)
C28—C21—C22—Rh1101.4 (2)C16—C15—N2—C0995.4 (2)
O5—Rh1—C22—C21167.77 (18)C20—C15—N2—C0982.3 (2)
C25—Rh1—C22—C21113.92 (14)N1—C01—O5—Rh18.8 (3)
C26—Rh1—C22—C2177.09 (13)C03—C01—O5—Rh1172.15 (13)
S1—Rh1—C22—C2184.89 (12)C21—Rh1—O5—C01104.8 (3)
O5—Rh1—C22—C2348.8 (3)C22—Rh1—O5—C0198.2 (3)
C21—Rh1—C22—C23119.0 (2)C25—Rh1—O5—C01151.38 (19)
C25—Rh1—C22—C235.05 (17)C26—Rh1—O5—C01171.10 (19)
C26—Rh1—C22—C2341.89 (17)S1—Rh1—O5—C019.30 (18)
S1—Rh1—C22—C23156.14 (16)N1—C02—S1—Rh10.0 (2)
C21—C22—C23—C2492.8 (3)N2—C02—S1—Rh1179.91 (14)
Rh1—C22—C23—C2412.0 (3)O5—Rh1—S1—C024.43 (9)
C22—C23—C24—C2530.3 (3)C21—Rh1—S1—C02164.79 (10)
C23—C24—C25—C2647.4 (3)C22—Rh1—S1—C02156.91 (10)
C23—C24—C25—Rh133.8 (2)C25—Rh1—S1—C0282.05 (19)
O5—Rh1—C25—C2694.60 (13)C26—Rh1—S1—C02102.1 (2)

Experimental details

Crystal data
Chemical formula[Rh(C20H15N2OS)(C8H12)]
Mr542.50
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.8028 (4), 11.2293 (5), 11.5316 (5)
α, β, γ (°)90.408 (2), 91.684 (2), 112.1831 (18)
V3)1174.69 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.84
Crystal size (mm)0.22 × 0.17 × 0.09
Data collection
DiffractometerBruker X8 APEXII 4K KappaCCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.843, 0.927
No. of measured, independent and
observed [I > 2σ(I)] reflections
12388, 5583, 5014
Rint0.025
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.07, 1.04
No. of reflections5583
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 1.01

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Rh1—O52.0537 (16)Rh1—S12.2942 (10)
Rh1—C212.116 (2)C01—O51.263 (2)
Rh1—C222.131 (2)C01—N11.330 (3)
Rh1—C252.148 (2)C02—N11.346 (3)
Rh1—C262.155 (2)C02—S11.726 (2)
 

Acknowledgements

The authors thank SASOL, the South African NRF and THRIP, the University of the Free State Research Fund and the UFS Materials and Nanosciences SStrategic Research Cluster initiative for financial support. The views expressed do not necessarily represent those of the NRF.

References

First citationArslan, H., Flörke, U. & Külcü, N. (2003). Acta Cryst. E59, o641–o642.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCauzzi, D., Lanfranchi, M., Marzolini, G., Predieri, G., Tiripicchio, A., Costa, M. & Zanoni, R. (1995). J. Organomet. Chem. 488, 115–125.  CSD CrossRef CAS Web of Science Google Scholar
First citationCrous, R., Datt, M., Foster, D., Bennie, L., Steenkamp, C., Huyser, J., Kirsten, L., Steyl, G. & Roodt, A. (2005). Dalton Trans. pp. 1108–1116.  Web of Science CSD CrossRef PubMed Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGrim, S. O., Kettler, P. B. & Thoden, J. B. (1991). Organometallics, 10, 2399–2403.  CSD CrossRef CAS Web of Science Google Scholar
First citationGuiseppe, A. D., Casterlenas, R., Perez-Torrente, J. J., Lahoz, F. H., Polo, V. & Oro, L. A. (2011). Angew. Chem. Int. Ed. 50, 3938–3942.  Google Scholar
First citationHernandez, W., Spodine, E., Munoz, J. C., Beyer, L., Schroder, U., Ferreira, J. & Pavani, M. (2003). Bioinorg. Chem. Appl. 1, 271–284.  CAS Google Scholar
First citationHesp, K. D., Wechsler, D., Cipot, J., Myers, A., McDonald, R., Ferguson, M. J., Schatte, G. & Stradiotto, M. (2007). Organometallics, 26, 5430–5437.  Web of Science CSD CrossRef CAS Google Scholar
First citationKemp, G., Purcell, W., Roodt, A. & Koch, K. R. (1997). J. Chem. Soc. Dalton Trans. pp. 4481–4483.  Web of Science CSD CrossRef Google Scholar
First citationKotze, P. D. R., Roodt, A., Venter, J. A. & Otto, S. (2010). Acta Cryst. E66, m1028–m1029.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRoodt, A., Visser, H. G. & Brink, A. (2011). Crystallogr. Rev. 17, 241–280.  Web of Science CrossRef CAS Google Scholar
First citationSacht, C. I., Datt, M. S., Otto, S. & Roodt, A. (2000a). J. Chem. Soc. Dalton Trans. pp. 727–73.  Web of Science CSD CrossRef Google Scholar
First citationSacht, C. I., Datt, M. S., Otto, S. & Roodt, A. (2000b). J. Chem. Soc. Dalton Trans. pp. 4579–4586.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrzeciak, A. M., Borak, B., Cinnik, Z., Ziolkowski, J. J., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2004). Eur. J. Inorg. Chem. pp. 1411–1419.  Web of Science CSD CrossRef Google Scholar
First citationVenter, J. A., Purcell, W., Visser, H. G. & Muller, T. J. (2009). Acta Cryst. E65, m1578.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds