organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-{[Bis(2-hy­dr­oxy­eth­yl)amino]­meth­yl}-6-meth­­oxy-2H-chromen-2-one

aP.G. Department of Chemistry, Karnatak University, Dharwad 580 003, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India, and cDepartment of Physics, M.S. Ramaiah Institute of Technology, Bangalore 560054, India
*Correspondence e-mail: manohar274@gmail.com

(Received 6 June 2012; accepted 5 July 2012; online 10 July 2012)

In the title compound, C15H19NO5, an intra­molecular O—H⋯O hydrogen bond links the hy­droxy­ethyl side chains, forming a seven-membered ring. In the crystal, mol­ecules are linked into chains via O—H⋯O hydrogen bonds along the b axis. Further, mol­ecules are linked by weak inter­molecular C—H⋯O and ππ stacking inter­actions [centroid–centroid distance = 3.707 (4) Å].

Related literature

For the properties of coumarins, see: Meng et al. (1989[Meng, J., Fu, D., Yao, X. K., Wang, R. & Matsuura, T. (1989). Tetrahedron, 45, 6979-6986.]); Baures et al. (2002[Baures, W., Rush, J. R., Schroeder, S. D. & Beatty, A. M. (2002). Cryst. Growth. Des. 2, 107-110.]); Jadhav et al. (2010[Jadhav, V. B., Nayak, S. K., Guru Row, T. N. & Kulkarni, M. V. (2010). Eur. J. Med. Chem. 45, 3575-3580.]); Basanagouda et al. (2011[Basanagouda, M., Kulkarni, M. V., Sharma, D. & Gupta, V. K. (2011). J. Chem. Crystallogr. 41, 541-544.]); Kokila et al. (1995[Kokila, M. K., Jain, A., Puttaraja,, Kulkarni, M. V. & Shivaprakash, N. C. (1995). Acta Cryst. C51, 2585-2586.]); Khan et al. (2008[Khan, G. S., Clark, G. R. & Barker, D. (2008). Acta Cryst. E64, o1253.]). For 4-bromo­meth­yl-6-meth­oxy-2H-chromen-2-one, see: Basanagouda et al. (2011[Basanagouda, M., Kulkarni, M. V., Sharma, D. & Gupta, V. K. (2011). J. Chem. Crystallogr. 41, 541-544.]). For aromatic compounds containing a β-hy­droxy­ethyl side chain, see: Khan et al. (2008[Khan, G. S., Clark, G. R. & Barker, D. (2008). Acta Cryst. E64, o1253.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For C—H ⋯O inter­actions, see: Desiraju (2005[Desiraju, G. R. (2005). Chem. Commun. pp. 2995-3001.]). For stacking inter­actions, see: Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). For related literature on 4-bromomethyl-2H-chromen-2-one, see: Basanagouda & Kulkarni (2011[Basanagouda, M. & Kulkarni, M. V. (2011). Synth. Commun. 41, 2569-2582.]).

[Scheme 1]

Experimental

Crystal data
  • C15H19NO5

  • Mr = 293.31

  • Monoclinic, P 21 /c

  • a = 9.3038 (5) Å

  • b = 7.9290 (5) Å

  • c = 19.6216 (12) Å

  • β = 92.944 (5)°

  • V = 1445.56 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 123 K

  • 0.2 × 0.18 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.98, Tmax = 0.982

  • 14012 measured reflections

  • 2694 independent reflections

  • 1994 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.149

  • S = 1.02

  • 2694 reflections

  • 194 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O4i 0.84 1.85 2.685 (3) 174
O4—H4A⋯O3 0.84 2.06 2.875 (3) 164
C7—H7⋯O5ii 0.95 2.56 3.494 (2) 167
C14—H14B⋯O2iii 0.99 2.48 3.206 (3) 130
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z; (iii) -x, -y, -z+1.

Data collection: SMART (Bruker, 2008[Bruker (2008). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 2008[Bruker (2008). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Coumarins have been shown to be important molecular models, revealing different aspects of solid state organic chemistry. Derivatives of coumarin have been investigated for their solid state dimerisation (Meng et al., 1989), self association in the solid state (Baures et al., 2002), and host of other interesting features which have come to light by their crystal structure studies (Jadhav et al., 2010). Our earlier studies have shown that 4-aryloxymethyl coumarins exhibit a Head-tail packing (Gupta et al., 2011), whereas 4-arylamino methyl coumarins exhibit a layer like arrangement (Kokila et al., 1995) in solid state.

Diethanol amines are the key intermediate in the synthesis of nitrogen mustards and there are few reports on the structures possessing β-hydroxy ethyl side chain (Khan et al., 2008). In the light of above observations it was thought of considerable interest to study the title compound (Fig. 1) which was intermediate in a series of Nitrogen mustards synthesised for their anti-cancer activities.

The X-ray crystal structures of the title compound reveal that molecule is non-planar. The diethanol amine side chain is oriented towards the coumarin ring with the nitrogen being out of the plane of the molecule shown by the dihedral angles of C7-C8-C11-N1 -122.53 (2)° and C9-C8-C11-N1 62.23 (2)° . The shortened C2-O5 bond distance of 1.371 (3)Å compared to the C1-O5 bond distance of 1.417 (3) Å indicates the delocalization of lone pair of electrons on the O5 oxygen atom across the coumarin ring. The crystal structure of the compound is stabilized by of both intra and intermolecular O-H···O hydrogen bonds and inter molecular C-H···O interactions. The intramolecular O-H···O hydrogen bond connects diethanol amine side chains. In the solid state, molecules are linked via O-H···O hydrogen bonds. Further molecules are connected by weak C-H···O interactions and ππ stacking interactions [centroid-centroid distance = 3.707 (4)Å symmetry -x,-y,1-z]. (Table1)

Related literature top

For the properties of coumarins, see: Meng et al. (1989); Baures et al. (2002); Jadhav et al. (2010); Gupta et al. (2011); Kokila et al. (1995); Khan et al. (2008). For 4-(bromomethyl)-6-methoxy-2H-chromen-2-one, see: Basanagouda et al. (2011). For [the structure of a?] β-hydroxyethyl side chain containing coumarins, see: Khan et al. (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995). For C—H ···O interactions, see: Desiraju (2005). For stacking interactions, see: Janiak (2000). For related literature [on what subject?], see: Basanagouda & Kulkarni (2011).

Experimental top

The mixture of 4-(bromomethyl)-6-methoxy-2H-chromen-2-one (2.68 g, 0.01 mol) and diethanol amine (1.05 g, 0.015 mol) in a 1:1 (25 ml) mixture of ethylalcohol and ethyl acetate was refluxed for 5-6 h. After completion of the reaction, solvent was removed using rotary evaporator. Obtained viscous mass was diluted with ice cold water and extracted with ethyl acetate and purified by column chromatography using hexane/ ethyl acetate (6:4) as eluting solvent. A slow evaporation technique was used to grow crystals suitable for diffraction studies in ethyl acetate/ hexane (1:1.5) solvent mixture. Light yellow solid; yield 70%; m.p.98-100oC; IR (KBr, ν in cm-1) 1716 (C=O), 3319 (OH); 1H NMR (CDCl3, 300 MHz, TMS): δ ppm 2.15 (s, br, 1H, OH, D2O exchangeable), 2.82 (t, 4H, J = 6Hz, 2N-CH2), 3.34 (s, br, 1H, OH, D2O exchangeable), 3.69 (t, 4H, J = 6Hz, 2CH2-OH), 3.86 (s, 3H, C6-OCH3), 3.89 (s, 2H, C4-CH2), 6.67 (s, 1H, C3-H), 7.09 (d, 1H, J = 9Hz, Ar-H), 7.23-7.28 (m, 2H, Ar-H). MS m/z (M+1) 294. Anal. Calcd for C15H19NO5 (%):Calcd. C, 61.42; H, 6.53; N, 4.78. Found: C, 61.28; H, 6.39; N, 4.62.

Refinement top

All H atoms were fixed geometrically and treated as riding with C-H = 0.95Å (aromatic), 0.98Å (methyl) or 0.99Å (methylene) with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl).

Structure description top

Coumarins have been shown to be important molecular models, revealing different aspects of solid state organic chemistry. Derivatives of coumarin have been investigated for their solid state dimerisation (Meng et al., 1989), self association in the solid state (Baures et al., 2002), and host of other interesting features which have come to light by their crystal structure studies (Jadhav et al., 2010). Our earlier studies have shown that 4-aryloxymethyl coumarins exhibit a Head-tail packing (Gupta et al., 2011), whereas 4-arylamino methyl coumarins exhibit a layer like arrangement (Kokila et al., 1995) in solid state.

Diethanol amines are the key intermediate in the synthesis of nitrogen mustards and there are few reports on the structures possessing β-hydroxy ethyl side chain (Khan et al., 2008). In the light of above observations it was thought of considerable interest to study the title compound (Fig. 1) which was intermediate in a series of Nitrogen mustards synthesised for their anti-cancer activities.

The X-ray crystal structures of the title compound reveal that molecule is non-planar. The diethanol amine side chain is oriented towards the coumarin ring with the nitrogen being out of the plane of the molecule shown by the dihedral angles of C7-C8-C11-N1 -122.53 (2)° and C9-C8-C11-N1 62.23 (2)° . The shortened C2-O5 bond distance of 1.371 (3)Å compared to the C1-O5 bond distance of 1.417 (3) Å indicates the delocalization of lone pair of electrons on the O5 oxygen atom across the coumarin ring. The crystal structure of the compound is stabilized by of both intra and intermolecular O-H···O hydrogen bonds and inter molecular C-H···O interactions. The intramolecular O-H···O hydrogen bond connects diethanol amine side chains. In the solid state, molecules are linked via O-H···O hydrogen bonds. Further molecules are connected by weak C-H···O interactions and ππ stacking interactions [centroid-centroid distance = 3.707 (4)Å symmetry -x,-y,1-z]. (Table1)

For the properties of coumarins, see: Meng et al. (1989); Baures et al. (2002); Jadhav et al. (2010); Gupta et al. (2011); Kokila et al. (1995); Khan et al. (2008). For 4-(bromomethyl)-6-methoxy-2H-chromen-2-one, see: Basanagouda et al. (2011). For [the structure of a?] β-hydroxyethyl side chain containing coumarins, see: Khan et al. (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995). For C—H ···O interactions, see: Desiraju (2005). For stacking interactions, see: Janiak (2000). For related literature [on what subject?], see: Basanagouda & Kulkarni (2011).

Computing details top

Data collection: SMART (Bruker, 2008); cell refinement: SMART (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: PARST (Nardelli, 1995) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram showing intermolecular O—H···O and C—H···O interactions
4-{[Bis(2-hydroxyethyl)amino]methyl}-6-methoxy-2H-chromen-2-one top
Crystal data top
C15H19NO5F(000) = 624
Mr = 293.31Dx = 1.348 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2837 reflections
a = 9.3038 (5) Åθ = 2.8–29.6°
b = 7.9290 (5) ŵ = 0.10 mm1
c = 19.6216 (12) ÅT = 123 K
β = 92.944 (5)°Block, white
V = 1445.56 (15) Å30.2 × 0.18 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEX CCD detector
diffractometer
1994 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 25.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1111
Tmin = 0.98, Tmax = 0.982k = 99
14012 measured reflectionsl = 2323
2694 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0607P)2 + 0.6914P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2694 reflectionsΔρmax = 0.51 e Å3
194 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0048 (14)
Crystal data top
C15H19NO5V = 1445.56 (15) Å3
Mr = 293.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3038 (5) ŵ = 0.10 mm1
b = 7.9290 (5) ÅT = 123 K
c = 19.6216 (12) Å0.2 × 0.18 × 0.18 mm
β = 92.944 (5)°
Data collection top
Bruker SMART APEX CCD detector
diffractometer
2694 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1994 reflections with I > 2σ(I)
Tmin = 0.98, Tmax = 0.982Rint = 0.040
14012 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.02Δρmax = 0.51 e Å3
2694 reflectionsΔρmin = 0.26 e Å3
194 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6985 (3)0.3637 (5)0.38763 (14)0.0794 (9)
H1A0.64390.28620.35720.119*
H1B0.79540.37870.37130.119*
H1C0.64940.4730.38810.119*
C20.5821 (2)0.2628 (3)0.48505 (12)0.0478 (6)
C30.5966 (3)0.1769 (3)0.54703 (13)0.0576 (7)
H30.68950.14490.56480.069*
C40.4789 (3)0.1386 (3)0.58220 (12)0.0582 (7)
H40.48920.08120.62470.07*
C50.3436 (3)0.1843 (3)0.55550 (11)0.0477 (6)
C60.0911 (3)0.1865 (3)0.57398 (13)0.0587 (6)
C70.0712 (2)0.2717 (3)0.50921 (11)0.0489 (6)
H70.02410.29780.49290.059*
C80.1804 (2)0.3160 (3)0.47075 (10)0.0384 (5)
C90.3255 (2)0.2694 (3)0.49382 (10)0.0388 (5)
C100.4483 (2)0.3085 (3)0.45839 (11)0.0403 (5)
H100.43910.36660.4160.048*
C110.1511 (2)0.4227 (3)0.40816 (10)0.0396 (5)
H11A0.04650.4460.40350.048*
H11B0.20090.53220.41510.048*
C120.1882 (2)0.4748 (3)0.28977 (11)0.0533 (6)
H12A0.11480.56080.29940.064*
H12B0.15870.4190.24610.064*
C130.3309 (3)0.5588 (3)0.28329 (13)0.0631 (7)
H13A0.32420.64480.24670.076*
H13B0.36140.61540.32660.076*
C140.1223 (2)0.1916 (3)0.32783 (12)0.0512 (6)
H14A0.02260.21630.31070.061*
H14B0.11710.12260.36970.061*
C150.1966 (3)0.0928 (4)0.27525 (14)0.0663 (7)
H15A0.1590.0240.27440.08*
H15B0.17410.14330.22980.08*
N10.19564 (16)0.3493 (2)0.34476 (8)0.0376 (4)
O10.2286 (2)0.1440 (2)0.59428 (8)0.0618 (5)
O20.0017 (2)0.1540 (3)0.61251 (10)0.0857 (7)
O30.43185 (19)0.4325 (3)0.26743 (10)0.0751 (6)
H3A0.5060.47820.25320.113*
O40.34542 (19)0.0885 (3)0.28742 (12)0.0841 (7)
H4A0.37760.18750.28930.126*
O50.70828 (16)0.2960 (2)0.45453 (9)0.0662 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0469 (14)0.131 (3)0.0604 (17)0.0038 (16)0.0068 (12)0.0128 (18)
C20.0422 (12)0.0498 (13)0.0503 (13)0.0045 (10)0.0086 (10)0.0120 (11)
C30.0588 (15)0.0521 (14)0.0592 (15)0.0117 (12)0.0228 (12)0.0096 (12)
C40.0791 (18)0.0484 (14)0.0449 (13)0.0037 (12)0.0171 (12)0.0041 (11)
C50.0628 (14)0.0406 (12)0.0396 (12)0.0014 (10)0.0002 (10)0.0000 (10)
C60.0666 (16)0.0563 (15)0.0544 (15)0.0097 (13)0.0150 (13)0.0012 (12)
C70.0491 (12)0.0529 (13)0.0453 (13)0.0036 (10)0.0101 (10)0.0010 (11)
C80.0420 (11)0.0376 (11)0.0357 (11)0.0003 (9)0.0038 (8)0.0056 (9)
C90.0465 (12)0.0340 (11)0.0354 (11)0.0012 (9)0.0014 (9)0.0043 (9)
C100.0416 (11)0.0404 (11)0.0383 (11)0.0023 (9)0.0026 (9)0.0053 (9)
C110.0349 (10)0.0443 (12)0.0400 (11)0.0048 (9)0.0040 (8)0.0015 (9)
C120.0523 (13)0.0653 (16)0.0421 (12)0.0122 (11)0.0014 (10)0.0114 (11)
C130.0777 (17)0.0579 (16)0.0551 (15)0.0041 (14)0.0164 (13)0.0162 (12)
C140.0431 (12)0.0556 (14)0.0556 (14)0.0050 (10)0.0102 (10)0.0145 (11)
C150.0559 (15)0.0741 (18)0.0695 (17)0.0041 (13)0.0103 (12)0.0231 (15)
N10.0332 (8)0.0461 (10)0.0336 (9)0.0010 (7)0.0036 (7)0.0016 (7)
O10.0804 (12)0.0614 (11)0.0441 (9)0.0060 (9)0.0082 (8)0.0127 (8)
O20.0929 (14)0.0930 (16)0.0747 (13)0.0181 (12)0.0384 (11)0.0192 (12)
O30.0592 (11)0.0812 (14)0.0872 (14)0.0104 (10)0.0272 (10)0.0099 (11)
O40.0599 (11)0.0792 (14)0.1143 (17)0.0198 (10)0.0140 (11)0.0294 (13)
O50.0376 (9)0.0929 (14)0.0672 (12)0.0067 (9)0.0067 (8)0.0087 (10)
Geometric parameters (Å, º) top
C1—O51.417 (3)C10—H100.95
C1—H1A0.98C11—N11.453 (2)
C1—H1B0.98C11—H11A0.99
C1—H1C0.98C11—H11B0.99
C2—O51.370 (3)C12—N11.467 (3)
C2—C101.374 (3)C12—C131.497 (3)
C2—C31.394 (3)C12—H12A0.99
C3—C41.358 (4)C12—H12B0.99
C3—H30.95C13—O31.419 (3)
C4—C51.386 (3)C13—H13A0.99
C4—H40.95C13—H13B0.99
C5—O11.382 (3)C14—N11.455 (3)
C5—C91.388 (3)C14—C151.493 (3)
C6—O21.204 (3)C14—H14A0.99
C6—O11.363 (3)C14—H14B0.99
C6—C71.443 (3)C15—O41.393 (3)
C7—C81.343 (3)C15—H15A0.99
C7—H70.95C15—H15B0.99
C8—C91.450 (3)O3—H3A0.84
C8—C111.505 (3)O4—H4A0.84
C9—C101.402 (3)
O5—C1—H1A109.5C8—C11—H11A108.5
O5—C1—H1B109.5N1—C11—H11B108.5
H1A—C1—H1B109.5C8—C11—H11B108.5
O5—C1—H1C109.5H11A—C11—H11B107.5
H1A—C1—H1C109.5N1—C12—C13110.84 (18)
H1B—C1—H1C109.5N1—C12—H12A109.5
O5—C2—C10124.2 (2)C13—C12—H12A109.5
O5—C2—C3115.36 (19)N1—C12—H12B109.5
C10—C2—C3120.4 (2)C13—C12—H12B109.5
C4—C3—C2120.5 (2)H12A—C12—H12B108.1
C4—C3—H3119.7O3—C13—C12107.7 (2)
C2—C3—H3119.7O3—C13—H13A110.2
C3—C4—C5119.3 (2)C12—C13—H13A110.2
C3—C4—H4120.3O3—C13—H13B110.2
C5—C4—H4120.3C12—C13—H13B110.2
O1—C5—C4116.4 (2)H13A—C13—H13B108.5
O1—C5—C9122.0 (2)N1—C14—C15112.37 (19)
C4—C5—C9121.6 (2)N1—C14—H14A109.1
O2—C6—O1117.1 (2)C15—C14—H14A109.1
O2—C6—C7126.1 (3)N1—C14—H14B109.1
O1—C6—C7116.7 (2)C15—C14—H14B109.1
C8—C7—C6123.4 (2)H14A—C14—H14B107.9
C8—C7—H7118.3O4—C15—C14112.7 (2)
C6—C7—H7118.3O4—C15—H15A109.1
C7—C8—C9118.5 (2)C14—C15—H15A109.1
C7—C8—C11119.67 (19)O4—C15—H15B109.1
C9—C8—C11121.66 (17)C14—C15—H15B109.1
C5—C9—C10118.31 (19)H15A—C15—H15B107.8
C5—C9—C8117.74 (19)C11—N1—C14112.88 (16)
C10—C9—C8123.94 (19)C11—N1—C12110.68 (17)
C2—C10—C9119.9 (2)C14—N1—C12114.28 (18)
C2—C10—H10120.1C6—O1—C5121.58 (18)
C9—C10—H10120.1C13—O3—H3A109.5
N1—C11—C8115.19 (17)C15—O4—H4A109.5
N1—C11—H11A108.5C2—O5—C1117.51 (17)
O5—C2—C3—C4179.4 (2)C5—C9—C10—C20.0 (3)
C10—C2—C3—C40.6 (4)C8—C9—C10—C2178.38 (19)
C2—C3—C4—C50.7 (4)C7—C8—C11—N1122.5 (2)
C3—C4—C5—O1179.1 (2)C9—C8—C11—N162.1 (3)
C3—C4—C5—C90.5 (4)N1—C12—C13—O360.9 (3)
O2—C6—C7—C8174.7 (3)N1—C14—C15—O443.9 (3)
O1—C6—C7—C83.0 (4)C8—C11—N1—C1461.4 (2)
C6—C7—C8—C92.9 (3)C8—C11—N1—C12169.10 (17)
C6—C7—C8—C11172.6 (2)C15—C14—N1—C11163.4 (2)
O1—C5—C9—C10178.66 (19)C15—C14—N1—C1268.9 (3)
C4—C5—C9—C100.1 (3)C13—C12—N1—C1194.1 (2)
O1—C5—C9—C80.1 (3)C13—C12—N1—C14137.1 (2)
C4—C5—C9—C8178.4 (2)O2—C6—O1—C5176.4 (2)
C7—C8—C9—C51.4 (3)C7—C6—O1—C51.6 (3)
C11—C8—C9—C5174.02 (19)C4—C5—O1—C6178.3 (2)
C7—C8—C9—C10179.8 (2)C9—C5—O1—C60.3 (3)
C11—C8—C9—C104.4 (3)C10—C2—O5—C17.8 (3)
O5—C2—C10—C9179.68 (19)C3—C2—O5—C1172.2 (2)
C3—C2—C10—C90.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O4i0.841.852.685 (3)174
O4—H4A···O30.842.062.875 (3)164
C7—H7···O5ii0.952.563.494 (2)167
C14—H14B···O2iii0.992.483.206 (3)130
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y, z; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H19NO5
Mr293.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)9.3038 (5), 7.9290 (5), 19.6216 (12)
β (°) 92.944 (5)
V3)1445.56 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.2 × 0.18 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.98, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
14012, 2694, 1994
Rint0.040
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.149, 1.02
No. of reflections2694
No. of parameters194
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.26

Computer programs: SMART (Bruker, 2008), SAINT-Plus (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996), PARST (Nardelli, 1995) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O4i0.841.852.685 (3)174
O4—H4A···O30.842.062.875 (3)164
C7—H7···O5ii0.952.563.494 (2)167
C14—H14B···O2iii0.992.483.206 (3)130
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y, z; (iii) x, y, z+1.
 

Acknowledgements

RJN is grateful to DST, Delhi, India, for providing an INSPIRE fellowship.

References

First citationBasanagouda, M. & Kulkarni, M. V. (2011). Synth. Commun. 41, 2569–2582.  Web of Science CrossRef CAS Google Scholar
First citationBasanagouda, M., Kulkarni, M. V., Sharma, D. & Gupta, V. K. (2011). J. Chem. Crystallogr. 41, 541–544.  Web of Science CSD CrossRef CAS Google Scholar
First citationBaures, W., Rush, J. R., Schroeder, S. D. & Beatty, A. M. (2002). Cryst. Growth. Des. 2, 107–110.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (2005). Chem. Commun. pp. 2995–3001.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJadhav, V. B., Nayak, S. K., Guru Row, T. N. & Kulkarni, M. V. (2010). Eur. J. Med. Chem. 45, 3575–3580.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationKhan, G. S., Clark, G. R. & Barker, D. (2008). Acta Cryst. E64, o1253.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKokila, M. K., Jain, A., Puttaraja,, Kulkarni, M. V. & Shivaprakash, N. C. (1995). Acta Cryst. C51, 2585–2586.  Google Scholar
First citationMeng, J., Fu, D., Yao, X. K., Wang, R. & Matsuura, T. (1989). Tetrahedron, 45, 6979–6986.  CSD CrossRef CAS Web of Science Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds