supplementary materials


aa2069 scheme

Acta Cryst. (2012). E68, m1220-m1221    [ doi:10.1107/S1600536812036124 ]

[N-(1-Azanidyl-2,2,2-trichloroethylidene)-2,2,2-trichloroethanimidamide]copper(II)

N. G. Shikhaliyev, A. M. Maharramov, V. M. Muzalevskiy, V. G. Nenajdenko and V. N. Khrustalev

Abstract top

The title compound, [Cu(C4H2Cl6N3)2], was obtained by the reaction of CCl3CN with ammonia in presence of CuCl. The CuII atom is located about an inversion centre. The molecule consists of three planar units (one central square CuN4 and two C2N3 fragments), adopting a staircase-like structure. The six-membered metallocycles have a sofa conformation with the Cu atom out of the plane of the 1,3,5-triazapentadienyl ligands by 0.246 (5) Å. The ipso-C atoms of the CCl3 substituents are slightly out of the 1,3,5-triazapentadienyl planes by 0.149 (6) and -0.106 (6) Å. The CCl3 groups of each 1,3,5-triazapentadienyl ligand are practically in the energetically favourable mutually eclipsed conformation. In the crystal, the molecules are packed in stacks along the a axis. The molecules in the stacks are held together by two additional axial Cu...Cl interactions of 3.354 (2) Å. Taking the axial Cu...Cl interactions into account, the CuII atom exhibits a distorted [4 + 2]-octahedral coordination environment. The stacks are bound to each other by weak intermolecular attractive Cl...Cl [3.505 (2)-3.592 (3) Å] interactions.

Comment top

Recently we have discovered a new catalytic olefination reaction as a general method for the preparation of alkenes from polyhalogenated compounds and hydrazones (Fig. 1) (Shastin et al., 2001; Korotchenko et al., 2001; Nenajdenko et al., 2003, 2004a, 2004b, 2005, 2007).

During our study of the catalytic olefination reaction we have found that the reaction with trichloroacetonitrile demand the use of ethylenediamine as a base because in the case of ammonia no target alkene is formed (Nenajdenko et al., 2004c). We decided to study the reaction of CCl3CN with ammonia in presence of CuCl more thoroughly and found that the formation of the title copper (II) chelate complex takes place (Fig. 2). The formation of this complex can be explained by high electrophilicity of trichloroacetonitrile (Fig. 3). At the first stage, ammonia reacts with CN bond to form amidine A as an intermediate. The subsequent reaction of A with second molecule of trichloroacetonitrile gives B. And finally, B reacts with CuCl2 resulting in the copper(II) complex I in a high yield. We believe that Cu2+is formed by oxidation of Cu1+ with CCl3CN as it was confirmed previously for catalytic olefination reaction.

The structure of the title compound I, C8H4N6Cl12Cu, was unambigouosly established by X-ray diffraction study (Fig. 4). The compound I crystallizes in the triclinic space group P-1 and there is a crystallographically imposed inversion centre at the Cu atom of each molecule. The Cu atom has a square-planar coordination. The 1,3,5-triazapentadienyl ligands are also planar (r.m.s. deviation is 0.021 Å). However, the six-membered metallocycles deviate significantly from the planarity and have a sofa conformation with the Cu atom out of the plane of the 1,3,5-triazapentadienyl ligands by 0.246 (5) Å. Thus, the molecule of I consists of the three planar units adopting the staircase-like structure. The similar molecular conformation has been previously observed in the related compounds (Zhang et al., 2005; Igashira-Kamiyama et al., 2006; Figiel et al., 2010). Nevertheless, it is important to note that the analogous complexes can adopt the planar conformation also (Boča et al., 1996; Kajiwara et al., 2002; Zheng et al., 2007). The ipso-C atoms of the CCl3-substituents are slightly out of the 1,3,5-triazapentadienyl planes by 0.149 (6) and -0.106 (6) Å. The CCl3-groups of each 1,3,5-triazapentadienyl ligand are practically in the energetically favorable eclipsed mutual conformation.

In the crystal, the molecules are packed in stacks along the a axis (Fig. 5). The molecules in the stacks are held together by the two additional axial Cu···Cl [Cu1···Cl1i and Cu1···Cl1ii] interactions of 3.354 (2) Å. Taking the axial Cu···Cl interactions into account, the Cu atom attains the distorted [4 + 2]-octahedral coordination environment. The different stacks are bound to each other by weak intermolecular attractive interactions [Cu2···Cl2iii 3.505 (2), Cu2···Cl2iv 3.592 (3), Cu3···Cl4v 3.516 (2) and Cu3···Cl6vi 3.564 (2) Å] . Symmetry codes: (i) -x, -y + 2, -z + 2; (ii) x - 1, y, z; (iii) -x + 2, -y + 3, -z + 2; (iv) -x + 1, -y + 3, -z + 2; (v) x + 1, y + 1, z; (vi) -x, -y + 2, -z + 1.

Related literature top

For a catalytic olefination reaction, see: Shastin et al. (2001); Korotchenko et al. (2001); Nenajdenko et al. (2003, 2004a,b,c, 2005, 2007). For related compounds, see: Boča et al. (1996); Kajiwara et al. (2002); Zhang et al. (2005); Igashira-Kamiyama et al. (2006); Zheng et al. (2007); Figiel et al. (2010).

Experimental top

A solution of trichloroacetonitrile (7.3 ml) in DMSO (15 ml) was dropped to a mixture of aqueous ammonia (5 ml) and freshly purified copper monochloride (0.3 g) during 3 min. upon keeping of the room temperature by the cooling on water-bath. The reaction mixture was stirred for 4 h. At the end of the reaction, the mixture was washed with water (150 ml) and filtered off. The formed product was re-crystallized from aqueous ethanol to give 1.47 g of red crystals of I. Yield is 73%. M.p. = 472–474 K.

Refinement top

The hydrogen atoms were placed in calculated positions with N–H = 0.86 Å and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(N)].

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. New catalytic olefination reaction as a general method for the preparation of alkenes; X and Y are H, Hal, CHal3, CN.
[Figure 2] Fig. 2. Reaction of CCl3CN with ammonia in presence of CuCl.
[Figure 3] Fig. 3. The stage-to-stage reaction mechanism of the formation of I.
[Figure 4] Fig. 4. Molecular structure of I with the atom numbering scheme. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. Symmetry code: (i) -x, -y + 2, -z + 2.
[Figure 5] Fig. 5. The crystal packing of I along the a axis. Dashed lines indicate the intermolecular axial Cu···Cl and attractive Cl···Cl interactions.
[N-(1-Azanidyl-2,2,2-trichloroethylidene)-2,2,2- trichloroethanimidamide]copper(II) top
Crystal data top
[Cu(C4H2Cl6N3)2]Z = 1
Mr = 673.11F(000) = 327
Triclinic, P1Dx = 2.024 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9317 (17) ÅCell parameters from 3874 reflections
b = 9.078 (3) Åθ = 2.4–27.7°
c = 10.831 (3) ŵ = 2.45 mm1
α = 98.475 (5)°T = 296 K
β = 97.525 (5)°Plate, red
γ = 103.662 (5)°0.33 × 0.24 × 0.06 mm
V = 552.1 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2414 independent reflections
Radiation source: fine-focus sealed tube2108 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 77
Tmin = 0.499, Tmax = 0.867k = 1111
5662 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.076P)2 + 0.84P]
where P = (Fo2 + 2Fc2)/3
2414 reflections(Δ/σ)max < 0.001
124 parametersΔρmax = 1.18 e Å3
0 restraintsΔρmin = 0.85 e Å3
Crystal data top
[Cu(C4H2Cl6N3)2]γ = 103.662 (5)°
Mr = 673.11V = 552.1 (3) Å3
Triclinic, P1Z = 1
a = 5.9317 (17) ÅMo Kα radiation
b = 9.078 (3) ŵ = 2.45 mm1
c = 10.831 (3) ÅT = 296 K
α = 98.475 (5)°0.33 × 0.24 × 0.06 mm
β = 97.525 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
2414 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2108 reflections with I > 2σ(I)
Tmin = 0.499, Tmax = 0.867Rint = 0.029
5662 measured reflectionsθmax = 27.0°
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.133Δρmax = 1.18 e Å3
S = 1.00Δρmin = 0.85 e Å3
2414 reflectionsAbsolute structure: ?
124 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.00001.00000.00000.03611 (19)
Cl10.20230 (19)0.81177 (15)0.21612 (13)0.0696 (3)
Cl20.28874 (19)0.61212 (13)0.01081 (11)0.0644 (3)
Cl30.5633 (2)0.65213 (14)0.25606 (12)0.0677 (3)
Cl41.0465 (2)1.42819 (12)0.33037 (12)0.0730 (4)
Cl50.5879 (2)1.27757 (17)0.35949 (16)0.0868 (5)
Cl60.9881 (3)1.18805 (17)0.47247 (11)0.0886 (5)
N10.7097 (5)0.8671 (3)0.0275 (3)0.0437 (7)
H10.63650.79180.03310.052*
C20.6169 (5)0.8813 (4)0.1278 (3)0.0358 (6)
N30.6704 (5)0.9993 (3)0.2235 (3)0.0441 (7)
C40.8405 (6)1.1234 (4)0.2244 (3)0.0353 (6)
N50.9823 (6)1.1456 (3)0.1452 (3)0.0446 (7)
H51.08021.23510.15820.054*
C60.4243 (6)0.7471 (4)0.1511 (4)0.0421 (7)
C70.8629 (7)1.2489 (4)0.3416 (3)0.0425 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0386 (3)0.0301 (3)0.0377 (3)0.0011 (2)0.0172 (2)0.0035 (2)
Cl10.0495 (6)0.0725 (7)0.0932 (9)0.0109 (5)0.0390 (6)0.0205 (6)
Cl20.0505 (5)0.0531 (6)0.0697 (7)0.0144 (4)0.0029 (5)0.0011 (5)
Cl30.0586 (6)0.0634 (7)0.0806 (8)0.0026 (5)0.0025 (5)0.0422 (6)
Cl40.0951 (9)0.0370 (5)0.0731 (7)0.0102 (5)0.0382 (6)0.0097 (5)
Cl50.0568 (7)0.0793 (8)0.1141 (11)0.0171 (6)0.0303 (7)0.0268 (8)
Cl60.1405 (14)0.0778 (9)0.0422 (6)0.0311 (9)0.0047 (7)0.0076 (5)
N10.0425 (15)0.0386 (15)0.0407 (15)0.0039 (12)0.0135 (12)0.0039 (12)
C20.0343 (15)0.0320 (15)0.0399 (16)0.0027 (12)0.0094 (12)0.0099 (12)
N30.0496 (16)0.0379 (15)0.0401 (15)0.0022 (12)0.0199 (13)0.0035 (12)
C40.0397 (16)0.0312 (15)0.0346 (15)0.0058 (12)0.0109 (12)0.0063 (12)
N50.0515 (17)0.0300 (14)0.0478 (16)0.0025 (12)0.0241 (13)0.0003 (12)
C60.0341 (16)0.0409 (17)0.0505 (19)0.0028 (13)0.0118 (14)0.0136 (14)
C70.0497 (19)0.0364 (17)0.0394 (17)0.0066 (14)0.0158 (14)0.0014 (13)
Geometric parameters (Å, º) top
Cu1—N51.931 (3)N1—C21.284 (4)
Cu1—N11.941 (3)N1—H10.8600
Cl1—C61.749 (4)C2—N31.322 (4)
Cl2—C61.767 (4)C2—C61.537 (4)
Cl3—C61.759 (4)N3—C41.321 (4)
Cl4—C71.762 (4)C4—N51.282 (4)
Cl5—C71.742 (4)C4—C71.544 (4)
Cl6—C71.736 (4)N5—H50.8600
N5—Cu1—N187.83 (12)Cu1—N5—H5116.4
C2—N1—Cu1126.0 (2)C2—C6—Cl1111.9 (2)
C2—N1—H1117.0C2—C6—Cl3106.7 (2)
Cu1—N1—H1117.0Cl1—C6—Cl3110.2 (2)
N1—C2—N3128.5 (3)C2—C6—Cl2112.5 (2)
N1—C2—C6120.3 (3)Cl1—C6—Cl2107.50 (19)
N3—C2—C6111.2 (3)Cl3—C6—Cl2108.0 (2)
C4—N3—C2120.5 (3)C4—C7—Cl6107.4 (2)
N5—C4—N3128.3 (3)C4—C7—Cl5110.5 (2)
N5—C4—C7120.3 (3)Cl6—C7—Cl5111.2 (2)
N3—C4—C7111.4 (3)C4—C7—Cl4112.4 (2)
C4—N5—Cu1127.1 (2)Cl6—C7—Cl4108.0 (2)
C4—N5—H5116.4Cl5—C7—Cl4107.3 (2)
N5—Cu1—N1—C214.1 (3)N1—C2—C6—Cl1140.6 (3)
N5i—Cu1—N1—C2165.9 (3)N3—C2—C6—Cl141.9 (4)
Cu1—N1—C2—N312.6 (6)N1—C2—C6—Cl398.8 (3)
Cu1—N1—C2—C6164.4 (2)N3—C2—C6—Cl378.7 (3)
N1—C2—N3—C40.4 (6)N1—C2—C6—Cl219.5 (4)
C6—C2—N3—C4176.7 (3)N3—C2—C6—Cl2163.0 (3)
C2—N3—C4—N55.2 (6)N5—C4—C7—Cl6105.0 (3)
C2—N3—C4—C7177.1 (3)N3—C4—C7—Cl672.9 (3)
N3—C4—N5—Cu12.2 (6)N5—C4—C7—Cl5133.5 (3)
C7—C4—N5—Cu1175.3 (2)N3—C4—C7—Cl548.6 (4)
N1—Cu1—N5—C49.6 (3)N5—C4—C7—Cl413.7 (4)
N1i—Cu1—N5—C4170.4 (3)N3—C4—C7—Cl4168.4 (3)
Symmetry code: (i) x+2, y+2, z.
references
References top

Boča, R., Hvastijová, M., Kožíšek, J. & Valko, M. (1996). Inorg. Chem. 35, 4794–4797.

Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Figiel, P. J., Kopylovich, M. N., Lasri, J., da Silva, M. F. C. G., da Silva, J. J. R. F. & Pombeiro, A. J. L. (2010). Chem. Commun. 46, 2766–2768.

Igashira-Kamiyama, A., Kajiwara, T., Konno, T. & Ito, T. (2006). Inorg. Chem. 45, 6460–6466.

Kajiwara, T., Kamiyama, A. & Ito, T. (2002). Chem. Commun. pp. 1256–1257.

Korotchenko, V. N., Shastin, A. V., Nenajdenko, V. G. & Balenkova, E. S. (2001). Synthesis, pp. 2081–2084.

Nenajdenko, V. G., Korotchenko, V. N., Shastin, A. V. & Balenkova, E. S. (2004b). Russ. Chem. Bull. 53, 1034–1064.

Nenajdenko, V. G., Muzalevskiy, V. M., Shastin, A. V., Balenkova, E. S. & Haufe, G. (2007). J. Fluorine Chem. 128, 818–826.

Nenajdenko, V. G., Shastin, A. V., Golubinskii, I. V. & Balenkova, E. S. (2004c). Russ. Chem. Bull. 53, 228–232.

Nenajdenko, V. G., Varseev, G. N., Korotchenko, V. N., Shastin, A. V. & Balenkova, E. S. (2003). J. Fluorine Chem. 124, 115–118.

Nenajdenko, V. G., Varseev, G. N., Korotchenko, V. N., Shastin, A. V. & Balenkova, E. S. (2004a). J. Fluorine Chem. 125, 1339–1345.

Nenajdenko, V. G., Varseev, G. N., Korotchenko, V. N., Shastin, A. V. & Balenkova, E. S. (2005). J. Fluorine Chem. 126, 907–913.

Shastin, A. V., Nenajdenko, V. G., Korotchenko, V. N. & Balenkova, E. S. (2001). Russ. Chem. Bull. 50, 1401–1405.

Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Zhang, J.-P., Lin, Y.-Y., Huang, X.-C. & Chen, X.-M. (2005). J. Am. Chem. Soc. 127, 5495–5506.

Zheng, L.-L., Zhang, W.-X., Qin, L.-J., Leng, J.-D., Lu, J.-X. & Tong, M.-L. (2007). Inorg. Chem. 46, 9548–9557.