supplementary materials


br2206 scheme

Acta Cryst. (2012). E68, m1182-m1183    [ doi:10.1107/S1600536812035428 ]

Diaquabis{3-[4-(1H-imidazol-1-yl)phenyl]-5-(pyridin-2-yl-[kappa]N)-1H-1,2,4-triazol-1-ido-[kappa]N1}zinc

Y.-S. Wang, G.-M. Qiu and C.-J. Wang

Abstract top

The centrosymmetric molecule of the title compound, [Zn(C16H11N6)2(H2O)2], contains one Zn2+ ion located on a center of symmetry, two 3-[4-(1H-imidazol-1-yl)phenyl]-5-(pyridin-2-yl)-1H-1,2,4-triazol-1-ide (Ippyt) ligands and two coordinating water molecules. The ZnII ion is six-coordinated in a distorted octahedral coordination geometry by four N atoms from two Ippyt ligands and by two O atoms from two water molecules. Adjacent units are interconnected though O-H...N hydrogen bonds, forming a three-dimensional network.

Comment top

The rational design and syntheses of metal-organic frameworks have been of increasing interest in the crystal engineering of coordination polymers owing to their ability to provide diverse assemblies with fascinating topological structures and material properties ( Han et al., 2005; Xue et al.,2009). The centrosymmetric unit of the title compound contains one Zn2+ion, two Ippyt ligands and two coordination water molecules. For a similar structure, see: Braga et al. (2005); Lin et al. (2010); Faulmann et al. (1990). Every ZnII ion is six-coordinated in a distorted octahedral coordination geometry by four N atoms from two Ippyt ligands and by two O atoms from two coordination water molecules (Fig. 1). There are two kinds of hydrogen bonding interactions which are between the coordinated waters and the triazolyl nitrogen atoms, and between the coordinated waters and the imidazolyl nitrogen atoms, respectively. However, the construct units are connected by the hydrogen bonding interactions between oxygen/ imidazolyl nitrogen atoms and imidazolyl nitrogen/ oxygen atoms from adjacent units respectively. Thus, infinite one-dimensional ring-shaped chains are formed. And then N3 and N3' are further involved in forming another hydrogen bonding interactions with other neighbouring water oxygen atoms and thus connect the 1D supramolecular chains together to form the two-dimensional supramolecular architecture in the a,c plane. And finally the structures are interlinked alternately by different hydrogen bonding interactions and finally result in the three-dimensional supramolecular network architectures.(Fig.2).

Related literature top

For similar structures, see: Braga et al. (2005); Lin et al. (2010); Faulmann et al. (1990); Han et al. (2005); Xue et al. (2009).

Experimental top

A mixture of Zn(NO3)2.6H2O (0.02 mmol), Ippyt (0.02 mmol), H2O (8 ml) was sealed in 25ml Teflon-lined stainless steel reactor, which was heated to 413 K for 5d and was subsequently cooled slowly to room temperature. Colourless block-shaped crystals were collected in 47% yield based on Zn.

Refinement top

All H atoms were positioned geometrically (C-H = 0.93Åand O-H = 0.82 Å) and allowed to ride on their parent atoms, with Uiso(H) values equal to 1.2Ueq(C) or 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment of ZnII atom in the title compound.
[Figure 2] Fig. 2. The 3D supermolecule network of the title compound. Dashed lines denote hydrogen bonds.
Diaquabis{3-[4-(1H-imidazol-1-yl)phenyl]-5-(pyridin-2-yl- κN)-1H-1,2,4-triazol-1-ido-κN1}zinc top
Crystal data top
[Zn(C16H11N6)2(H2O)2]F(000) = 700
Mr = 676.04Dx = 1.512 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1141 reflections
a = 12.6481 (9) Åθ = 2.4–28.3°
b = 11.6659 (6) ŵ = 0.88 mm1
c = 10.4922 (7) ÅT = 293 K
β = 105.891 (7)°Block, colourless
V = 1488.98 (16) Å30.03 × 0.03 × 0.02 mm
Z = 2
Data collection top
Bruker SMART
diffractometer
2626 independent reflections
Radiation source: fine-focus sealed tube1724 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
φ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 158
Tmin = 0.974, Tmax = 0.983k = 1213
4938 measured reflectionsl = 812
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0332P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02
2626 reflectionsΔρmax = 0.23 e Å3
214 parametersΔρmin = 0.29 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
[Zn(C16H11N6)2(H2O)2]V = 1488.98 (16) Å3
Mr = 676.04Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.6481 (9) ŵ = 0.88 mm1
b = 11.6659 (6) ÅT = 293 K
c = 10.4922 (7) Å0.03 × 0.03 × 0.02 mm
β = 105.891 (7)°
Data collection top
Bruker SMART
diffractometer
2626 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1724 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.983Rint = 0.048
4938 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.109Δρmax = 0.23 e Å3
S = 1.02Δρmin = 0.29 e Å3
2626 reflectionsAbsolute structure: ?
214 parametersFlack parameter: ?
? restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.00000.50000.0451 (2)
N10.4454 (2)0.1728 (2)0.4816 (3)0.0390 (8)
N20.6022 (2)0.0728 (2)0.6718 (3)0.0391 (8)
N30.6852 (2)0.0414 (3)0.7797 (3)0.0441 (8)
N40.6357 (2)0.2248 (2)0.8079 (3)0.0385 (8)
N51.0281 (2)0.1265 (3)1.3567 (3)0.0553 (9)
N61.1782 (3)0.0806 (3)1.5144 (4)0.0726 (12)
O10.62155 (17)0.04131 (19)0.3861 (3)0.0481 (7)
H1B0.63170.11340.38700.058*
H10.67990.00870.42000.072*
C10.3757 (3)0.2195 (3)0.3764 (4)0.0469 (10)
H1A0.34320.17290.30450.056*
C20.3496 (3)0.3348 (3)0.3698 (4)0.0516 (11)
H20.30240.36610.29380.062*
C30.3952 (3)0.4012 (3)0.4776 (4)0.0545 (11)
H30.37690.47840.47670.065*
C40.4682 (3)0.3549 (3)0.5884 (4)0.0474 (10)
H40.49940.40000.66230.057*
C50.4938 (2)0.2399 (3)0.5865 (4)0.0344 (8)
C60.5757 (3)0.1811 (3)0.6919 (4)0.0347 (8)
C70.7019 (3)0.1340 (3)0.8583 (4)0.0378 (9)
C80.7859 (3)0.1342 (3)0.9879 (4)0.0393 (9)
C90.7952 (3)0.2227 (3)1.0774 (4)0.0468 (10)
H90.74720.28461.05660.056*
C100.8756 (3)0.2204 (3)1.1987 (4)0.0510 (11)
H100.88150.28111.25780.061*
C110.9465 (3)0.1283 (3)1.2313 (4)0.0464 (10)
C120.9361 (3)0.0383 (4)1.1451 (5)0.0595 (12)
H120.98230.02491.16760.071*
C130.8562 (3)0.0414 (3)1.0237 (4)0.0559 (11)
H130.85000.01990.96550.067*
C141.0221 (4)0.1771 (6)1.4698 (5)0.113 (2)
H140.96520.22321.48060.136*
C151.1136 (4)0.1485 (5)1.5641 (5)0.114 (2)
H151.12990.17251.65190.137*
C161.1249 (3)0.0693 (4)1.3884 (5)0.0675 (13)
H161.15070.02691.32800.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0514 (4)0.0329 (3)0.0373 (4)0.0044 (3)0.0112 (3)0.0042 (4)
N10.0353 (16)0.0368 (18)0.037 (2)0.0012 (14)0.0030 (14)0.0003 (16)
N20.0400 (17)0.0332 (17)0.0352 (19)0.0010 (13)0.0049 (14)0.0039 (15)
N30.0469 (18)0.0380 (18)0.036 (2)0.0023 (14)0.0069 (15)0.0009 (17)
N40.0367 (16)0.0354 (17)0.0371 (19)0.0015 (13)0.0005 (14)0.0029 (16)
N50.0367 (18)0.082 (2)0.040 (2)0.0157 (17)0.0026 (15)0.002 (2)
N60.049 (2)0.097 (3)0.056 (3)0.018 (2)0.0124 (19)0.001 (3)
O10.0452 (14)0.0400 (14)0.0496 (18)0.0068 (11)0.0032 (12)0.0066 (14)
C10.048 (2)0.048 (3)0.033 (2)0.0015 (18)0.0066 (18)0.001 (2)
C20.052 (2)0.045 (2)0.045 (3)0.0087 (19)0.008 (2)0.005 (2)
C30.059 (3)0.038 (2)0.056 (3)0.0133 (19)0.002 (2)0.000 (2)
C40.052 (2)0.037 (2)0.043 (3)0.0054 (18)0.0035 (19)0.008 (2)
C50.0328 (19)0.034 (2)0.033 (2)0.0002 (15)0.0020 (16)0.0004 (19)
C60.038 (2)0.033 (2)0.032 (2)0.0027 (16)0.0065 (16)0.0031 (18)
C70.035 (2)0.040 (2)0.034 (2)0.0052 (16)0.0028 (16)0.001 (2)
C80.034 (2)0.042 (2)0.036 (2)0.0027 (16)0.0006 (17)0.002 (2)
C90.044 (2)0.050 (2)0.041 (3)0.0092 (18)0.0016 (18)0.003 (2)
C100.047 (2)0.060 (3)0.039 (2)0.008 (2)0.0003 (19)0.015 (2)
C110.040 (2)0.057 (3)0.035 (2)0.0064 (19)0.0021 (17)0.001 (2)
C120.053 (3)0.057 (3)0.055 (3)0.020 (2)0.007 (2)0.003 (3)
C130.056 (2)0.050 (2)0.051 (3)0.009 (2)0.003 (2)0.010 (2)
C140.078 (4)0.202 (7)0.045 (3)0.071 (4)0.008 (3)0.024 (4)
C150.074 (4)0.209 (7)0.041 (3)0.057 (4)0.015 (3)0.018 (4)
C160.054 (3)0.075 (3)0.059 (3)0.017 (2)0.009 (2)0.005 (3)
Geometric parameters (Å, º) top
Zn1—N2i2.090 (3)C2—C31.362 (5)
Zn1—N22.090 (3)C2—H20.9300
Zn1—N12.123 (3)C3—C41.381 (5)
Zn1—N1i2.123 (3)C3—H30.9300
Zn1—O1i2.243 (2)C4—C51.381 (4)
Zn1—O12.243 (2)C4—H40.9300
N1—C11.326 (4)C5—C61.463 (5)
N1—C51.353 (4)C7—C81.479 (5)
N2—C61.339 (4)C8—C91.378 (5)
N2—N31.366 (4)C8—C131.385 (5)
N3—C71.340 (4)C9—C101.396 (5)
N4—C61.346 (4)C9—H90.9300
N4—C71.365 (4)C10—C111.381 (5)
N5—C141.345 (6)C10—H100.9300
N5—C161.353 (5)C11—C121.368 (5)
N5—C111.433 (5)C12—C131.393 (5)
N6—C161.316 (6)C12—H120.9300
N6—C151.343 (6)C13—H130.9300
O1—H1B0.8500C14—C151.342 (6)
O1—H10.8199C14—H140.9300
C1—C21.382 (5)C15—H150.9300
C1—H1A0.9300C16—H160.9300
N2i—Zn1—N2180.0C3—C4—C5118.2 (4)
N2i—Zn1—N1101.45 (11)C3—C4—H4120.9
N2—Zn1—N178.55 (11)C5—C4—H4120.9
N2i—Zn1—N1i78.55 (11)N1—C5—C4121.2 (3)
N2—Zn1—N1i101.45 (11)N1—C5—C6114.4 (3)
N1—Zn1—N1i180.0C4—C5—C6124.4 (3)
N2i—Zn1—O1i91.13 (10)N2—C6—N4113.4 (3)
N2—Zn1—O1i88.87 (10)N2—C6—C5118.7 (3)
N1—Zn1—O1i89.95 (10)N4—C6—C5127.8 (3)
N1i—Zn1—O1i90.05 (10)N3—C7—N4114.3 (3)
N2i—Zn1—O188.87 (10)N3—C7—C8121.3 (3)
N2—Zn1—O191.13 (10)N4—C7—C8124.5 (3)
N1—Zn1—O190.05 (10)C9—C8—C13118.2 (3)
N1i—Zn1—O189.95 (10)C9—C8—C7122.2 (3)
O1i—Zn1—O1180.0C13—C8—C7119.6 (4)
C1—N1—C5119.3 (3)C8—C9—C10120.8 (3)
C1—N1—Zn1126.3 (3)C8—C9—H9119.6
C5—N1—Zn1114.3 (2)C10—C9—H9119.6
C6—N2—N3107.0 (3)C11—C10—C9120.1 (4)
C6—N2—Zn1113.4 (2)C11—C10—H10119.9
N3—N2—Zn1139.4 (2)C9—C10—H10119.9
C7—N3—N2104.4 (3)C12—C11—C10119.7 (4)
C6—N4—C7101.0 (3)C12—C11—N5120.7 (3)
C14—N5—C16105.4 (4)C10—C11—N5119.6 (4)
C14—N5—C11127.1 (3)C11—C12—C13119.9 (4)
C16—N5—C11127.4 (4)C11—C12—H12120.0
C16—N6—C15104.5 (4)C13—C12—H12120.0
Zn1—O1—H1B109.3C8—C13—C12121.3 (4)
Zn1—O1—H1109.7C8—C13—H13119.4
H1B—O1—H1109.8C12—C13—H13119.4
N1—C1—C2122.5 (4)C15—C14—N5107.2 (4)
N1—C1—H1A118.8C15—C14—H14126.4
C2—C1—H1A118.8N5—C14—H14126.4
C3—C2—C1118.1 (4)C14—C15—N6110.7 (5)
C3—C2—H2121.0C14—C15—H15124.6
C1—C2—H2121.0N6—C15—H15124.6
C2—C3—C4120.7 (3)N6—C16—N5112.2 (4)
C2—C3—H3119.7N6—C16—H16123.9
C4—C3—H3119.7N5—C16—H16123.9
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N6ii0.822.032.842 (4)174
O1—H1B···N4iii0.852.072.868 (4)157
Symmetry codes: (ii) x+2, y, z+2; (iii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N6i0.822.032.842 (4)174.1
O1—H1B···N4ii0.852.072.868 (4)156.7
Symmetry codes: (i) x+2, y, z+2; (ii) x, y+1/2, z1/2.
Acknowledgements top

This work was supported by the Fundamental Research Funds for the Central Universities, P. R. China (No. SWJTU12CX048).

references
References top

Braga, D., Polito, M., Giaffreda, S. L. & Grepioni, F. (2005). Discuss. Faraday Soc. pp. 2766–73.

Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (1997). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Faulmann, C., van Koningsbruggen, P. J., de Graaff, R. A. G., Haasnoot, J. G. & Reedijk, J. (1990). Acta Cryst. C46, 2357–2360.

Han, Z. B., Cheng, X. N. & Chen, X. M. (2005). Cryst. Growth Des. E65, 695–700

Lin, J. B., Lin, R. B., Cheng, X. N., Zhang, J. P. & Chen, X. M. (2010). Chem. Commun. 47, 9185–9187.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Xue, D. X., Lin, J. B., Zhang, J. P. & Chen, X. M. (2009). CrystEngComm, 11, 183–188