supplementary materials


Acta Cryst. (2012). E68, i71    [ doi:10.1107/S1600536812037038 ]

Pb6Co9(TeO6)5

C. Artner and M. Weil

Abstract top

Pb6Co9(TeO6)5, hexalead(II) nonacobalt(II) pentatellurate(VI), is isotypic with its nickel(II) analogue. The asymmetric unit contains two Pb atoms (site symmetries .2., ..2), four Co atoms (..2, ..2, 3.., 3.2) two Te atoms (..2, 3..) and six O atoms (all in general positions), with the Te and Co sites in octahedral coordination environments. The crystal structure can be subdivided into two types of layers parallel to (001). The first layer at z [asymptotically equal to] 0.25 is made up of edge-sharing [CoO6] and [TeO6] octahedra, with 1/6 of the octahedral holes not occupied. The second layer, situated at z [asymptotically equal to] 0, consist of an alternating arrangement of PbII atoms and of double octahedra that are made up from face-sharing [CoO6] and [TeO6] octahedra. The two types of layers are linked together through corner-sharing of [CoO6] and [TeO6] octahedra. The PbII atoms are situated in the cavities of the framework and are stereochemically active with one-sided [4]- and [6]-coordinations, respectively.

Comment top

Single crystals of the title compound, Pb6Co9(TeO6)5, were serendipitously obtained as a minority phase during phase formation studies in the system PbII/CoII/TeVI/O intended on crystal growth of cubic Pb2CoTeO6.

The crystal structure of Pb6Co9(TeO6)5 is isotypic with its nickel analogue (Wedel et al., 1998). The two Te(VI) and the four Co(II) atoms are in slightly distorted octahedral coordination environments with mean bond lengths of ¯d(Te—O) = 1.940 Å and ¯d(Co—O) = 2.105 Å, both in good agreement with literature data for oxotellurates (Levason, 1997) and for [CoO6] octahedra (Wildner, 1992). The two lead(II) atoms exhibit coordination numbers of four and six. The crresponding Pb—O, Te—O and M—O (M = Co, Ni) bond lengths are very similar in the two isotypic structures.

The crystal structure of Pb6Co9(TeO6)5 can be described in terms of (001) layers A at z 0.25 and B at z 0 that stack alternately along [100] (Fig. 1). In layer A [TeO6] and [CoO6] octahedra share edges with 1/6 of the octahedral holes at the 2c and 2d positions, both with site symmetry 3.2, not occupied. The corresponding vacancies, denominated as X1 at the 2d position and as X2 at the 2c position, have different sizes. X1 has a diagonal diameter of 4.1076 (8) Å whereas X2 is somewhat larger with a diagonal diameter of 4.3258 (8) Å. This difference might be correlated with the size of the surrounding octahedra. Whereas the smaller X1 vacancy is encircled by a ring of six [CoO6] octahedra, the larger X2 is encircled by a ring of three [CoO6] and three slightly smaller [TeO6] octahedra (Fig. 2). Layer B consists of double octahedra that are made up from face-sharing [CoO6] and [TeO6] octahedra, and by surrounding lead(II) atoms (Fig. 3). Adjacent A and B layers are linked together above and below the X1 and X2 vacancies through corner-sharing of [CoO6] and [TeO6] octahedra.

The resulting [Co9Te5O30]12- framework anion leaves space for the stereochemically active lead(II) cations. The oxygen coordination of the two Pb2+ cations is one-sided, with a [4]-coordination for Pb1 and a [6]-coordination for Pb2, if only Pb—O distances less than 2.75 Å are taken into account. The two cations share a common edge (O6—O6') with the lone pair electrons E pointing towards opposite directions. However, a bond valence calculation (Brown, 2002) shows a significant contribution of the four additional Pb—O distances for each of the two Pb atoms if interactions up to 3.5 Å are considered. Inclusion of these bonds increases the bond valence sum at Pb1 from 1.61 valence units (vu) to 1.83 vu and at Pb2 from 1.64 to 1.96 vu. The bond valence sum at O3 is also raised from 1.60 to 1.80 vu. Therefore the overall coordination of Pb1 might be described as [4 + 4] and that of Pb2 as [6 + 4] (Fig. 4).

Related literature top

For the isotypic nickel analogue, see: Wedel et al. (1998). Reviews on the crystal chemistry of oxotellurates(VI) and of the geometry of [CoIIO6] polyhedra are given by Levason (1997) and Wildner (1992), respectively. For Pb5TeO8, see: Artner & Weil (2012). For the bond-valence method, see: Brown (2002).

Experimental top

1.281 (5.7 mmol) PbO, 0.216 g (2.9 mmol) CoO and 0.914 g (5.7 mmol) TeO2 were mixed and thoroughly ground and heated in an alumina crucible under atmospheric conditions during 6 h to 1023 K and held at that temperature for 48 h. Then the furnace was shut-off. Several crystal phases could be identified from the cooled reaction mixture by single-crystal diffraction: Dark blue isometric crystals of Pb2CoTeO6, dark-red (nearly black) block-like crystals of Pb5TeO8 (Artner & Weil, 2012), colourless crystals of α-Al2O3 and dark red crystals of Pb6Co9(TeO6)5 with a block-like shape.

Refinement top

The highest remaining electron density was found 1.49 Å from atom Pb1 and the lowest remaining electron density 0.52 Å from atom Pb2. The refined Flack parameter indicates racemic twinning with an approximate ratio of 1:6 for the twin components.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS for Windows (Dowty, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The crystal structure of Pb6Co9(TeO6)5 in a projection along [010]. Displacement ellipsoids are drawn at the 90% probability level. Letters A and B indicate the two types of layers present in the structure.
[Figure 2] Fig. 2. Layer A (situated approximately at z 1/4) in the crystal structure of Pb6Co9(TeO6)5. Colour code and probability of the displacement parameters as in Fig. 1.
[Figure 3] Fig. 3. Layer B (situated approximately at z 0) in the crystal structure of Pb6Co9(TeO6)5. Colour code and probability of the displacement parameters as in Fig. 1.
[Figure 4] Fig. 4. The coordination spheres around the two lead atoms, considering bond lengths up to 3.5 Å; short Pb—O distances < 2.75 Å are given in black, emphasizing the one-sided [4]-coordination for Pb1 and [6]-coordination for Pb2. Longer bonds augmenting the coordination spheres are given in yellow. Probability of the displacement parameters as in Fig. 1.
hexalead(II) nonacobalt(II) pentatellurate(VI) top
Crystal data top
Pb6Co9(TeO6)5Dx = 7.535 Mg m3
Mr = 2891.51Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P6322Cell parameters from 6739 reflections
Hall symbol: P 6c 2cθ = 2.8–36.8°
a = 10.3915 (1) ŵ = 50.89 mm1
c = 13.6273 (2) ÅT = 293 K
V = 1274.37 (3) Å3Parallelepiped, dark red
Z = 20.07 × 0.06 × 0.05 mm
F(000) = 2470
Data collection top
Bruker APEXII CCD
diffractometer
2262 independent reflections
Radiation source: fine-focus sealed tube1908 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
ω and φ scansθmax = 37.6°, θmin = 2.3°
Absorption correction: numerical
(HABITUS; Herrendorf, 1997)
h = 1617
Tmin = 0.123, Tmax = 0.200k = 1717
45686 measured reflectionsl = 2223
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0244P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.025(Δ/σ)max < 0.001
wR(F2) = 0.056Δρmax = 2.96 e Å3
S = 1.09Δρmin = 2.59 e Å3
2262 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
81 parametersExtinction coefficient: 0.00019 (3)
0 restraintsAbsolute structure: Flack (1983), 882 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.134 (10)
Crystal data top
Pb6Co9(TeO6)5Z = 2
Mr = 2891.51Mo Kα radiation
Hexagonal, P6322µ = 50.89 mm1
a = 10.3915 (1) ÅT = 293 K
c = 13.6273 (2) Å0.07 × 0.06 × 0.05 mm
V = 1274.37 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2262 independent reflections
Absorption correction: numerical
(HABITUS; Herrendorf, 1997)
1908 reflections with I > 2σ(I)
Tmin = 0.123, Tmax = 0.200Rint = 0.068
45686 measured reflectionsθmax = 37.6°
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.056Δρmax = 2.96 e Å3
S = 1.09Δρmin = 2.59 e Å3
2262 reflectionsAbsolute structure: Flack (1983), 882 Friedel pairs
81 parametersFlack parameter: 0.134 (10)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.26736 (3)0.26736 (3)0.00000.01216 (6)
Pb20.38848 (3)1.00000.00000.01881 (8)
Te10.33330.66670.09611 (4)0.00407 (10)
Te20.16730 (4)0.33460 (9)0.25000.00433 (8)
Co10.33330.66670.11832 (9)0.0066 (2)
Co20.16885 (10)0.3377 (2)0.25000.00664 (18)
Co30.00000.00000.25000.0087 (3)
Co40.00992 (19)0.50496 (10)0.25000.00566 (18)
O10.3366 (5)0.3241 (5)0.1717 (3)0.0077 (8)
O20.1726 (7)0.5050 (6)0.1628 (3)0.0083 (10)
O30.1702 (7)0.1801 (6)0.3277 (3)0.0105 (9)
O50.3239 (8)0.4818 (6)0.3295 (3)0.0076 (10)
O60.3481 (4)0.5265 (4)0.0034 (4)0.0069 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.01117 (9)0.01117 (9)0.01243 (12)0.00429 (9)0.00014 (9)0.00014 (9)
Pb20.01104 (9)0.01201 (13)0.03372 (18)0.00601 (7)0.00268 (13)0.0054 (3)
Te10.00414 (14)0.00414 (14)0.0039 (2)0.00207 (7)0.0000.000
Te20.00362 (13)0.00380 (19)0.00564 (18)0.00190 (10)0.0002 (4)0.000
Co10.0066 (3)0.0066 (3)0.0066 (5)0.00332 (16)0.0000.000
Co20.0057 (3)0.0069 (5)0.0077 (4)0.0035 (2)0.0006 (10)0.000
Co30.0061 (4)0.0061 (4)0.0140 (7)0.00305 (19)0.0000.000
Co40.0031 (5)0.0045 (3)0.0089 (4)0.0015 (2)0.0000.0002 (3)
O10.011 (2)0.008 (2)0.0048 (15)0.0055 (14)0.0003 (13)0.0022 (13)
O20.007 (2)0.006 (2)0.012 (2)0.0022 (17)0.0001 (16)0.0034 (15)
O30.011 (2)0.012 (2)0.0077 (16)0.0059 (15)0.0000 (15)0.0011 (15)
O50.004 (2)0.006 (2)0.0072 (18)0.0011 (18)0.0005 (18)0.0009 (15)
O60.0058 (14)0.0070 (14)0.0075 (15)0.0029 (11)0.001 (2)0.002 (2)
Geometric parameters (Å, º) top
Pb1—O6i2.387 (4)Te2—O3iii1.937 (7)
Pb1—O62.387 (4)Te2—O31.937 (7)
Pb1—O1i2.432 (4)Te2—O1xii1.939 (5)
Pb1—O12.432 (4)Te2—O1i1.939 (5)
Pb1—O3ii3.327 (7)Co1—O5x2.004 (6)
Pb1—O3iii3.327 (7)Co1—O5iii2.004 (6)
Pb1—O3iv3.453 (7)Co1—O5xiii2.004 (6)
Pb1—O3v3.453 (7)Co1—O6vi2.262 (5)
Pb1—Pb2vi3.5764 (4)Co1—O6vii2.262 (5)
Pb1—Pb2vii3.5777 (2)Co1—O62.262 (5)
Pb2—O6viii2.420 (3)Co2—O2xiv2.090 (6)
Pb2—O6vii2.420 (3)Co2—O22.090 (6)
Pb2—O2ix2.726 (5)Co2—O3i2.090 (8)
Pb2—O2vi2.726 (5)Co2—O3iv2.090 (8)
Pb2—O5x2.727 (5)Co2—O12.108 (6)
Pb2—O5xi2.727 (5)Co2—O1xiv2.108 (6)
Pb2—O6vi3.155 (3)Co3—O3xv2.107 (4)
Pb2—O6ix3.155 (3)Co3—O32.107 (4)
Pb2—O3xi3.230 (4)Co3—O3xvi2.107 (4)
Pb2—O3x3.230 (4)Co3—O3xvii2.107 (4)
Te1—O2vi1.906 (5)Co3—O3iii2.107 (4)
Te1—O21.906 (5)Co3—O3v2.107 (4)
Te1—O2vii1.906 (5)Co4—O22.067 (7)
Te1—O6vi1.991 (4)Co4—O2xviii2.067 (7)
Te1—O6vii1.991 (4)Co4—O1vi2.071 (4)
Te1—O61.991 (4)Co4—O1xiv2.071 (4)
Te2—O51.917 (6)Co4—O5xix2.116 (7)
Te2—O5iii1.917 (6)Co4—O5iv2.116 (7)
O6i—Pb1—O684.58 (16)O5iii—Te2—O1xii85.9 (2)
O6i—Pb1—O1i79.26 (18)O3iii—Te2—O1xii87.0 (2)
O6—Pb1—O1i77.79 (18)O3—Te2—O1xii93.7 (2)
O6i—Pb1—O177.79 (18)O5—Te2—O1i85.9 (2)
O6—Pb1—O179.26 (18)O5iii—Te2—O1i93.3 (2)
O1i—Pb1—O1148.79 (19)O3iii—Te2—O1i93.7 (2)
O6i—Pb1—O3ii95.87 (13)O3—Te2—O1i87.0 (2)
O6—Pb1—O3ii133.98 (17)O1xii—Te2—O1i179.0 (3)
O1i—Pb1—O3ii147.68 (15)O5x—Co1—O5iii108.14 (14)
O1—Pb1—O3ii56.26 (15)O5x—Co1—O5xiii108.14 (14)
O6i—Pb1—O3iii133.98 (17)O5iii—Co1—O5xiii108.14 (14)
O6—Pb1—O3iii95.87 (13)O5x—Co1—O6vi87.99 (18)
O1i—Pb1—O3iii56.26 (15)O5iii—Co1—O6vi85.39 (19)
O1—Pb1—O3iii147.68 (15)O5xiii—Co1—O6vi153.55 (18)
O3ii—Pb1—O3iii114.8 (2)O5x—Co1—O6vii85.39 (19)
O6i—Pb1—O3iv138.20 (17)O5iii—Co1—O6vii153.55 (18)
O6—Pb1—O3iv95.05 (13)O5xiii—Co1—O6vii87.99 (18)
O1i—Pb1—O3iv141.63 (15)O6vi—Co1—O6vii72.17 (17)
O1—Pb1—O3iv61.26 (14)O5x—Co1—O6153.55 (18)
O3ii—Pb1—O3iv55.44 (13)O5iii—Co1—O687.99 (18)
O3iii—Pb1—O3iv87.73 (10)O5xiii—Co1—O685.39 (18)
O6i—Pb1—O3v95.05 (13)O6vi—Co1—O672.17 (17)
O6—Pb1—O3v138.20 (17)O6vii—Co1—O672.17 (17)
O1i—Pb1—O3v61.26 (14)O2xiv—Co2—O287.8 (3)
O1—Pb1—O3v141.63 (15)O2xiv—Co2—O3i92.52 (17)
O3ii—Pb1—O3v87.73 (10)O2—Co2—O3i174.4 (3)
O3iii—Pb1—O3v55.44 (13)O2xiv—Co2—O3iv174.4 (3)
O3iv—Pb1—O3v111.4 (2)O2—Co2—O3iv92.52 (17)
O6viii—Pb2—O6vii83.17 (17)O3i—Co2—O3iv87.7 (2)
O6viii—Pb2—O2ix61.34 (16)O2xiv—Co2—O189.3 (2)
O6vii—Pb2—O2ix107.91 (19)O2—Co2—O195.5 (2)
O6viii—Pb2—O2vi107.91 (19)O3i—Co2—O178.9 (2)
O6vii—Pb2—O2vi61.34 (16)O3iv—Co2—O196.2 (2)
O2ix—Pb2—O2vi166.8 (3)O2xiv—Co2—O1xiv95.5 (2)
O6viii—Pb2—O5x106.77 (19)O2—Co2—O1xiv89.3 (2)
O6vii—Pb2—O5x68.25 (16)O3i—Co2—O1xiv96.2 (2)
O2ix—Pb2—O5x66.27 (12)O3iv—Co2—O1xiv78.9 (2)
O2vi—Pb2—O5x112.94 (13)O1—Co2—O1xiv173.3 (3)
O6viii—Pb2—O5xi68.25 (16)O3xv—Co3—O3175.2 (5)
O6vii—Pb2—O5xi106.77 (19)O3xv—Co3—O3xvi79.5 (4)
O2ix—Pb2—O5xi112.94 (13)O3—Co3—O3xvi96.96 (14)
O2vi—Pb2—O5xi66.27 (12)O3xv—Co3—O3xvii86.8 (4)
O5x—Pb2—O5xi173.7 (3)O3—Co3—O3xvii96.96 (14)
O6viii—Pb2—O6vi138.39 (2)O3xvi—Co3—O3xvii96.96 (14)
O6vii—Pb2—O6vi55.23 (15)O3xv—Co3—O3iii96.96 (14)
O2ix—Pb2—O6vi126.25 (15)O3—Co3—O3iii79.5 (4)
O2vi—Pb2—O6vi55.67 (17)O3xvi—Co3—O3iii86.8 (4)
O5x—Pb2—O6vi60.10 (16)O3xvii—Co3—O3iii175.2 (5)
O5xi—Pb2—O6vi120.76 (15)O3xv—Co3—O3v96.96 (14)
O6viii—Pb2—O6ix55.23 (15)O3—Co3—O3v86.8 (4)
O6vii—Pb2—O6ix138.39 (2)O3xvi—Co3—O3v175.2 (5)
O2ix—Pb2—O6ix55.67 (17)O3xvii—Co3—O3v79.5 (4)
O2vi—Pb2—O6ix126.25 (15)O3iii—Co3—O3v96.96 (14)
O5x—Pb2—O6ix120.76 (15)O2—Co4—O2xviii89.8 (3)
O5xi—Pb2—O6ix60.10 (16)O2—Co4—O1vi96.9 (2)
O6vi—Pb2—O6ix166.38 (13)O2xviii—Co4—O1vi91.0 (2)
O6viii—Pb2—O3xi120.59 (18)O2—Co4—O1xiv91.0 (2)
O6vii—Pb2—O3xi121.18 (18)O2xviii—Co4—O1xiv96.9 (2)
O2ix—Pb2—O3xi130.9 (2)O1vi—Co4—O1xiv168.8 (4)
O2vi—Pb2—O3xi60.21 (13)O2—Co4—O5xix174.7 (3)
O5x—Pb2—O3xi132.1 (2)O2xviii—Co4—O5xix90.92 (16)
O5xi—Pb2—O3xi53.44 (14)O1vi—Co4—O5xix77.8 (2)
O6vi—Pb2—O3xi86.29 (19)O1xiv—Co4—O5xix94.2 (2)
O6ix—Pb2—O3xi84.37 (18)O2—Co4—O5iv90.92 (16)
O6viii—Pb2—O3x121.18 (18)O2xviii—Co4—O5iv174.7 (3)
O6vii—Pb2—O3x120.59 (18)O1vi—Co4—O5iv94.2 (2)
O2ix—Pb2—O3x60.21 (13)O1xiv—Co4—O5iv77.8 (2)
O2vi—Pb2—O3x130.9 (2)O5xix—Co4—O5iv88.9 (3)
O5x—Pb2—O3x53.44 (14)Te2ii—O1—Co4vii98.54 (19)
O5xi—Pb2—O3x132.1 (2)Te2ii—O1—Co296.67 (17)
O6vi—Pb2—O3x84.37 (18)Co4vii—O1—Co289.3 (2)
O6ix—Pb2—O3x86.29 (19)Te2ii—O1—Pb1116.6 (2)
O3xi—Pb2—O3x93.32 (14)Co4vii—O1—Pb1136.07 (18)
O2vi—Te1—O299.15 (18)Co2—O1—Pb1110.4 (2)
O2vi—Te1—O2vii99.15 (18)Te1—O2—Co4129.1 (3)
O2—Te1—O2vii99.15 (18)Te1—O2—Co2130.4 (4)
O2vi—Te1—O6vi90.7 (2)Co4—O2—Co289.87 (19)
O2—Te1—O6vi85.2 (2)Te1—O2—Pb2vii95.48 (17)
O2vii—Te1—O6vi168.4 (2)Co4—O2—Pb2vii96.4 (2)
O2vi—Te1—O6vii85.2 (2)Co2—O2—Pb2vii111.0 (2)
O2—Te1—O6vii168.4 (2)Te2—O3—Co2xx97.34 (17)
O2vii—Te1—O6vii90.7 (2)Te2—O3—Co396.2 (2)
O6vi—Te1—O6vii84.0 (2)Co2xx—O3—Co392.8 (3)
O2vi—Te1—O6168.4 (2)Te2—O5—Co1xiii125.5 (4)
O2—Te1—O690.7 (2)Te2—O5—Co4xx97.7 (2)
O2vii—Te1—O685.2 (2)Co1xiii—O5—Co4xx120.3 (3)
O6vi—Te1—O684.0 (2)Te2—O5—Pb2xxi117.3 (2)
O6vii—Te1—O684.0 (2)Co1xiii—O5—Pb2xxi97.82 (18)
O5—Te2—O5iii92.5 (3)Co4xx—O5—Pb2xxi95.2 (2)
O5—Te2—O3iii177.8 (2)Te1—O6—Co186.54 (14)
O5iii—Te2—O3iii89.6 (2)Te1—O6—Pb1136.5 (2)
O5—Te2—O389.6 (2)Co1—O6—Pb1127.8 (2)
O5iii—Te2—O3177.8 (2)Te1—O6—Pb2vi103.41 (16)
O3iii—Te2—O388.2 (2)Co1—O6—Pb2vi100.34 (16)
O5—Te2—O1xii93.3 (2)Pb1—O6—Pb2vi96.12 (13)
Symmetry codes: (i) y, x, z; (ii) y, x+y, z1/2; (iii) x+y, y, z+1/2; (iv) xy, x, z1/2; (v) x, xy, z+1/2; (vi) x+y, x+1, z; (vii) y+1, xy+1, z; (viii) x+1, x+y+1, z; (ix) y, x+1, z; (x) x, xy+1, z+1/2; (xi) y, x+y+1, z1/2; (xii) xy, x, z+1/2; (xiii) y+1, x+1, z+1/2; (xiv) x+y, y, z1/2; (xv) y, x, z+1/2; (xvi) y, xy, z; (xvii) x+y, x, z; (xviii) x, xy+1, z1/2; (xix) xy, y+1, z; (xx) y, x+y, z+1/2; (xxi) xy+1, x, z+1/2.
Selected bond lengths (Å) top
Te1—O21.906 (5)Co2—O22.090 (6)
Te1—O61.991 (4)Co2—O3iii2.090 (8)
Te2—O51.917 (6)Co2—O12.108 (6)
Te2—O31.937 (7)Co3—O32.107 (4)
Te2—O1i1.939 (5)Co4—O22.067 (7)
Co1—O5ii2.004 (6)Co4—O1iv2.071 (4)
Co1—O62.262 (5)Co4—O5v2.116 (7)
Symmetry codes: (i) xy, x, z+1/2; (ii) x+y, y, z+1/2; (iii) y, x, z; (iv) x+y, x+1, z; (v) xy, y+1, z.
Acknowledgements top

The X-ray centre of the Vienna University of Technology is acknowledged for providing access to the single-crystal diffractometer.

references
References top

Artner, C. & Weil, M. (2012). Z. Kristallogr. Suppl. 32, 99.

Brown, I. D. (2002). In The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Dowty, E. (2006). ATOMS. Shape Software, Kingsport, Tennessee, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Herrendorf, W. (1997). HABITUS. University of Giessen, Germany.

Levason, W. (1997). Coord. Chem. Rev. 161, 33–79.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wedel, B., Sugiyama, K. & Müller-Buschbaum, H. K. (1998). Z. Naturforsch. Teil B, 53, 527–531.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Wildner, M. (1992). Z. Kristallogr. 202, 51–70.