supplementary materials


bt5974 scheme

Acta Cryst. (2012). E68, o2650    [ doi:10.1107/S1600536812033995 ]

N,N-Dimethyl-N',N''-bis(2-methylphenyl)phosphoric triamide monohydrate

F. Eslami, M. Pourayoubi, M. Yousefi, A. L. Rheingold and J. A. Golen

Abstract top

In the title compound, C16H22N3OP·H2O, the P atom adopts a distorted tetrahedral environment with the bond angles around the P atom in the range 99.98 (7)-116.20 (7)°. The P-N bond length in the [(CH3)2N]P(O) fragment [1.6392 (14) Å] is slightly shorter than two other P-N bonds [1.6439 (15) and 1.6530 (14) Å]. In the (CH3)2NP(O) fragment, one of the methyl groups is syn to the P=O bond, whereas the other one is anti to the P=O bond [C-N-P=O torsion angles = 4.80 (17) and -174.57 (15)°]. In the crystal, the water molecules form hydrogen bonds to the O atoms of the P=O bond of two different molecules and act as acceptors for the two amino H atoms of the same molecule. As a result, chains parallel to [010] are formed.

Comment top

The crystal structure determination of the title hydrate phosphoric triamide (Fig. 1) was performed as a part of work on synthesis and X-ray crystallography of compounds with a [(CH3)2N]P(O) fragment (Pourayoubi, Tarahhomi et al., 2012; Pourayoubi et al., 2011).

In the phosphoric triamide molecule, the P atom adopts a distorted (N)P(O)(N)2 tetrahedral environment. The PO and P—N bond lengths are within the expected values (Pourayoubi, Tarahhomi et al., 2012; Pourayoubi et al., 2011). The sum of three bond angles at the nitrogen atom of the dimethylamido fragment, C11—N3—C10 + C11—N3—P1 + C10—N3—P1, of 360° suggests sp2 hybridization for this N atom. Moreover, the C6—N1—P1 and C4—N2—P1 bond angles are 125.07 (12)° and 125.66 (12)°, respectively. The P—N bond length of the [(CH3)2N]P(O) fragment is shorter than two other P—N bonds.

In the crystal, the oxygen atoms of phosphoryl group and water molecule act as double-hydrogen bond acceptors (for a definition of double-hydrogen bond acceptor, see: Pourayoubi, Nečas & Negari, 2012) to form O—H···O···H—O and N—H···O···H—N groups. The phosphoric triamide and water molecules are aggregated through these hydrogen bonds in a linear arrangement parallel to the b axis, Fig. 2.

Related literature top

For phosphoramidates having a [(CH3)2N]P(O) fragment and for PO and P—N bond lengths, see: Pourayoubi, Tarahhomi et al. (2012); Pourayoubi et al. (2011). For the double H-atom acceptability of the P=O group, see: Pourayoubi, Nečas & Negari (2012).

Experimental top

Synthesis of ((CH3)2N)P(O)Cl2: [(CH3)2NH2]Cl (0.184 mol) and P(O)Cl3 (0.552 mol) were refluxed for 8 h and afterwards the excess of P(O)Cl3 was removed in vacuo.

Synthesis of title compound: To a solution of ((CH3)2N)P(O)Cl2 (3.7 mmol) in CHCl3 (15 ml), a solution of ortho-toluidine (14.8 mmol) in the same solvent (25 ml) was added at 273 K. After 4 h stirring, the solvent was removed and product was washed with deionized water and recrystallized from chloroform/n-hexene at room temperature to yield colourless crystals.

Refinement top

The H1N, H2N, H1W and H2W atoms were found from a Fourier difference map and their coordinates were refined with the following restraints: N—H = 0.87 (2) Å, O—H = 0.85 (2) Å and H1W···H2W = 1.33 (2) Å. Their displacement parameters were set to 1.2 Ueq of the parent atom. All other hydrogen atoms were placed in calculated positions and allowed to ride on their parent C atoms; C—H distances (CH3) 0.98 Å, (CH) 0.95 Å with Ueq of 1.5 and 1.2, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. An ORTEP-style plot and atom labeling scheme for the title hydrate compound. Displacement ellipsoids are given at 50% probability level and H atoms are drawn as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing in the title compound with hydrogen bonds shown as dotted lines. Only H atoms involved in hydrogen bonds are shown.
N,N-Dimethyl-N',N''-bis(2-methylphenyl)phosphoric triamide monohydrate top
Crystal data top
C16H22N3OP·H2OF(000) = 688
Mr = 321.35Dx = 1.244 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4384 reflections
a = 10.7058 (16) Åθ = 3.0–28.1°
b = 7.2541 (11) ŵ = 0.17 mm1
c = 22.091 (3) ÅT = 100 K
β = 90.971 (2)°Block, colourless
V = 1715.3 (4) Å30.20 × 0.14 × 0.14 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4036 independent reflections
Radiation source: fine-focus sealed tube3135 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
φ and ω scansθmax = 28.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1413
Tmin = 0.967, Tmax = 0.977k = 99
15201 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0495P)2 + 0.3428P]
where P = (Fo2 + 2Fc2)/3
4036 reflections(Δ/σ)max < 0.001
215 parametersΔρmax = 0.30 e Å3
5 restraintsΔρmin = 0.38 e Å3
Crystal data top
C16H22N3OP·H2OV = 1715.3 (4) Å3
Mr = 321.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.7058 (16) ŵ = 0.17 mm1
b = 7.2541 (11) ÅT = 100 K
c = 22.091 (3) Å0.20 × 0.14 × 0.14 mm
β = 90.971 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4036 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3135 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.977Rint = 0.050
15201 measured reflectionsθmax = 28.4°
Refinement top
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115Δρmax = 0.30 e Å3
S = 1.04Δρmin = 0.38 e Å3
4036 reflectionsAbsolute structure: ?
215 parametersFlack parameter: ?
5 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.30253 (4)0.63760 (6)0.045212 (19)0.02129 (13)
O1W0.43897 (12)0.18044 (16)0.04084 (6)0.0283 (3)
H1W0.5043 (15)0.175 (3)0.0196 (8)0.034*
H2W0.4105 (16)0.072 (2)0.0412 (8)0.034*
N10.31522 (13)0.49375 (19)0.01239 (6)0.0235 (3)
H1N0.3457 (17)0.385 (2)0.0046 (8)0.028*
O10.35590 (11)0.82247 (16)0.03322 (5)0.0273 (3)
N30.15544 (13)0.6646 (2)0.06265 (7)0.0273 (3)
C10.39835 (17)0.6608 (3)0.28289 (8)0.0336 (4)
H10.40260.69100.32470.040*
C20.35064 (16)0.7858 (3)0.24143 (8)0.0314 (4)
H20.32300.90340.25450.038*
C30.34322 (16)0.7391 (2)0.18036 (8)0.0281 (4)
H30.31090.82550.15180.034*
C40.38270 (15)0.5666 (2)0.16075 (7)0.0233 (3)
N20.37225 (13)0.5161 (2)0.09875 (6)0.0243 (3)
H2N0.4025 (17)0.411 (2)0.0871 (8)0.029*
C60.26974 (15)0.5277 (2)0.07211 (7)0.0232 (3)
C70.27217 (15)0.3843 (2)0.11509 (8)0.0259 (4)
C80.22525 (16)0.4208 (3)0.17281 (8)0.0312 (4)
H80.22600.32510.20220.037*
C90.17722 (16)0.5919 (3)0.18920 (8)0.0327 (4)
H90.14450.61250.22890.039*
C100.08215 (18)0.5071 (3)0.08193 (10)0.0458 (5)
H10A0.06040.52200.12460.069*
H10B0.13110.39410.07710.069*
H10C0.00550.49920.05720.069*
C110.09013 (19)0.8401 (3)0.06091 (9)0.0403 (5)
H11A0.02060.83330.03160.060*
H11B0.14800.93760.04880.060*
H11C0.05780.86790.10110.060*
C120.22373 (16)0.7000 (2)0.08851 (8)0.0266 (4)
H120.22360.79700.05960.032*
C130.17799 (16)0.7313 (3)0.14671 (8)0.0309 (4)
H130.14690.84980.15740.037*
C140.32410 (18)0.1973 (3)0.09952 (8)0.0336 (4)
H14A0.31660.11630.13490.050*
H14B0.27730.14450.06600.050*
H14C0.41230.20910.08760.050*
C150.43306 (15)0.4396 (2)0.20245 (8)0.0257 (4)
C160.47558 (18)0.2518 (3)0.18325 (8)0.0330 (4)
H16A0.50790.18430.21860.050*
H16B0.54170.26420.15340.050*
H16C0.40490.18430.16520.050*
C170.43986 (16)0.4911 (3)0.26294 (8)0.0322 (4)
H170.47420.40690.29160.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0220 (2)0.0178 (2)0.0242 (2)0.00113 (16)0.00295 (16)0.00023 (16)
O1W0.0330 (7)0.0177 (6)0.0344 (7)0.0005 (5)0.0081 (5)0.0033 (5)
N10.0295 (8)0.0169 (7)0.0240 (7)0.0007 (6)0.0004 (6)0.0001 (6)
O10.0294 (6)0.0196 (6)0.0330 (6)0.0041 (5)0.0035 (5)0.0014 (5)
N30.0232 (7)0.0259 (8)0.0331 (8)0.0014 (6)0.0046 (6)0.0030 (6)
C10.0321 (10)0.0433 (11)0.0252 (9)0.0036 (8)0.0006 (7)0.0073 (8)
C20.0260 (9)0.0334 (10)0.0347 (10)0.0008 (8)0.0012 (7)0.0109 (8)
C30.0281 (9)0.0268 (9)0.0293 (9)0.0019 (7)0.0020 (7)0.0030 (7)
C40.0206 (8)0.0248 (9)0.0244 (8)0.0026 (7)0.0011 (6)0.0020 (7)
N20.0283 (7)0.0203 (7)0.0244 (7)0.0022 (6)0.0012 (6)0.0042 (6)
C60.0209 (8)0.0245 (9)0.0242 (8)0.0050 (6)0.0022 (6)0.0004 (7)
C70.0227 (8)0.0264 (9)0.0287 (9)0.0049 (7)0.0037 (7)0.0035 (7)
C80.0286 (9)0.0384 (11)0.0267 (9)0.0056 (8)0.0025 (7)0.0057 (8)
C90.0270 (9)0.0453 (12)0.0258 (9)0.0048 (8)0.0017 (7)0.0039 (8)
C100.0289 (10)0.0475 (13)0.0613 (14)0.0055 (9)0.0109 (9)0.0170 (11)
C110.0372 (11)0.0417 (12)0.0422 (11)0.0157 (9)0.0084 (9)0.0062 (9)
C120.0268 (9)0.0239 (9)0.0293 (9)0.0037 (7)0.0001 (7)0.0001 (7)
C130.0278 (9)0.0299 (10)0.0350 (10)0.0041 (7)0.0007 (7)0.0078 (8)
C140.0374 (10)0.0297 (10)0.0338 (10)0.0008 (8)0.0007 (8)0.0085 (8)
C150.0202 (8)0.0267 (9)0.0302 (9)0.0030 (7)0.0002 (7)0.0004 (7)
C160.0391 (10)0.0288 (10)0.0310 (9)0.0033 (8)0.0018 (8)0.0042 (7)
C170.0295 (9)0.0391 (11)0.0278 (9)0.0023 (8)0.0035 (7)0.0006 (8)
Geometric parameters (Å, º) top
P1—O11.4833 (12)C7—C141.504 (2)
P1—N31.6392 (14)C8—C91.389 (3)
P1—N21.6439 (15)C8—H80.9500
P1—N11.6530 (14)C9—C131.380 (3)
O1W—H1W0.850 (14)C9—H90.9500
O1W—H2W0.841 (14)C10—H10A0.9800
N1—C61.420 (2)C10—H10B0.9800
N1—H1N0.871 (14)C10—H10C0.9800
N3—C111.453 (2)C11—H11A0.9800
N3—C101.454 (2)C11—H11B0.9800
C1—C21.381 (3)C11—H11C0.9800
C1—C171.383 (3)C12—C131.387 (2)
C1—H10.9500C12—H120.9500
C2—C31.392 (2)C13—H130.9500
C2—H20.9500C14—H14A0.9800
C3—C41.392 (2)C14—H14B0.9800
C3—H30.9500C14—H14C0.9800
C4—C151.404 (2)C15—C171.388 (2)
C4—N21.420 (2)C15—C161.500 (2)
N2—H2N0.869 (14)C16—H16A0.9800
C6—C121.389 (2)C16—H16B0.9800
C6—C71.409 (2)C16—H16C0.9800
C7—C81.388 (2)C17—H170.9500
O1—P1—N3107.97 (7)C13—C9—H9120.7
O1—P1—N2116.20 (7)C8—C9—H9120.7
N3—P1—N2108.73 (7)N3—C10—H10A109.5
O1—P1—N1113.35 (7)N3—C10—H10B109.5
N3—P1—N1110.37 (7)H10A—C10—H10B109.5
N2—P1—N199.98 (7)N3—C10—H10C109.5
H1W—O1W—H2W105.3 (15)H10A—C10—H10C109.5
C6—N1—P1125.07 (12)H10B—C10—H10C109.5
C6—N1—H1N117.5 (12)N3—C11—H11A109.5
P1—N1—H1N117.1 (12)N3—C11—H11B109.5
C11—N3—C10115.75 (15)H11A—C11—H11B109.5
C11—N3—P1124.21 (12)N3—C11—H11C109.5
C10—N3—P1120.03 (12)H11A—C11—H11C109.5
C2—C1—C17119.38 (17)H11B—C11—H11C109.5
C2—C1—H1120.3C13—C12—C6120.50 (17)
C17—C1—H1120.3C13—C12—H12119.8
C1—C2—C3119.80 (17)C6—C12—H12119.8
C1—C2—H2120.1C9—C13—C12120.55 (18)
C3—C2—H2120.1C9—C13—H13119.7
C4—C3—C2120.53 (17)C12—C13—H13119.7
C4—C3—H3119.7C7—C14—H14A109.5
C2—C3—H3119.7C7—C14—H14B109.5
C3—C4—C15120.06 (15)H14A—C14—H14B109.5
C3—C4—N2120.83 (15)C7—C14—H14C109.5
C15—C4—N2119.11 (15)H14A—C14—H14C109.5
C4—N2—P1125.66 (12)H14B—C14—H14C109.5
C4—N2—H2N119.2 (12)C17—C15—C4117.90 (16)
P1—N2—H2N115.1 (12)C17—C15—C16120.38 (16)
C12—C6—C7119.93 (15)C4—C15—C16121.70 (15)
C12—C6—N1120.84 (15)C15—C16—H16A109.5
C7—C6—N1119.23 (15)C15—C16—H16B109.5
C8—C7—C6117.91 (17)H16A—C16—H16B109.5
C8—C7—C14120.57 (16)C15—C16—H16C109.5
C6—C7—C14121.52 (15)H16A—C16—H16C109.5
C7—C8—C9122.43 (17)H16B—C16—H16C109.5
C7—C8—H8118.8C1—C17—C15122.30 (18)
C9—C8—H8118.8C1—C17—H17118.8
C13—C9—C8118.67 (17)C15—C17—H17118.8
O1—P1—N1—C655.73 (15)P1—N1—C6—C7171.82 (12)
N3—P1—N1—C665.52 (15)C12—C6—C7—C81.3 (2)
N2—P1—N1—C6179.92 (13)N1—C6—C7—C8178.99 (14)
O1—P1—N3—C114.80 (17)C12—C6—C7—C14178.50 (16)
N2—P1—N3—C11131.68 (15)N1—C6—C7—C141.2 (2)
N1—P1—N3—C11119.60 (15)C6—C7—C8—C90.3 (2)
O1—P1—N3—C10174.57 (15)C14—C7—C8—C9179.55 (16)
N2—P1—N3—C1047.69 (17)C7—C8—C9—C131.0 (3)
N1—P1—N3—C1061.04 (16)C7—C6—C12—C131.1 (2)
C17—C1—C2—C30.9 (3)N1—C6—C12—C13179.17 (15)
C1—C2—C3—C40.5 (3)C8—C9—C13—C121.2 (3)
C2—C3—C4—C151.4 (2)C6—C12—C13—C90.1 (3)
C2—C3—C4—N2178.28 (15)C3—C4—C15—C171.0 (2)
C3—C4—N2—P16.6 (2)N2—C4—C15—C17178.72 (14)
C15—C4—N2—P1173.12 (12)C3—C4—C15—C16179.43 (16)
O1—P1—N2—C461.98 (15)N2—C4—C15—C160.2 (2)
N3—P1—N2—C460.03 (15)C2—C1—C17—C151.3 (3)
N1—P1—N2—C4175.68 (13)C4—C15—C17—C10.4 (3)
P1—N1—C6—C128.5 (2)C16—C15—C17—C1178.08 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O1i0.84 (1)1.91 (2)2.7491 (17)173 (2)
O1W—H1W···O1ii0.85 (1)1.91 (1)2.7607 (17)175 (2)
N1—H1N···O1W0.87 (1)2.04 (2)2.8724 (19)159 (2)
N2—H2N···O1W0.87 (1)2.00 (2)2.8473 (18)164 (2)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O1i0.841 (14)1.912 (15)2.7491 (17)173.2 (18)
O1W—H1W···O1ii0.850 (14)1.913 (14)2.7607 (17)174.9 (19)
N1—H1N···O1W0.871 (14)2.042 (15)2.8724 (19)159.1 (17)
N2—H2N···O1W0.869 (14)2.002 (15)2.8473 (18)163.9 (18)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z.
Acknowledgements top

Support of this investigation by Shahr-e Rey Branch, Islamic Azad University, is gratefully acknowledged.

references
References top

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.

Bruker (2007). APEX2 and SAINT. Bruker Axs Inc., Madison, Wisconsin, USA.

Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Pourayoubi, M., Nečas, M. & Negari, M. (2012). Acta Cryst. C68, o51–o56.

Pourayoubi, M., Tarahhomi, A., Karimi Ahmadabad, F., Fejfarová, K., van der Lee, A. & Dušek, M. (2012). Acta Cryst. C68, o164–o169.

Pourayoubi, M., Yousefi, M., Eslami, F., Rheingold, A. L. & Chen, C. (2011). Acta Cryst. E67, o3220.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.