organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Fluoro­phen­yl)-3-(pyridin-4-yl)-1-(2,4,6-tri­chloro­phen­yl)-1H-pyrazol-5-amine

aFaculty of Science, Chemistry Department, Islamic University of Gaza, Gaza Strip, Palestinian Territories, bInstitute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany, and cDepartment of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
*Correspondence e-mail: stefan.laufer@uni-tuebingen.de

(Received 24 July 2012; accepted 25 July 2012; online 1 August 2012)

In the title compound, C20H12Cl3FN4, the pyrazole ring forms dihedral angles of 47.51 (9), 47.37 (9) and 74.37 (9)° with the directly attached 4-fluoro­phenyl, pyridine and 2,4,6-trichloro­phenyl rings, respectively. Only one of the two amino H atoms is involved in hydrogen bonding. The crystal packing is characterized by N—H⋯N hydrogen bonds, which result in infinite chains parallel to the c axis.

Related literature

For the inhibitory activity and preparation of the title compound, see: Abu Thaher et al. (2012a[Abu Thaher, B., Arnsmann, M., Totzke, F., Ehlert, J. E., Kubbutat, M. H. G., Schächtele, C., Zimmermann, M. O., Koch, P., Boeckler, F. M. & Laufer, S. A. (2012a). J. Med. Chem. 55, 961-965.]). For related structures, see: Abu Thaher et al. (2012b[Abu Thaher, B., Koch, P., Schollmeyer, D. & Laufer, S. (2012b). Acta Cryst. E68, o632.],c[Abu Thaher, B., Koch, P., Schollmeyer, D. & Laufer, S. (2012c). Acta Cryst. E68, o633.],d[Abu Thaher, B., Koch, P., Schollmeyer, D. & Laufer, S. (2012d). Acta Cryst. E68, o917-o918.],e[Abu Thaher, B., Koch, P., Schollmeyer, D. & Laufer, S. (2012e). Acta Cryst. E68, o935.]).

[Scheme 1]

Experimental

Crystal data
  • C20H12Cl3FN4

  • Mr = 433.69

  • Triclinic, [P \overline 1]

  • a = 10.2487 (5) Å

  • b = 10.4643 (5) Å

  • c = 10.5489 (5) Å

  • α = 109.2377 (10)°

  • β = 111.4008 (10)°

  • γ = 98.0304 (11)°

  • V = 950.03 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 173 K

  • 0.33 × 0.28 × 0.07 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.687, Tmax = 0.746

  • 21201 measured reflections

  • 4517 independent reflections

  • 3864 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.079

  • S = 1.03

  • 4517 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6A⋯N22i 0.90 2.17 3.0275 (17) 157
Symmetry code: (i) x, y, z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The regioisomeric switch from 3-(4-fluorophenyl)-4-(pyridin-4-yl)-1-(aryl)-1H-pyrazol-5-amine to 4-(4-fluorophenyl)-3-(pyridin-4-yl)-1-(aryl)-1H-pyrazol-5-amine changes the inhibitory profile from p38α MAP kinase to kinases relevant in cancer (Abu Thaher et al. 2012a). Recently, we reported similar crystal structures (Abu Thaher et al. 2012b,c,d,e). In the crystal structure of the title compound (Fig. 1), the pyrazole ring forms dihedral angels of 47.51 (9)°, 47.37 (9)°, 74.37 (9)° with the 4-fluorophenyl, pyridine and 2,4,6-trichlorophenyl rings, respectively. The 4-fluorophenyl ring encloses dihedral angels of 64.25 (8)° and 66.11 (8)° toward the pyridine and 2,4,6-trichlorophenyl rings, respectively. The pyridine ring is orientated at a dihedral angle of 78.99 (8)° toward the 2,4,6-trichlorophenyl ring. The crystal packing shows that the amino function acts as a hydrogen bond donor of an intermolecular hydrogen bond to the nitrogen atom (N22) of the pyridine ring. The length of the hydrogen bond is 2.17 Å (Table 1) and forms an infinite chain parallel to the c-axis.

Related literature top

For the inhibitory activity and preparation of the title compound, see: Abu Thaher et al. (2012a). For related structures, see: Abu Thaher et al. (2012b,c,d,e).

Experimental top

LDA (20 mmol) was added to dry THF (30 ml) in a three neck flask and cooled to 195 K. 4-Fluorophenylacetonitrile (14 mmol) in THF (10 ml) was added dropwise and the reaction was left stirring for 45 min. N-(2,4,6-trichlorophenyl)pyridine-4-carbohydrazonoyl chloride (5 mmol) was added slowly portionwise to the reaction. After about 1.0 h, the reaction was finished and left stirring to reach room temperature. Water (50 ml) was added to the reaction mixture and extracted with ethyl acetate (2x 50 mL). The organic layer was dried over Na2SO4. The organic layer was concentrated to about 5 ml and left overnight. The title compound was precipitated as a pale brown solid, filtered out, washed with petroleum ether. Yield 35%. The crystals for structure determination were obtained from recrystallization of the product from hot ethyl acetate.

Refinement top

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). Hydrogen atoms attached to nitrogen were located in diff. Fourier maps. All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are depicted as circles of arbitrary size.
4-(4-Fluorophenyl)-3-(pyridin-4-yl)-1-(2,4,6-trichlorophenyl)-1H- pyrazol-5-amine top
Crystal data top
C20H12Cl3FN4Z = 2
Mr = 433.69F(000) = 440
Triclinic, P1Dx = 1.516 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.2487 (5) ÅCell parameters from 7293 reflections
b = 10.4643 (5) Åθ = 2.2–27.7°
c = 10.5489 (5) ŵ = 0.51 mm1
α = 109.2377 (10)°T = 173 K
β = 111.4008 (10)°Plate, colourless
γ = 98.0304 (11)°0.33 × 0.28 × 0.07 mm
V = 950.03 (8) Å3
Data collection top
Bruker SMART APEXII
diffractometer
4517 independent reflections
Radiation source: sealed Tube3864 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
CCD scanθmax = 27.8°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1313
Tmin = 0.687, Tmax = 0.746k = 1313
21201 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0335P)2 + 0.4497P]
where P = (Fo2 + 2Fc2)/3
4517 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C20H12Cl3FN4γ = 98.0304 (11)°
Mr = 433.69V = 950.03 (8) Å3
Triclinic, P1Z = 2
a = 10.2487 (5) ÅMo Kα radiation
b = 10.4643 (5) ŵ = 0.51 mm1
c = 10.5489 (5) ÅT = 173 K
α = 109.2377 (10)°0.33 × 0.28 × 0.07 mm
β = 111.4008 (10)°
Data collection top
Bruker SMART APEXII
diffractometer
4517 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
3864 reflections with I > 2σ(I)
Tmin = 0.687, Tmax = 0.746Rint = 0.029
21201 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.03Δρmax = 0.33 e Å3
4517 reflectionsΔρmin = 0.33 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.11579 (4)0.81835 (4)0.49931 (4)0.03113 (10)
Cl20.55419 (4)0.70476 (4)0.42446 (4)0.03333 (10)
Cl30.97212 (5)1.14538 (4)0.90748 (5)0.04454 (13)
F10.50004 (11)0.13075 (9)0.22515 (12)0.0397 (2)
N10.79475 (14)0.65783 (12)0.33280 (12)0.0233 (3)
N20.78815 (13)0.68969 (12)0.21373 (12)0.0218 (2)
C30.75032 (15)0.56326 (14)0.10311 (14)0.0195 (3)
C40.73201 (16)0.44990 (14)0.14668 (15)0.0210 (3)
C50.76173 (16)0.51568 (14)0.29651 (15)0.0225 (3)
N60.76393 (17)0.46090 (14)0.39766 (14)0.0333 (3)
H6A0.75760.51260.48160.050*
H6B0.72120.37200.35710.050*
C70.83795 (16)0.77123 (14)0.47287 (14)0.0212 (3)
C80.98371 (16)0.85674 (15)0.55896 (15)0.0220 (3)
C91.02636 (16)0.97336 (15)0.69174 (15)0.0241 (3)
H91.12521.03220.74750.029*
C100.92128 (17)1.00187 (15)0.74088 (16)0.0260 (3)
C110.77596 (17)0.92009 (15)0.66037 (16)0.0258 (3)
H110.70540.94170.69600.031*
C120.73591 (16)0.80573 (15)0.52632 (15)0.0228 (3)
C130.67511 (15)0.29689 (14)0.05054 (15)0.0203 (3)
C140.73867 (17)0.19851 (16)0.09215 (16)0.0261 (3)
H140.82310.23040.18480.031*
C150.67967 (18)0.05394 (16)0.00078 (18)0.0293 (3)
H150.72260.01290.02790.035*
C160.55864 (17)0.01080 (15)0.13404 (17)0.0274 (3)
C170.49321 (17)0.10325 (16)0.18119 (16)0.0272 (3)
H170.41020.07010.27520.033*
C180.55209 (16)0.24677 (15)0.08716 (16)0.0235 (3)
H180.50770.31230.11720.028*
C190.74226 (15)0.55640 (14)0.04193 (14)0.0192 (3)
C200.67214 (16)0.63729 (15)0.10978 (15)0.0224 (3)
H200.62150.69390.06720.027*
C210.67723 (17)0.63399 (16)0.24026 (16)0.0264 (3)
H210.62650.68780.28650.032*
N220.74904 (15)0.55985 (14)0.30536 (14)0.0290 (3)
C230.81503 (18)0.48164 (17)0.23960 (17)0.0292 (3)
H230.86700.42800.28320.035*
C240.81216 (16)0.47424 (15)0.11190 (16)0.0242 (3)
H240.85740.41380.07250.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.03306 (19)0.0364 (2)0.02770 (18)0.01592 (16)0.01643 (15)0.01189 (16)
Cl20.02807 (19)0.0373 (2)0.02116 (17)0.00504 (15)0.00680 (14)0.00688 (15)
Cl30.0481 (2)0.0315 (2)0.0318 (2)0.00855 (18)0.02382 (19)0.01149 (17)
F10.0488 (6)0.0173 (4)0.0460 (6)0.0034 (4)0.0257 (5)0.0021 (4)
N10.0368 (7)0.0182 (6)0.0127 (5)0.0038 (5)0.0108 (5)0.0058 (4)
N20.0309 (6)0.0211 (6)0.0135 (5)0.0046 (5)0.0100 (5)0.0083 (4)
C30.0231 (6)0.0203 (6)0.0141 (6)0.0052 (5)0.0082 (5)0.0063 (5)
C40.0282 (7)0.0196 (6)0.0153 (6)0.0060 (5)0.0100 (5)0.0073 (5)
C50.0320 (7)0.0190 (6)0.0163 (6)0.0062 (6)0.0109 (6)0.0075 (5)
N60.0631 (9)0.0211 (6)0.0191 (6)0.0100 (6)0.0213 (6)0.0094 (5)
C70.0319 (7)0.0170 (6)0.0127 (6)0.0046 (5)0.0088 (5)0.0061 (5)
C80.0280 (7)0.0227 (7)0.0180 (6)0.0088 (6)0.0109 (5)0.0103 (5)
C90.0259 (7)0.0221 (7)0.0189 (6)0.0022 (6)0.0077 (6)0.0066 (5)
C100.0341 (8)0.0197 (7)0.0177 (6)0.0015 (6)0.0122 (6)0.0020 (5)
C110.0313 (8)0.0238 (7)0.0222 (7)0.0034 (6)0.0158 (6)0.0066 (6)
C120.0257 (7)0.0219 (7)0.0166 (6)0.0000 (5)0.0076 (5)0.0078 (5)
C130.0280 (7)0.0187 (6)0.0176 (6)0.0059 (5)0.0139 (5)0.0072 (5)
C140.0336 (8)0.0258 (7)0.0214 (7)0.0107 (6)0.0127 (6)0.0111 (6)
C150.0410 (9)0.0241 (7)0.0341 (8)0.0150 (7)0.0227 (7)0.0159 (6)
C160.0365 (8)0.0164 (6)0.0309 (8)0.0038 (6)0.0228 (7)0.0045 (6)
C170.0292 (7)0.0242 (7)0.0224 (7)0.0029 (6)0.0113 (6)0.0047 (6)
C180.0281 (7)0.0208 (7)0.0223 (7)0.0073 (6)0.0121 (6)0.0088 (5)
C190.0217 (6)0.0185 (6)0.0135 (6)0.0004 (5)0.0071 (5)0.0050 (5)
C200.0290 (7)0.0210 (7)0.0189 (6)0.0070 (6)0.0128 (6)0.0079 (5)
C210.0360 (8)0.0259 (7)0.0194 (7)0.0083 (6)0.0128 (6)0.0116 (6)
N220.0401 (7)0.0291 (7)0.0199 (6)0.0067 (6)0.0169 (5)0.0098 (5)
C230.0367 (8)0.0301 (8)0.0247 (7)0.0111 (6)0.0194 (6)0.0086 (6)
C240.0285 (7)0.0251 (7)0.0210 (7)0.0091 (6)0.0119 (6)0.0102 (6)
Geometric parameters (Å, º) top
Cl1—C81.7310 (15)C11—H110.9500
Cl2—C121.7266 (15)C13—C181.3969 (19)
Cl3—C101.7289 (14)C13—C141.398 (2)
F1—C161.3677 (16)C14—C151.396 (2)
N1—C51.3649 (18)C14—H140.9500
N1—N21.3833 (16)C15—C161.368 (2)
N1—C71.4170 (16)C15—H150.9500
N2—C31.3310 (17)C16—C171.374 (2)
C3—C41.4190 (19)C17—C181.390 (2)
C3—C191.4788 (18)C17—H170.9500
C4—C51.3921 (18)C18—H180.9500
C4—C131.4730 (18)C19—C241.3918 (19)
C5—N61.3627 (18)C19—C201.3925 (19)
N6—H6A0.9044C20—C211.3857 (19)
N6—H6B0.8528C20—H200.9500
C7—C121.394 (2)C21—N221.339 (2)
C7—C81.399 (2)C21—H210.9500
C8—C91.3856 (19)N22—C231.340 (2)
C9—C101.383 (2)C23—C241.385 (2)
C9—H90.9500C23—H230.9500
C10—C111.383 (2)C24—H240.9500
C11—C121.3872 (19)
C5—N1—N2112.70 (11)C18—C13—C14118.19 (13)
C5—N1—C7128.89 (12)C18—C13—C4119.28 (12)
N2—N1—C7118.37 (11)C14—C13—C4122.54 (13)
C3—N2—N1103.52 (11)C15—C14—C13120.83 (14)
N2—C3—C4112.95 (12)C15—C14—H14119.6
N2—C3—C19118.76 (12)C13—C14—H14119.6
C4—C3—C19128.15 (12)C16—C15—C14118.46 (14)
C5—C4—C3104.41 (12)C16—C15—H15120.8
C5—C4—C13127.41 (13)C14—C15—H15120.8
C3—C4—C13127.71 (12)F1—C16—C15118.68 (14)
N6—C5—N1122.51 (12)F1—C16—C17118.28 (14)
N6—C5—C4131.05 (13)C15—C16—C17123.04 (13)
N1—C5—C4106.42 (12)C16—C17—C18117.99 (14)
C5—N6—H6A120.3C16—C17—H17121.0
C5—N6—H6B113.1C18—C17—H17121.0
H6A—N6—H6B117.0C17—C18—C13121.49 (13)
C12—C7—C8117.70 (12)C17—C18—H18119.3
C12—C7—N1121.29 (13)C13—C18—H18119.3
C8—C7—N1120.93 (13)C24—C19—C20117.29 (12)
C9—C8—C7121.78 (13)C24—C19—C3120.87 (12)
C9—C8—Cl1118.35 (11)C20—C19—C3121.74 (12)
C7—C8—Cl1119.86 (10)C21—C20—C19119.06 (13)
C10—C9—C8118.23 (13)C21—C20—H20120.5
C10—C9—H9120.9C19—C20—H20120.5
C8—C9—H9120.9N22—C21—C20124.20 (14)
C9—C10—C11122.19 (13)N22—C21—H21117.9
C9—C10—Cl3119.16 (11)C20—C21—H21117.9
C11—C10—Cl3118.65 (12)C21—N22—C23116.10 (13)
C10—C11—C12118.28 (14)N22—C23—C24124.00 (14)
C10—C11—H11120.9N22—C23—H23118.0
C12—C11—H11120.9C24—C23—H23118.0
C11—C12—C7121.79 (13)C23—C24—C19119.25 (14)
C11—C12—Cl2118.38 (12)C23—C24—H24120.4
C7—C12—Cl2119.83 (11)C19—C24—H24120.4
C5—N1—N2—C30.07 (16)C10—C11—C12—Cl2179.22 (12)
C7—N1—N2—C3177.83 (12)C8—C7—C12—C110.3 (2)
N1—N2—C3—C40.03 (16)N1—C7—C12—C11177.31 (13)
N1—N2—C3—C19175.96 (12)C8—C7—C12—Cl2179.62 (11)
N2—C3—C4—C50.02 (17)N1—C7—C12—Cl22.64 (19)
C19—C3—C4—C5175.55 (13)C5—C4—C13—C18127.95 (16)
N2—C3—C4—C13172.59 (13)C3—C4—C13—C1843.0 (2)
C19—C3—C4—C1311.9 (2)C5—C4—C13—C1451.4 (2)
N2—N1—C5—N6178.89 (14)C3—C4—C13—C14137.65 (16)
C7—N1—C5—N61.3 (2)C18—C13—C14—C150.7 (2)
N2—N1—C5—C40.09 (17)C4—C13—C14—C15178.67 (14)
C7—N1—C5—C4177.54 (14)C13—C14—C15—C160.4 (2)
C3—C4—C5—N6178.73 (16)C14—C15—C16—F1179.70 (13)
C13—C4—C5—N68.7 (3)C14—C15—C16—C170.6 (2)
C3—C4—C5—N10.07 (16)F1—C16—C17—C18179.13 (13)
C13—C4—C5—N1172.66 (14)C15—C16—C17—C181.1 (2)
C5—N1—C7—C1277.8 (2)C16—C17—C18—C130.8 (2)
N2—N1—C7—C12104.65 (16)C14—C13—C18—C170.1 (2)
C5—N1—C7—C8105.30 (18)C4—C13—C18—C17179.29 (13)
N2—N1—C7—C872.23 (18)N2—C3—C19—C24130.10 (15)
C12—C7—C8—C91.0 (2)C4—C3—C19—C2445.2 (2)
N1—C7—C8—C9175.96 (13)N2—C3—C19—C2046.22 (19)
C12—C7—C8—Cl1179.43 (11)C4—C3—C19—C20138.48 (15)
N1—C7—C8—Cl13.59 (18)C24—C19—C20—C211.0 (2)
C7—C8—C9—C101.9 (2)C3—C19—C20—C21175.42 (13)
Cl1—C8—C9—C10178.53 (11)C19—C20—C21—N221.7 (2)
C8—C9—C10—C111.5 (2)C20—C21—N22—C232.2 (2)
C8—C9—C10—Cl3179.15 (11)C21—N22—C23—C240.1 (2)
C9—C10—C11—C120.2 (2)N22—C23—C24—C192.7 (2)
Cl3—C10—C11—C12179.56 (11)C20—C19—C24—C233.1 (2)
C10—C11—C12—C70.7 (2)C3—C19—C24—C23173.41 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···N22i0.902.173.0275 (17)157
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC20H12Cl3FN4
Mr433.69
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)10.2487 (5), 10.4643 (5), 10.5489 (5)
α, β, γ (°)109.2377 (10), 111.4008 (10), 98.0304 (11)
V3)950.03 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.33 × 0.28 × 0.07
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.687, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
21201, 4517, 3864
Rint0.029
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.079, 1.03
No. of reflections4517
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.33

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···N22i0.902.173.0275 (17)157
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

BAT thanks the Alexander von Humboldt-Foundation for funding.

References

First citationAbu Thaher, B., Arnsmann, M., Totzke, F., Ehlert, J. E., Kubbutat, M. H. G., Schächtele, C., Zimmermann, M. O., Koch, P., Boeckler, F. M. & Laufer, S. A. (2012a). J. Med. Chem. 55, 961–965.  Web of Science CAS PubMed Google Scholar
First citationAbu Thaher, B., Koch, P., Schollmeyer, D. & Laufer, S. (2012b). Acta Cryst. E68, o632.  CSD CrossRef IUCr Journals Google Scholar
First citationAbu Thaher, B., Koch, P., Schollmeyer, D. & Laufer, S. (2012c). Acta Cryst. E68, o633.  CSD CrossRef IUCr Journals Google Scholar
First citationAbu Thaher, B., Koch, P., Schollmeyer, D. & Laufer, S. (2012d). Acta Cryst. E68, o917–o918.  CSD CrossRef IUCr Journals Google Scholar
First citationAbu Thaher, B., Koch, P., Schollmeyer, D. & Laufer, S. (2012e). Acta Cryst. E68, o935.  CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds