organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Eth­­oxy-2-meth­­oxy-4-[2-(4-nitro­phen­yl)ethen­yl]benzene

aCrystal Research Centre, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India, and bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: Kalainathan@yahoo.com

(Received 25 July 2012; accepted 1 August 2012; online 25 August 2012)

In the title mol­ecule, C17H17NO4, the dihedral angle between the two aromatic rings is 42.47 (7)°. The nitro group is twisted by 7.44 (11)° out of the plane of the ring to which it is attached. The methoxy and ethoxy group O atoms deviate significantly from the phenyl ring [by 0.0108 (11) and 0.0449 (11) Å, respectively]. The crystal structure is stabilized by C—H⋯π inter­actions.

Related literature

For the synthesis of the title compound, see: Tam et al. (1989[Tam, W., Guerin, B., Calabrese, J. C. & Stevenson, H. S. (1989). Chem. Phys. Lett. 154, 93-96.]). For hybridization, see: Beddoes et al. (1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S. , Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.])

[Scheme 1]

Experimental

Crystal data
  • C17H17NO4

  • Mr = 299.32

  • Monoclinic, P 21 /n

  • a = 8.5209 (4) Å

  • b = 7.5959 (4) Å

  • c = 23.7877 (13) Å

  • β = 99.611 (3)°

  • V = 1518.02 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • 14265 measured reflections

  • 3789 independent reflections

  • 2831 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.138

  • S = 1.04

  • 3789 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C9–C14 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17ACg2 0.97 2.96 3.281 (2) 145

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The dihedral angle between nitro substituted phenyl ring (C1-C6) & oxygen substituted benzene ring (C9-C14) is 42.47 (7)°. The sum of bond angles around N1 (359.59°) is in accordance with sp2 hybridization (Beddoes et al., 1986). The methoxy and ethoxy group O3 and O4 atoms are significantly deviated from the phenyl ring (C9–C13) with the values of -0.0108 (11) Å and -0.0449 (11) Å, respectively.

A weak intermolecular C—H···π interaction involving the C17–H17A group and the C9–C14 benzene ring (centroid Cg2) of the molecule at (2-x,-y,-z) is observed [H17A···Cg2 = 2.96 Å, C17···Cg2 = 3.781 (2) Å and C17-H17A···Cg2 = 145°].

Related literature top

For the synthesis of the title compound, see: Tam et al. (1989). For hybridization, see: Beddoes et al. (1986).

Experimental top

4-Ethoxy 3-Methoxy 4-Nitrostilbene (4E3MONS) is a derivative material of stilebene.The material (4E3MONS) was synthesized by Witting reaction method. The material was prepared from the 4-ethoxy 3-methoxy benzaldehyde and diethyl p-nitrobenzyl phosphonate in the presence of sodium ethoxide catalyst. The steps involved during the chemical reactions are as follows: the calculated amount of diethyl p-nitrobenzyl phosphonate (0.01 mol %, 2.2304ml) and 4-ethoxy 3-methoxy benzaldehyde (0.01 mol, 1.802 ml %) were added in the ethanol solution (35 ml). After the reaction process, the sodium ethoxide,which plays a role of catalyst, was added immediately the colour of the solution became red. Then the mixture was stirred for 12 hrs at ice cold temperature in ultracryostat which has stirrer rotation facility. After the stirring process completed, the orange colour 4E3MONS material was collected from the mixture by removing the ethanol (Tam et al., 1989). Then the 4E3MONS was purified by a successive recrystallization process.

Refinement top

Hydrogen atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding model with fixed isotropic displacement parameter: Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2. A view of the C—H···N and C—H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) - x + 1, - y -1, - z; (ii) - x +1/2, y - 1/2, - z + 1/2.]
1-Ethoxy-2-methoxy-4-[2-(4-nitrophenyl)ethenyl]benzene top
Crystal data top
C17H17NO4F(000) = 632
Mr = 299.32Dx = 1.310 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3789 reflections
a = 8.5209 (4) Åθ = 1.7–28.5°
b = 7.5959 (4) ŵ = 0.09 mm1
c = 23.7877 (13) ÅT = 293 K
β = 99.611 (3)°Block, colourless
V = 1518.02 (14) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2831 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 28.5°, θmin = 1.7°
ω and ϕ scansh = 1111
14265 measured reflectionsk = 99
3789 independent reflectionsl = 3130
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0628P)2 + 0.2742P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3789 reflectionsΔρmax = 0.22 e Å3
202 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.121 (6)
Crystal data top
C17H17NO4V = 1518.02 (14) Å3
Mr = 299.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.5209 (4) ŵ = 0.09 mm1
b = 7.5959 (4) ÅT = 293 K
c = 23.7877 (13) Å0.20 × 0.20 × 0.20 mm
β = 99.611 (3)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2831 reflections with I > 2σ(I)
14265 measured reflectionsRint = 0.031
3789 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
3789 reflectionsΔρmin = 0.19 e Å3
202 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O41.09886 (11)0.13016 (14)0.06184 (5)0.0622 (3)
O30.89997 (12)0.38803 (13)0.04273 (5)0.0619 (3)
C90.70663 (15)0.13692 (18)0.14525 (6)0.0488 (3)
C130.86351 (14)0.26322 (17)0.07949 (5)0.0468 (3)
C40.42645 (15)0.09455 (17)0.25675 (6)0.0469 (3)
N10.04474 (16)0.11093 (17)0.34984 (6)0.0644 (4)
C10.17789 (16)0.10582 (17)0.31788 (6)0.0508 (3)
C80.57030 (15)0.15205 (19)0.17555 (6)0.0512 (3)
H80.48290.21610.15780.061*
C140.73211 (14)0.26748 (18)0.10663 (5)0.0478 (3)
H140.65940.35920.09900.057*
C60.14936 (16)0.14921 (19)0.26099 (6)0.0545 (3)
H60.04780.18120.24320.065*
C100.81278 (17)0.0027 (2)0.15429 (7)0.0584 (4)
H100.79620.09250.17920.070*
C50.27400 (16)0.14451 (19)0.23074 (6)0.0529 (3)
H50.25610.17520.19240.063*
C120.97140 (15)0.12289 (18)0.08991 (6)0.0496 (3)
C110.94367 (16)0.0096 (2)0.12641 (7)0.0583 (4)
H111.01310.10480.13250.070*
C70.56122 (15)0.08254 (19)0.22582 (6)0.0538 (3)
H70.64940.01950.24340.065*
O10.08925 (15)0.13496 (19)0.32390 (7)0.0886 (4)
C30.44945 (16)0.0507 (2)0.31410 (6)0.0556 (3)
H30.55020.01650.33210.067*
C161.20153 (17)0.0197 (2)0.06557 (7)0.0630 (4)
H16A1.14250.12270.04990.076*
H16B1.24620.04350.10510.076*
C20.32634 (17)0.0564 (2)0.34522 (6)0.0579 (4)
H20.34350.02740.38370.070*
C171.33198 (18)0.0214 (3)0.03219 (8)0.0733 (5)
H17A1.28670.04160.00700.110*
H17B1.40460.07590.03470.110*
H17C1.38800.12500.04760.110*
C150.7940 (2)0.5327 (2)0.03028 (7)0.0693 (4)
H15A0.69120.49050.01280.104*
H15B0.83450.61190.00470.104*
H15C0.78480.59350.06500.104*
O20.07343 (17)0.0848 (2)0.40088 (6)0.1057 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0506 (5)0.0632 (6)0.0811 (7)0.0073 (4)0.0349 (5)0.0034 (5)
O30.0615 (6)0.0597 (6)0.0727 (7)0.0083 (5)0.0347 (5)0.0121 (5)
C90.0411 (6)0.0529 (7)0.0553 (7)0.0035 (5)0.0169 (5)0.0032 (6)
C130.0448 (6)0.0474 (7)0.0511 (7)0.0029 (5)0.0167 (5)0.0033 (5)
C40.0443 (6)0.0456 (7)0.0534 (7)0.0031 (5)0.0155 (5)0.0005 (5)
N10.0640 (8)0.0611 (8)0.0759 (9)0.0142 (6)0.0349 (7)0.0055 (6)
C10.0525 (7)0.0461 (7)0.0592 (8)0.0081 (5)0.0247 (6)0.0038 (6)
C80.0429 (6)0.0531 (7)0.0611 (8)0.0003 (5)0.0190 (6)0.0011 (6)
C140.0426 (6)0.0496 (7)0.0540 (7)0.0011 (5)0.0159 (5)0.0040 (6)
C60.0465 (7)0.0549 (8)0.0647 (9)0.0044 (6)0.0169 (6)0.0081 (6)
C100.0531 (7)0.0541 (8)0.0730 (10)0.0013 (6)0.0252 (7)0.0095 (7)
C50.0496 (7)0.0595 (8)0.0522 (7)0.0033 (6)0.0157 (6)0.0090 (6)
C120.0411 (6)0.0530 (7)0.0586 (8)0.0017 (5)0.0195 (5)0.0055 (6)
C110.0496 (7)0.0528 (8)0.0770 (10)0.0071 (6)0.0234 (7)0.0046 (7)
C70.0420 (6)0.0619 (8)0.0594 (8)0.0016 (6)0.0145 (6)0.0035 (7)
O10.0603 (7)0.1011 (10)0.1138 (10)0.0131 (7)0.0422 (7)0.0163 (8)
C30.0479 (7)0.0656 (9)0.0531 (8)0.0037 (6)0.0082 (6)0.0046 (7)
C160.0515 (7)0.0690 (10)0.0734 (10)0.0109 (7)0.0250 (7)0.0059 (8)
C20.0604 (8)0.0668 (9)0.0485 (7)0.0102 (7)0.0143 (6)0.0016 (6)
C170.0513 (8)0.0977 (13)0.0768 (11)0.0075 (8)0.0276 (7)0.0102 (9)
C150.0742 (10)0.0692 (10)0.0708 (10)0.0166 (8)0.0301 (8)0.0191 (8)
O20.0873 (9)0.1721 (16)0.0668 (8)0.0343 (10)0.0395 (7)0.0100 (9)
Geometric parameters (Å, º) top
O4—C121.3678 (14)C6—C51.3791 (18)
O4—C161.4296 (17)C6—H60.9300
O3—C131.3605 (16)C10—C111.3905 (18)
O3—C151.4218 (18)C10—H100.9300
C9—C101.3871 (19)C5—H50.9300
C9—C141.3933 (19)C12—C111.375 (2)
C9—C81.4702 (17)C11—H110.9300
C13—C141.3831 (16)C7—H70.9300
C13—C121.4024 (18)C3—C21.3818 (19)
C4—C31.386 (2)C3—H30.9300
C4—C51.3950 (18)C16—C171.503 (2)
C4—C71.4664 (18)C16—H16A0.9700
N1—O21.2141 (19)C16—H16B0.9700
N1—O11.2175 (19)C2—H20.9300
N1—C11.4678 (17)C17—H17A0.9600
C1—C21.375 (2)C17—H17B0.9600
C1—C61.375 (2)C17—H17C0.9600
C8—C71.321 (2)C15—H15A0.9600
C8—H80.9300C15—H15B0.9600
C14—H140.9300C15—H15C0.9600
C12—O4—C16117.72 (11)O4—C12—C13115.69 (12)
C13—O3—C15117.87 (10)C11—C12—C13119.43 (11)
C10—C9—C14118.49 (12)C12—C11—C10120.62 (13)
C10—C9—C8122.14 (12)C12—C11—H11119.7
C14—C9—C8119.37 (12)C10—C11—H11119.7
O3—C13—C14124.98 (12)C8—C7—C4126.75 (13)
O3—C13—C12115.47 (11)C8—C7—H7116.6
C14—C13—C12119.54 (12)C4—C7—H7116.6
C3—C4—C5118.04 (12)C2—C3—C4121.63 (13)
C3—C4—C7119.01 (12)C2—C3—H3119.2
C5—C4—C7122.94 (12)C4—C3—H3119.2
O2—N1—O1123.13 (14)O4—C16—C17107.48 (14)
O2—N1—C1118.00 (14)O4—C16—H16A110.2
O1—N1—C1118.82 (14)C17—C16—H16A110.2
C2—C1—C6121.92 (12)O4—C16—H16B110.2
C2—C1—N1119.48 (13)C17—C16—H16B110.2
C6—C1—N1118.59 (13)H16A—C16—H16B108.5
C7—C8—C9125.65 (13)C1—C2—C3118.44 (13)
C7—C8—H8117.2C1—C2—H2120.8
C9—C8—H8117.2C3—C2—H2120.8
C13—C14—C9121.24 (12)C16—C17—H17A109.5
C13—C14—H14119.4C16—C17—H17B109.5
C9—C14—H14119.4H17A—C17—H17B109.5
C1—C6—C5118.84 (13)C16—C17—H17C109.5
C1—C6—H6120.6H17A—C17—H17C109.5
C5—C6—H6120.6H17B—C17—H17C109.5
C9—C10—C11120.61 (13)O3—C15—H15A109.5
C9—C10—H10119.7O3—C15—H15B109.5
C11—C10—H10119.7H15A—C15—H15B109.5
C6—C5—C4121.13 (13)O3—C15—H15C109.5
C6—C5—H5119.4H15A—C15—H15C109.5
C4—C5—H5119.4H15B—C15—H15C109.5
O4—C12—C11124.88 (12)
C15—O3—C13—C141.2 (2)C16—O4—C12—C117.3 (2)
C15—O3—C13—C12179.55 (13)C16—O4—C12—C13172.56 (13)
O2—N1—C1—C25.9 (2)O3—C13—C12—O40.07 (18)
O1—N1—C1—C2171.61 (15)C14—C13—C12—O4179.27 (12)
O2—N1—C1—C6174.80 (15)O3—C13—C12—C11179.80 (13)
O1—N1—C1—C67.7 (2)C14—C13—C12—C110.9 (2)
C10—C9—C8—C725.6 (2)O4—C12—C11—C10178.12 (14)
C14—C9—C8—C7153.64 (15)C13—C12—C11—C102.0 (2)
O3—C13—C14—C9177.74 (13)C9—C10—C11—C120.8 (2)
C12—C13—C14—C91.5 (2)C9—C8—C7—C4179.53 (13)
C10—C9—C14—C132.7 (2)C3—C4—C7—C8164.96 (15)
C8—C9—C14—C13176.55 (12)C5—C4—C7—C816.6 (2)
C2—C1—C6—C50.7 (2)C5—C4—C3—C20.3 (2)
N1—C1—C6—C5179.95 (13)C7—C4—C3—C2178.83 (13)
C14—C9—C10—C111.5 (2)C12—O4—C16—C17179.27 (13)
C8—C9—C10—C11177.69 (14)C6—C1—C2—C30.0 (2)
C1—C6—C5—C40.9 (2)N1—C1—C2—C3179.29 (13)
C3—C4—C5—C60.4 (2)C4—C3—C2—C10.5 (2)
C7—C4—C5—C6178.09 (13)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C9–C14 benzene ring.
D—H···AD—HH···AD···AD—H···A
C17—H17A···Cg20.972.963.281 (2)145

Experimental details

Crystal data
Chemical formulaC17H17NO4
Mr299.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.5209 (4), 7.5959 (4), 23.7877 (13)
β (°) 99.611 (3)
V3)1518.02 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14265, 3789, 2831
Rint0.031
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.138, 1.04
No. of reflections3789
No. of parameters202
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.19

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C9–C14 benzene ring.
D—H···AD—HH···AD···AD—H···A
C17—H17A···Cg20.972.963.281 (2)145
 

Acknowledgements

TS and DV thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for data collection and TS thanks DST for the Inspire fellowship. PMD and SK thank SERC–DST for providing financial support and VIT University management for their constant encouragement.

References

First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S. , Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTam, W., Guerin, B., Calabrese, J. C. & Stevenson, H. S. (1989). Chem. Phys. Lett. 154, 93–96.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds