supplementary materials


cv5321 scheme

Acta Cryst. (2012). E68, m1155    [ doi:10.1107/S1600536812032692 ]

(Ethylenediamine-[kappa]2N,N)bis[2-(pyridin-2-yl-[kappa]N)-1,3-imidazol-1-ido-[kappa]N1]cobalt(III) nitrate monohydrate

X.-L. Feng and Y.-P. Zhang

Abstract top

In the title compound, [Co(C8H6N3)2(C2H8N2)]NO3·H2O, the CoIII ion is coordinated by four N atoms from two 2-(pyridin-2-yl)-1,3-imidazol-1-ide ligands and two N atoms of ethylenediamine in a distorted octahedral geometry. In the crystal, classical N-H...N(O) and O-H...N(O) hydrogen bonds connect all the isolated components together to yield a three-dimensional structure.

Comment top

Organometallic complexes with the 2-(2-pyridyl)imidazole ligand (Dosser & Underhill, 1972; Lan et al., 2008) are intensively studied due to their magnetic properties (Carranza et al., 2009; Schott et al., 2011). Herewith we report the crystal structure of the title compound, (I) - a Co(III) complex with 2-(2-pyridyl)imidazolato ligands.

In (I) (Fig. 1), Co(III) ion is chelated by one ethylenediamine and two 2-(2-pyridyl)imidazolato ligands being coordinated by six N atoms in a distorted octahedral geometry. The bite angles of ethylenediamine and 2-(2-pyridyl)imidazolato chelate ligands to the cobalt atom are ca 84.72 (11)° and 89.02 (11)°, respectively. An extensive hydrogen-bonding network (Table 1) involving the N atoms of the ethylenediamine and 2-(2-pyridyl)imidazolato ligands, the water molecule and O atoms of nitrate anion interconnect all the isolated moieties together to yield a three-dimensional structure (Fig. 2).

Related literature top

For examples of metal–organic compounds containing the 2-(2-pyridyl)imidazole ligand, see: Dosser & Underhill (1972); Lan et al. (2008). For applications of these compounds, see: Carranza et al. (2009); Schott et al.(2011).

Experimental top

An ethanol solution (7 ml) of 2-(2-pyridyl)imidazole (0.5 mmol) was slowly added to an aqueous solution (8 ml) of Co(NO3)2.6H2O (0.5 mmol) and ethylenediamine (2 mmol). Red block crystals were obtained after two months.

Refinement top

All H atoms were geometrically positioned (C—H = 0.93–0.97 Å; O—H = 0.85 Å; N—H = 0.90 Å) and treated as riding, with Uiso(H) = 1.2Ueq of the parent atom.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A portion of the crystal packing showing hydrogen bonds by dashed lines.
(Ethylenediamine-κ2N,N)bis[2-(pyridin-2-yl-κN)- 1,3-imidazol-1-ido-κN1]cobalt(III) nitrate monohydrate top
Crystal data top
[Co(C8H6N3)2(C2H8N2)]NO3·H2OZ = 2
Mr = 487.38F(000) = 504
Triclinic, P1Dx = 1.513 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6669 (5) ÅCell parameters from 2876 reflections
b = 11.0574 (8) Åθ = 2.6–28.0°
c = 12.5304 (10) ŵ = 0.85 mm1
α = 76.133 (2)°T = 298 K
β = 75.672 (2)°Block, red
γ = 68.797 (1)°0.45 × 0.38 × 0.30 mm
V = 1069.62 (13) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
3714 independent reflections
Radiation source: fine-focus sealed tube2907 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 710
Tmin = 0.699, Tmax = 0.783k = 1313
5376 measured reflectionsl = 1014
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.5557P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3714 reflectionsΔρmax = 0.32 e Å3
289 parametersΔρmin = 0.42 e Å3
0 restraints
Crystal data top
[Co(C8H6N3)2(C2H8N2)]NO3·H2Oγ = 68.797 (1)°
Mr = 487.38V = 1069.62 (13) Å3
Triclinic, P1Z = 2
a = 8.6669 (5) ÅMo Kα radiation
b = 11.0574 (8) ŵ = 0.85 mm1
c = 12.5304 (10) ÅT = 298 K
α = 76.133 (2)°0.45 × 0.38 × 0.30 mm
β = 75.672 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3714 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2907 reflections with I > 2σ(I)
Tmin = 0.699, Tmax = 0.783Rint = 0.021
5376 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.037?
wR(F2) = 0.110Δρmax = 0.32 e Å3
S = 1.05Δρmin = 0.42 e Å3
3714 reflectionsAbsolute structure: ?
289 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.49327 (4)0.24908 (3)0.25014 (3)0.03109 (14)
N10.3734 (3)0.3487 (2)0.13063 (18)0.0349 (5)
N20.2556 (3)0.5498 (2)0.03542 (19)0.0427 (6)
N30.4925 (3)0.4242 (2)0.26227 (18)0.0334 (5)
N40.5997 (3)0.1632 (2)0.37782 (17)0.0318 (5)
N50.5660 (3)0.1121 (2)0.56550 (18)0.0413 (6)
N60.2860 (3)0.2713 (2)0.36447 (19)0.0353 (5)
N70.7032 (3)0.2170 (2)0.14273 (18)0.0373 (5)
H7A0.70570.29160.09490.045*
H7B0.79110.18950.17850.045*
N80.4899 (3)0.0816 (2)0.23036 (18)0.0364 (5)
H8A0.47180.03190.29750.044*
H8B0.40550.09490.19460.044*
N90.1402 (4)0.0294 (3)0.1721 (2)0.0530 (7)
O10.2907 (3)0.0084 (3)0.1286 (2)0.0716 (7)
O20.0499 (4)0.0394 (3)0.1852 (3)0.1010 (11)
O30.0786 (4)0.1364 (3)0.2036 (3)0.1008 (11)
O40.9518 (6)0.7421 (6)0.1433 (6)0.251 (4)
H4C0.98040.80310.15470.301*
H4D1.03880.68730.11240.301*
C10.3419 (3)0.4799 (3)0.1174 (2)0.0342 (6)
C20.2299 (4)0.4556 (3)0.0051 (2)0.0454 (7)
H20.17280.47240.06360.054*
C30.3003 (4)0.3323 (3)0.0528 (2)0.0431 (7)
H30.29830.25310.04090.052*
C40.4052 (3)0.5251 (3)0.1918 (2)0.0353 (6)
C50.3797 (4)0.6549 (3)0.1971 (2)0.0454 (7)
H50.31590.72300.15020.055*
C60.4492 (5)0.6817 (3)0.2719 (3)0.0553 (9)
H60.43460.76820.27570.066*
C70.5412 (5)0.5790 (3)0.3417 (3)0.0585 (9)
H70.59010.59550.39260.070*
C80.5597 (4)0.4522 (3)0.3350 (3)0.0476 (8)
H80.62100.38340.38260.057*
C90.4922 (3)0.1662 (3)0.4763 (2)0.0336 (6)
C100.7323 (4)0.0724 (3)0.5200 (2)0.0457 (7)
H100.81870.02980.56090.055*
C110.7555 (4)0.1034 (3)0.4057 (2)0.0416 (7)
H110.85780.08690.35660.050*
C120.3150 (4)0.2280 (3)0.4713 (2)0.0363 (6)
C130.1848 (4)0.2462 (3)0.5620 (3)0.0535 (8)
H130.20720.21900.63440.064*
C140.0221 (5)0.3050 (4)0.5436 (3)0.0677 (10)
H140.06730.31730.60340.081*
C150.0066 (4)0.3452 (4)0.4357 (3)0.0690 (11)
H150.11620.38450.42220.083*
C160.1268 (4)0.3275 (3)0.3472 (3)0.0518 (8)
H160.10580.35500.27450.062*
C170.7132 (4)0.1148 (3)0.0810 (2)0.0495 (8)
H17A0.82820.07590.04530.059*
H17B0.64340.15310.02390.059*
C180.6521 (4)0.0123 (3)0.1648 (3)0.0520 (8)
H18A0.63690.04850.12690.062*
H18B0.73320.03710.21360.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0394 (2)0.0299 (2)0.0266 (2)0.01405 (16)0.01009 (15)0.00071 (14)
N10.0443 (13)0.0330 (12)0.0328 (12)0.0181 (11)0.0128 (10)0.0003 (10)
N20.0461 (14)0.0413 (14)0.0389 (13)0.0121 (11)0.0145 (11)0.0003 (11)
N30.0393 (12)0.0316 (12)0.0321 (12)0.0134 (10)0.0094 (10)0.0037 (10)
N40.0398 (12)0.0306 (12)0.0274 (11)0.0154 (10)0.0070 (9)0.0015 (9)
N50.0557 (16)0.0416 (14)0.0306 (12)0.0203 (12)0.0124 (11)0.0010 (10)
N60.0393 (13)0.0341 (12)0.0354 (12)0.0137 (10)0.0096 (10)0.0052 (10)
N70.0456 (13)0.0338 (12)0.0305 (12)0.0138 (10)0.0078 (10)0.0009 (10)
N80.0496 (14)0.0357 (13)0.0281 (12)0.0188 (11)0.0104 (10)0.0013 (10)
N90.0548 (18)0.0607 (18)0.0509 (16)0.0207 (15)0.0092 (13)0.0194 (14)
O10.0454 (14)0.0897 (19)0.0888 (19)0.0163 (13)0.0105 (13)0.0415 (16)
O20.077 (2)0.112 (3)0.142 (3)0.0543 (19)0.0104 (19)0.064 (2)
O30.100 (2)0.074 (2)0.128 (3)0.0427 (18)0.038 (2)0.052 (2)
O40.126 (4)0.214 (6)0.389 (10)0.007 (4)0.033 (5)0.164 (7)
C10.0381 (15)0.0319 (14)0.0311 (14)0.0121 (12)0.0071 (11)0.0001 (11)
C20.0497 (17)0.0535 (19)0.0367 (16)0.0185 (15)0.0190 (13)0.0005 (14)
C30.0534 (18)0.0451 (17)0.0393 (16)0.0229 (15)0.0169 (14)0.0026 (13)
C40.0375 (15)0.0346 (15)0.0324 (14)0.0123 (12)0.0041 (11)0.0039 (12)
C50.0570 (19)0.0350 (16)0.0419 (17)0.0139 (14)0.0082 (14)0.0041 (13)
C60.080 (2)0.0385 (18)0.054 (2)0.0238 (17)0.0104 (18)0.0120 (15)
C70.085 (3)0.052 (2)0.058 (2)0.0348 (19)0.0285 (19)0.0100 (17)
C80.0576 (19)0.0460 (18)0.0496 (18)0.0215 (15)0.0234 (15)0.0052 (14)
C90.0472 (16)0.0294 (14)0.0289 (14)0.0177 (12)0.0074 (12)0.0043 (11)
C100.0543 (19)0.0497 (18)0.0370 (16)0.0187 (15)0.0223 (14)0.0038 (14)
C110.0404 (16)0.0447 (17)0.0398 (16)0.0138 (13)0.0132 (13)0.0004 (13)
C120.0458 (16)0.0331 (15)0.0338 (15)0.0177 (13)0.0056 (12)0.0064 (12)
C130.056 (2)0.056 (2)0.0438 (18)0.0184 (16)0.0002 (15)0.0083 (15)
C140.052 (2)0.079 (3)0.063 (2)0.0199 (19)0.0076 (18)0.016 (2)
C150.0379 (18)0.086 (3)0.080 (3)0.0145 (18)0.0102 (18)0.016 (2)
C160.0452 (18)0.059 (2)0.055 (2)0.0163 (16)0.0173 (15)0.0084 (16)
C170.061 (2)0.0477 (18)0.0366 (16)0.0160 (16)0.0009 (14)0.0126 (14)
C180.069 (2)0.0374 (17)0.0482 (19)0.0168 (15)0.0047 (16)0.0100 (14)
Geometric parameters (Å, º) top
Co1—N41.919 (2)C1—C41.447 (4)
Co1—N11.920 (2)C2—C31.378 (4)
Co1—N81.938 (2)C2—H20.9300
Co1—N71.949 (2)C3—H30.9300
Co1—N31.976 (2)C4—C51.387 (4)
Co1—N61.979 (2)C5—C61.369 (4)
N1—C11.352 (3)C5—H50.9300
N1—C31.364 (3)C6—C71.380 (5)
N2—C11.339 (3)C6—H60.9300
N2—C21.367 (4)C7—C81.373 (4)
N3—C81.340 (4)C7—H70.9300
N3—C41.358 (3)C8—H80.9300
N4—C91.349 (3)C9—C121.448 (4)
N4—C111.363 (3)C10—C111.372 (4)
N5—C91.331 (3)C10—H100.9300
N5—C101.361 (4)C11—H110.9300
N6—C161.341 (4)C12—C131.384 (4)
N6—C121.363 (3)C13—C141.375 (5)
N7—C171.482 (4)C13—H130.9300
N7—H7A0.9000C14—C151.373 (5)
N7—H7B0.9000C14—H140.9300
N8—C181.480 (4)C15—C161.383 (5)
N8—H8A0.9000C15—H150.9300
N8—H8B0.9000C16—H160.9300
N9—O31.227 (4)C17—C181.502 (4)
N9—O21.235 (4)C17—H17A0.9700
N9—O11.239 (3)C17—H17B0.9700
O4—H4C0.8500C18—H18A0.9700
O4—H4D0.8500C18—H18B0.9700
N4—Co1—N1174.33 (9)C2—C3—H3126.5
N4—Co1—N889.92 (9)N3—C4—C5121.3 (3)
N1—Co1—N894.32 (9)N3—C4—C1112.4 (2)
N4—Co1—N794.58 (9)C5—C4—C1126.3 (3)
N1—Co1—N789.45 (10)C6—C5—C4119.3 (3)
N8—Co1—N786.37 (9)C6—C5—H5120.3
N4—Co1—N393.23 (9)C4—C5—H5120.3
N1—Co1—N382.56 (9)C5—C6—C7119.3 (3)
N8—Co1—N3176.82 (9)C5—C6—H6120.3
N7—Co1—N392.92 (9)C7—C6—H6120.3
N4—Co1—N682.67 (9)C8—C7—C6119.1 (3)
N1—Co1—N693.44 (9)C8—C7—H7120.4
N8—Co1—N691.62 (9)C6—C7—H7120.4
N7—Co1—N6176.60 (9)N3—C8—C7122.3 (3)
N3—Co1—N689.24 (9)N3—C8—H8118.8
C1—N1—C3105.2 (2)C7—C8—H8118.8
C1—N1—Co1113.99 (18)N5—C9—N4114.4 (2)
C3—N1—Co1140.8 (2)N5—C9—C12129.0 (2)
C1—N2—C2103.1 (2)N4—C9—C12116.6 (2)
C8—N3—C4118.6 (2)N5—C10—C11110.9 (3)
C8—N3—Co1127.1 (2)N5—C10—H10124.5
C4—N3—Co1114.23 (18)C11—C10—H10124.5
C9—N4—C11104.8 (2)N4—C11—C10106.8 (3)
C9—N4—Co1114.15 (18)N4—C11—H11126.6
C11—N4—Co1140.85 (19)C10—C11—H11126.6
C9—N5—C10103.0 (2)N6—C12—C13121.5 (3)
C16—N6—C12119.0 (3)N6—C12—C9112.5 (2)
C16—N6—Co1127.1 (2)C13—C12—C9126.0 (3)
C12—N6—Co1113.85 (18)C14—C13—C12119.1 (3)
C17—N7—Co1108.11 (18)C14—C13—H13120.4
C17—N7—H7A110.1C12—C13—H13120.4
Co1—N7—H7A110.1C15—C14—C13119.0 (3)
C17—N7—H7B110.1C15—C14—H14120.5
Co1—N7—H7B110.1C13—C14—H14120.5
H7A—N7—H7B108.4C14—C15—C16120.2 (3)
C18—N8—Co1109.97 (18)C14—C15—H15119.9
C18—N8—H8A109.7C16—C15—H15119.9
Co1—N8—H8A109.7N6—C16—C15121.1 (3)
C18—N8—H8B109.7N6—C16—H16119.5
Co1—N8—H8B109.7C15—C16—H16119.5
H8A—N8—H8B108.2N7—C17—C18107.1 (2)
O3—N9—O2118.7 (3)N7—C17—H17A110.3
O3—N9—O1120.1 (3)C18—C17—H17A110.3
O2—N9—O1121.2 (3)N7—C17—H17B110.3
H4C—O4—H4D108.4C18—C17—H17B110.3
N2—C1—N1114.1 (2)H17A—C17—H17B108.5
N2—C1—C4129.3 (2)N8—C18—C17107.4 (2)
N1—C1—C4116.6 (2)N8—C18—H18A110.2
N2—C2—C3110.6 (3)C17—C18—H18A110.2
N2—C2—H2124.7N8—C18—H18B110.2
C3—C2—H2124.7C17—C18—H18B110.2
N1—C3—C2107.0 (3)H18A—C18—H18B108.5
N1—C3—H3126.5
N4—Co1—N1—C139.5 (10)C3—N1—C1—N20.9 (3)
N8—Co1—N1—C1177.82 (19)Co1—N1—C1—N2178.86 (18)
N7—Co1—N1—C195.86 (19)C3—N1—C1—C4179.4 (2)
N3—Co1—N1—C12.85 (18)Co1—N1—C1—C41.4 (3)
N6—Co1—N1—C185.94 (19)C1—N2—C2—C30.0 (3)
N4—Co1—N1—C3137.4 (8)C1—N1—C3—C20.9 (3)
N8—Co1—N1—C30.9 (3)Co1—N1—C3—C2177.9 (2)
N7—Co1—N1—C387.3 (3)N2—C2—C3—N10.6 (3)
N3—Co1—N1—C3179.7 (3)C8—N3—C4—C52.5 (4)
N6—Co1—N1—C391.0 (3)Co1—N3—C4—C5174.0 (2)
N4—Co1—N3—C84.0 (3)C8—N3—C4—C1179.3 (2)
N1—Co1—N3—C8179.9 (3)Co1—N3—C4—C14.2 (3)
N8—Co1—N3—C8167.7 (15)N2—C1—C4—N3177.8 (3)
N7—Co1—N3—C890.8 (3)N1—C1—C4—N31.9 (3)
N6—Co1—N3—C886.6 (2)N2—C1—C4—C54.1 (5)
N4—Co1—N3—C4172.22 (19)N1—C1—C4—C5176.2 (3)
N1—Co1—N3—C43.96 (18)N3—C4—C5—C62.5 (4)
N8—Co1—N3—C416.1 (17)C1—C4—C5—C6179.6 (3)
N7—Co1—N3—C493.02 (19)C4—C5—C6—C71.0 (5)
N6—Co1—N3—C489.61 (19)C5—C6—C7—C80.5 (5)
N1—Co1—N4—C943.2 (10)C4—N3—C8—C71.0 (5)
N8—Co1—N4—C995.29 (19)Co1—N3—C8—C7175.1 (2)
N7—Co1—N4—C9178.36 (18)C6—C7—C8—N30.5 (5)
N3—Co1—N4—C985.17 (19)C10—N5—C9—N40.2 (3)
N6—Co1—N4—C93.64 (18)C10—N5—C9—C12179.1 (3)
N1—Co1—N4—C11131.4 (8)C11—N4—C9—N50.6 (3)
N8—Co1—N4—C1190.1 (3)Co1—N4—C9—N5177.08 (17)
N7—Co1—N4—C113.8 (3)C11—N4—C9—C12178.8 (2)
N3—Co1—N4—C1189.4 (3)Co1—N4—C9—C122.3 (3)
N6—Co1—N4—C11178.3 (3)C9—N5—C10—C110.3 (3)
N4—Co1—N6—C16178.3 (3)C9—N4—C11—C100.7 (3)
N1—Co1—N6—C165.8 (3)Co1—N4—C11—C10175.6 (2)
N8—Co1—N6—C1688.6 (3)N5—C10—C11—N40.6 (3)
N7—Co1—N6—C16142.2 (15)C16—N6—C12—C133.0 (4)
N3—Co1—N6—C1688.3 (3)Co1—N6—C12—C13174.4 (2)
N4—Co1—N6—C124.48 (18)C16—N6—C12—C9178.2 (2)
N1—Co1—N6—C12171.38 (19)Co1—N6—C12—C94.3 (3)
N8—Co1—N6—C1294.19 (19)N5—C9—C12—N6179.3 (2)
N7—Co1—N6—C1240.5 (16)N4—C9—C12—N61.4 (3)
N3—Co1—N6—C1288.87 (19)N5—C9—C12—C132.0 (5)
N4—Co1—N7—C17107.72 (18)N4—C9—C12—C13177.3 (3)
N1—Co1—N7—C1776.28 (19)N6—C12—C13—C142.4 (5)
N8—Co1—N7—C1718.09 (18)C9—C12—C13—C14179.0 (3)
N3—Co1—N7—C17158.80 (18)C12—C13—C14—C150.6 (6)
N6—Co1—N7—C1771.9 (16)C13—C14—C15—C160.5 (6)
N4—Co1—N8—C1885.02 (19)C12—N6—C16—C151.9 (5)
N1—Co1—N8—C1898.7 (2)Co1—N6—C16—C15175.2 (3)
N7—Co1—N8—C189.57 (19)C14—C15—C16—N60.2 (6)
N3—Co1—N8—C1886.7 (16)Co1—N7—C17—C1841.4 (3)
N6—Co1—N8—C18167.69 (19)Co1—N8—C18—C1734.7 (3)
C2—N2—C1—N10.5 (3)N7—C17—C18—N849.6 (3)
C2—N2—C1—C4179.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8B···O10.902.162.922 (4)142
N8—H8A···N5i0.902.092.979 (3)168
N7—H7A···N2ii0.902.153.045 (3)171
N7—H7B···O3iii0.902.433.281 (5)158
O4—H4D···N2iii0.852.122.974 (7)180
O4—H4C···O2iv0.852.183.026 (7)179
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8B···O10.902.162.922 (4)142
N8—H8A···N5i0.902.092.979 (3)168
N7—H7A···N2ii0.902.153.045 (3)171
N7—H7B···O3iii0.902.433.281 (5)158
O4—H4D···N2iii0.852.122.974 (7)180
O4—H4C···O2iv0.852.183.026 (7)179
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x+1, y+1, z.
Acknowledgements top

The authors appreciate the help of Professor Dr Lidan Zhang and the financial support of the Science Foundation of Huaihua University (grant No. HHUQ.2009–10.).

references
References top

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Carranza, J., Sletten, J., Lloret, F. & Julve, M. (2009). Inorg. Chim. Acta, 368, 2636–2642.

Dosser, R. J. & Underhill, A. E. (1972). J. Chem. Soc. Dalton Trans. pp. 611–613.

Lan, Y. Q., Li, S. L., Fu, Y. M., Xu, Y. H., Li, L., Su, Z. M. & Fu, Q. (2008). Dalton Trans. pp. 6796–6807.

Schott, O., Ferrando-Soria, J., Bentama, A., Stiriba, S. E., Pasan, J., Ruiz-Perez, C., Andruh, M., Lloret, F. & Julve, M. (2011). Inorg. Chim. Acta, 376, 358–366.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.