organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-{[But-2-ene-1,4-diylbis(­­oxy)]bis­­(4,1-phenyl­ene)}bis­­(phenyl­methanone)

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cYeşilyurt Demir Çelik Vocational School, Ondokuz Mayis University, Samsun, Turkey, and dDepartment of Chemistry, Karadeniz Technical University, 61080 Trabzon, Turkey
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 18 July 2012; accepted 25 July 2012; online 4 August 2012)

The title mol­ecule, C30H24O4, lies about an inversion center located at the mid-point of the central C=C bond. The diphenyl­methanone unit adopts an all-trans conformation. The dihedral angle between the adjacent rings is 53.57 (4)°.

Related literature

For sterically hindered phenols and secondary aromatic amines as anti­oxidants, see: Rabek (1990[Rabek, J. F. (1990). In Photostabilization of Polymers - Principles and Applications. New York: Elsevier Applied Science.]); Pospisil et al. (2003[Pospisil, J., Horak, Z., Pilar, J., Billingham, N. C., Zweifel, H. & Nespurek, S. (2003). Polym. Degrad. Stab. 82, 145-162.]); Wolf & Kaul, (1992[Wolf, R. & Kaul, B. L. (1992). Editors. Plastics, Additives, in Ullmann's Encyclopedia of Industrial Chemistry, Vol. A20, pp. 459-507. Weinheim: VCH Verlag.]). For synthetic phenolic anti­oxidants, such as butyl­ated hy­droxy­toluene (BHT), butyl­ated hy­droxy­anisole (BHA) or butyl­ated hy­droxy­quinone (TBHQ) as anti­oxidants, see: Omura (1995[Omura, K. (1995). J. Am. Oil Chem. Soc. 72, 1565-1570.]). For the ability of phenols to stop the propagation chain during the oxidation process, see: Kumar & Naik (2010[Kumar, H. V. & Naik, N. (2010). Eur. J. Med. Chem. 45, 2-10.]); Findik et al. (2011[Findik, E., Ceylan, M. & Elmastas, M. (2011). Eur. J. Med. Chem. 46, 4618-4624.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For the synthesis of the title compound, see: Er et al. (2009[Er, M., Ünver, Y., Sancak, K., Degirmencioglu, I. & Karaoglu, S. A. (2009). ARKIVOC, ii, 149-167.]).

[Scheme 1]

Experimental

Crystal data
  • C30H24O4

  • Mr = 448.49

  • Monoclinic, P 21 /c

  • a = 24.913 (1) Å

  • b = 7.2586 (3) Å

  • c = 6.1359 (2) Å

  • β = 95.012 (4)°

  • V = 1105.33 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 123 K

  • 0.44 × 0.37 × 0.22 mm

Data collection
  • Agilent Xcalibur Ruby Gemini diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO Agilent Technologies, Yarnton, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.976, Tmax = 0.989

  • 8112 measured reflections

  • 2409 independent reflections

  • 1964 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.129

  • S = 1.09

  • 2409 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Antioxidants are chemical compounds that can quench reactive radical intermediates formed during oxidative reactions. The primary antioxidants essentially comprise of sterically hindered phenols and secondary aromatic amines (Rabek, 1990; Pospisil et al., 2003; Wolf & Kaul, 1992). Phenols have been utilized extensively for food preservation. Synthetic phenolic antioxidants, such as butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA) or butylated hydroxyquinone (TBHQ) possess good antioxidant capacity (Omura, 1995). The main structural feature responsible for the antioxidative and free radical scavenging activity of phenolic derivatives is the phenolic hydroxyl group. Phenols are able to donate the hydrogen atom of the phenolic OH to the free radicals, thus stopping the propagation chain during the oxidation process (Kumar & Naik, 2010; Findik, et al., 2011).

In view of the importance of phenolate compounds as antioxidants the structure of (E)-((but-2-ene-1,4-diylbis(oxy))bis(4,1-phenylene))bis(phenylmethanone) was determined. This molecule, C30H24O4, (Fig. 1), lies on an inversion centre, which passes through middle point of the C15=C15A double bond of the aliphatic chain, giving one half-molecule per asymmetric unit. As a consequence of this symmetry, the diphenylmethanone adopts an all-trans conformation. The molecular structure is not planar. The O2 C14 C15 C15A (C15A generated by 2 - x, -y, -z) torsion angle is 123.3 (3) ° and the dihedral angle between the planes of the aromatic rings (C1/C6 to C8/C13) is 53.57 (4) ° [for the non-H atoms, maximum deviation = -0.015 (1) Å for C10]. Bond lengths and angles can be regarded as normal (Allen, 2002). There are no significant C–H···O contacts.

Related literature top

For sterically hindered phenols and secondary aromatic amines as antioxidants, see: Rabek (1990); Pospisil et al. (2003); Wolf & Kaul, (1992). For synthetic phenolic antioxidants, such as butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA) or butylated hydroxyquinone (TBHQ) as antioxidants, see: Omura (1995). For the ability of phenols to stop the propagation chain during the oxidation process, see: Kumar & Naik (2010); Findik et al. (2011). For a description of the Cambridge Structural Database, see: Allen (2002). For the synthesis of the title compound, see: Er et al. (2009).

Experimental top

Title compound was synthesized by published methods (Er et al., 2009). Crystals were grown by slow evaporation of an ethanol/acetone mixed solution.

Refinement top

All H-atoms were positioned geometrically with C—H = 0.93 or 0.97 Å and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule, with the atom-numbering. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (A) = 2 - x, -y, -z].
[Figure 2] Fig. 2. Packing diagram of the title compound with along the b axis.
(E)-{[But-2-ene-1,4-diylbis(oxy)]bis(4,1-phenylene)}bis(phenylmethanone) top
Crystal data top
C30H24O4F(000) = 472
Mr = 448.49Dx = 1.348 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3302 reflections
a = 24.913 (1) Åθ = 3.3–28.6°
b = 7.2586 (3) ŵ = 0.09 mm1
c = 6.1359 (2) ÅT = 123 K
β = 95.012 (4)°Pyrimidal, colorless
V = 1105.33 (7) Å30.44 × 0.37 × 0.22 mm
Z = 2
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
2409 independent reflections
Radiation source: fine-focus sealed tube1964 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 10.5081 pixels mm-1θmax = 28.6°, θmin = 3.3°
ω scansh = 2731
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)]
k = 97
Tmin = 0.976, Tmax = 0.989l = 87
8112 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.5741P]
where P = (Fo2 + 2Fc2)/3
2409 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C30H24O4V = 1105.33 (7) Å3
Mr = 448.49Z = 2
Monoclinic, P21/cMo Kα radiation
a = 24.913 (1) ŵ = 0.09 mm1
b = 7.2586 (3) ÅT = 123 K
c = 6.1359 (2) Å0.44 × 0.37 × 0.22 mm
β = 95.012 (4)°
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
2409 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)]
1964 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.989Rint = 0.045
8112 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.09Δρmax = 0.25 e Å3
2409 reflectionsΔρmin = 0.27 e Å3
154 parameters
Special details top

Experimental. Absorption correction: analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.71419 (5)0.00150 (18)0.81909 (19)0.0279 (3)
O20.92164 (4)0.01342 (16)0.31446 (19)0.0240 (3)
C10.65514 (7)0.0714 (2)0.2731 (3)0.0214 (4)
H1A0.68530.12020.20800.026*
C20.60418 (7)0.0791 (2)0.1610 (3)0.0243 (4)
H2A0.59940.13450.02030.029*
C30.56033 (7)0.0055 (2)0.2551 (3)0.0264 (4)
H3A0.52540.01230.17960.032*
C40.56713 (7)0.0778 (2)0.4592 (3)0.0255 (4)
H4A0.53710.13130.52090.031*
C50.61760 (6)0.0832 (2)0.5730 (3)0.0222 (4)
H5A0.62210.13810.71390.027*
C60.66211 (6)0.0077 (2)0.4805 (3)0.0193 (4)
C70.71442 (6)0.0017 (2)0.6198 (3)0.0196 (4)
C80.76709 (6)0.0056 (2)0.5208 (3)0.0189 (4)
C90.81067 (6)0.0885 (2)0.6439 (3)0.0203 (4)
H9A0.80530.14360.78080.024*
C100.86106 (6)0.0910 (2)0.5686 (3)0.0207 (4)
H10A0.89000.15160.65050.025*
C110.86966 (6)0.0043 (2)0.3717 (3)0.0195 (4)
C120.82714 (6)0.0799 (2)0.2468 (3)0.0207 (4)
H12A0.83300.13910.11280.025*
C130.77587 (6)0.0758 (2)0.3220 (3)0.0195 (4)
H13A0.74650.12970.23570.023*
C140.93354 (7)0.0764 (3)0.1161 (3)0.0251 (4)
H14A0.92710.21060.12620.030*
H14B0.91030.02710.00970.030*
C150.99148 (7)0.0394 (3)0.0874 (3)0.0265 (4)
H15A1.01760.07480.20190.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0252 (7)0.0416 (8)0.0173 (6)0.0015 (5)0.0036 (5)0.0004 (5)
O20.0154 (6)0.0328 (7)0.0242 (6)0.0014 (5)0.0045 (5)0.0017 (5)
C10.0218 (8)0.0217 (8)0.0215 (8)0.0006 (6)0.0055 (7)0.0005 (7)
C20.0264 (9)0.0263 (9)0.0201 (8)0.0031 (7)0.0013 (7)0.0000 (7)
C30.0207 (8)0.0305 (10)0.0276 (9)0.0018 (7)0.0002 (7)0.0048 (7)
C40.0185 (8)0.0290 (9)0.0301 (9)0.0005 (7)0.0076 (7)0.0020 (7)
C50.0214 (8)0.0248 (9)0.0211 (8)0.0021 (7)0.0064 (7)0.0010 (7)
C60.0179 (8)0.0207 (8)0.0198 (8)0.0017 (6)0.0050 (6)0.0019 (6)
C70.0199 (8)0.0198 (8)0.0195 (8)0.0017 (6)0.0036 (6)0.0007 (6)
C80.0191 (8)0.0188 (8)0.0191 (8)0.0011 (6)0.0024 (6)0.0023 (6)
C90.0231 (8)0.0216 (8)0.0162 (8)0.0024 (6)0.0009 (6)0.0003 (6)
C100.0199 (8)0.0215 (9)0.0201 (8)0.0004 (6)0.0021 (6)0.0008 (6)
C110.0167 (8)0.0212 (8)0.0208 (8)0.0015 (6)0.0025 (6)0.0053 (6)
C120.0205 (8)0.0220 (8)0.0199 (8)0.0008 (6)0.0045 (6)0.0013 (6)
C130.0187 (8)0.0212 (8)0.0185 (8)0.0013 (6)0.0012 (6)0.0001 (6)
C140.0204 (8)0.0331 (10)0.0225 (9)0.0002 (7)0.0058 (7)0.0010 (7)
C150.0174 (8)0.0357 (10)0.0267 (9)0.0029 (7)0.0039 (7)0.0015 (7)
Geometric parameters (Å, º) top
O1—C71.223 (2)C8—C131.390 (2)
O2—C111.3726 (19)C8—C91.403 (2)
O2—C141.435 (2)C9—C101.376 (2)
C1—C21.391 (2)C9—H9A0.9500
C1—C61.393 (2)C10—C111.395 (2)
C1—H1A0.9500C10—H10A0.9500
C2—C31.387 (3)C11—C121.393 (2)
C2—H2A0.9500C12—C131.395 (2)
C3—C41.388 (3)C12—H12A0.9500
C3—H3A0.9500C13—H13A0.9500
C4—C51.384 (2)C14—C151.494 (2)
C4—H4A0.9500C14—H14A0.9900
C5—C61.401 (2)C14—H14B0.9900
C5—H5A0.9500C15—C15i1.318 (4)
C6—C71.496 (2)C15—H15A0.9500
C7—C81.494 (2)
C11—O2—C14117.70 (12)C10—C9—C8120.69 (15)
C2—C1—C6120.26 (16)C10—C9—H9A119.7
C2—C1—H1A119.9C8—C9—H9A119.7
C6—C1—H1A119.9C9—C10—C11119.94 (14)
C3—C2—C1119.77 (16)C9—C10—H10A120.0
C3—C2—H2A120.1C11—C10—H10A120.0
C1—C2—H2A120.1O2—C11—C12124.69 (15)
C2—C3—C4120.35 (16)O2—C11—C10114.82 (14)
C2—C3—H3A119.8C12—C11—C10120.48 (15)
C4—C3—H3A119.8C11—C12—C13118.87 (15)
C5—C4—C3120.08 (16)C11—C12—H12A120.6
C5—C4—H4A120.0C13—C12—H12A120.6
C3—C4—H4A120.0C8—C13—C12121.18 (15)
C4—C5—C6120.06 (16)C8—C13—H13A119.4
C4—C5—H5A120.0C12—C13—H13A119.4
C6—C5—H5A120.0O2—C14—C15106.96 (13)
C1—C6—C5119.44 (15)O2—C14—H14A110.3
C1—C6—C7122.90 (15)C15—C14—H14A110.3
C5—C6—C7117.43 (15)O2—C14—H14B110.3
O1—C7—C8119.17 (14)C15—C14—H14B110.3
O1—C7—C6119.44 (15)H14A—C14—H14B108.6
C8—C7—C6121.38 (14)C15i—C15—C14123.9 (2)
C13—C8—C9118.77 (15)C15i—C15—H15A118.1
C13—C8—C7123.58 (14)C14—C15—H15A118.1
C9—C8—C7117.50 (14)
C6—C1—C2—C30.8 (3)C6—C7—C8—C9152.96 (15)
C1—C2—C3—C40.9 (3)C13—C8—C9—C100.7 (2)
C2—C3—C4—C51.9 (3)C7—C8—C9—C10176.32 (15)
C3—C4—C5—C61.3 (3)C8—C9—C10—C112.4 (2)
C2—C1—C6—C51.5 (2)C14—O2—C11—C122.6 (2)
C2—C1—C6—C7173.00 (15)C14—O2—C11—C10178.67 (14)
C4—C5—C6—C10.4 (2)C9—C10—C11—O2179.11 (14)
C4—C5—C6—C7174.34 (15)C9—C10—C11—C122.1 (2)
C1—C6—C7—O1150.21 (16)O2—C11—C12—C13178.62 (15)
C5—C6—C7—O124.4 (2)C10—C11—C12—C130.1 (2)
C1—C6—C7—C829.3 (2)C9—C8—C13—C121.5 (2)
C5—C6—C7—C8156.15 (15)C7—C8—C13—C12173.86 (15)
O1—C7—C8—C13148.92 (17)C11—C12—C13—C81.9 (2)
C6—C7—C8—C1331.6 (2)C11—O2—C14—C15177.68 (14)
O1—C7—C8—C926.5 (2)O2—C14—C15—C15i123.3 (2)
Symmetry code: (i) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC30H24O4
Mr448.49
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)24.913 (1), 7.2586 (3), 6.1359 (2)
β (°) 95.012 (4)
V3)1105.33 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.44 × 0.37 × 0.22
Data collection
DiffractometerAgilent Xcalibur Ruby Gemini
diffractometer
Absorption correctionAnalytical
[CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.976, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
8112, 2409, 1964
Rint0.045
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.129, 1.09
No. of reflections2409
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.27

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer.

References

First citationAgilent (2012). CrysAlis PRO Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEr, M., Ünver, Y., Sancak, K., Degirmencioglu, I. & Karaoglu, S. A. (2009). ARKIVOC, ii, 149–167.  CrossRef Google Scholar
First citationFindik, E., Ceylan, M. & Elmastas, M. (2011). Eur. J. Med. Chem. 46, 4618–4624.  Web of Science CAS PubMed Google Scholar
First citationKumar, H. V. & Naik, N. (2010). Eur. J. Med. Chem. 45, 2–10.  PubMed CAS Google Scholar
First citationOmura, K. (1995). J. Am. Oil Chem. Soc. 72, 1565–1570.  CrossRef CAS Web of Science Google Scholar
First citationPospisil, J., Horak, Z., Pilar, J., Billingham, N. C., Zweifel, H. & Nespurek, S. (2003). Polym. Degrad. Stab. 82, 145–162.  CAS Google Scholar
First citationRabek, J. F. (1990). In Photostabilization of Polymers Principles and Applications. New York: Elsevier Applied Science.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolf, R. & Kaul, B. L. (1992). Editors. Plastics, Additives, in Ullmann's Encyclopedia of Industrial Chemistry, Vol. A20, pp. 459–507. Weinheim: VCH Verlag.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds