organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo-1H-pyrrole-2-carb­­oxy­lic acid

aDepartment of Chemistry, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
*Correspondence e-mail: xczeng@126.com

(Received 26 June 2012; accepted 6 August 2012; online 11 August 2012)

In the title compound, C5H4BrNO2, the non-H atoms of the pyrrole ring and the Br atom are approximately coplanar, with an r.m.s. deviation from the best fit plane of 0.025 (6) Å;. The dihedral angle between the plane of the carb­oxy group and this plane is 14.1 (2)°. In the crystal, O—H⋯O hydrogen bonds link the mol­ecules together, forming corrugated sheets parallel to the bc plane.

Related literature

For pyrrole compounds obtained from marine organisms, see: Liu et al. (2005[Liu, J. F., Guo, S. P. & Jiang, B. (2005). Chin. J. Org. Chem. 25, 788-799.]); Faulkner (2002[Faulkner, D. J. (2002). Nat. Prod. Rep. 18, 1-48.]). For the bioactivity of pyrrole derivatives, see: Banwell et al. (2006[Banwell, M. G., Hamel, E., Hockless, D. C. R., Verdier-Pinard, P., Willis, A. C. & Wong, D. J. (2006). Bioorg. Med. Chem. 14, 4627-4638.]); Sosa et al. (2002[Sosa, A. C. B., Yakushijin, K. & Horne, D. A. (2002). J. Org. Chem. 67, 4498-4500.]). For related structures, see: Zeng et al. (2007[Zeng, X.-C., Zeng, J., Li, X. & Ling, X. (2007). Acta Cryst. E63, o3424.]); Tang et al. (2008[Tang, G. H., Li, D. D., Zeng, X. C., Dong, S. S. & Wang, Y. S. (2008). Acta Cryst. E64, o1867.]).

[Scheme 1]

Experimental

Crystal data
  • C5H4BrNO2

  • Mr = 190.00

  • Monoclinic, P 21 /c

  • a = 16.0028 (13) Å

  • b = 4.9046 (6) Å

  • c = 8.2367 (7) Å

  • β = 93.199 (7)°

  • V = 645.47 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.29 mm−1

  • T = 293 K

  • 0.24 × 0.20 × 0.14 mm

Data collection
  • Oxford Gemini S Ultra area-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.314, Tmax = 0.473

  • 2436 measured reflections

  • 1387 independent reflections

  • 1081 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.081

  • S = 1.10

  • 1387 reflections

  • 85 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2′⋯O1i 1.07 1.86 2.914 (4) 166
O2—H2⋯O1ii 0.82 2.28 3.030 (4) 153
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrrole derivatives are well known in many marine organisms (Faulkner, 2002), some show important bioactivities, such as antitumor activity (Banwell et al., 2006) and protein kinase inhibiting activity (Sosa et al., 2002). These are the reasons why they have attracted our interest. This study is relevant to our previous studies on Methyl 2-(4,5-dibromo-1H-pyrrole-2-carboxamido)propionate (Zeng et al., 2007) and 1H-Pyrrole-2-carboxylic acid (Tang et al., 2008).

In the title molecule, bond lengths and angles are unexceptional. The non-H atoms of the pyrrole ring and Br atom are approximately coplanar (plane 1), with r.m.s. deviation from the best fit plane of 0.025 (6)°, the dihedral angle between the carboxy plane and Plane 1 is 14.1 (2)°. The OH hydrogen atom is disordered over two positions (shown as in Fig. 1), which form weak intermolecular O2—H2···O1 hydrogen bonds respectively (Table 1). In the crystal, the above hydrogen bonds link the molecules into corrugated sheets parallel to the bc plane (shown as in Fig. 2 and Fig. 3).

Related literature top

For pyrrole compounds obtained from marine organisms, see: Liu et al. (2005); Faulkner (2002). For the bioactivity of pyrrole derivatives, see: Banwell et al. (2006); Sosa et al. (2002). For related structures, see: Zeng et al. (2007); Tang et al. (2008).

Experimental top

The methyl 4-bromopyrrole-2-carbonylaminoacetate (1.30 g, 5 mmol) and potassium carbonate (1.38 g, 10 mmol) were added to acetonitrile (20 ml), the mixture was stirred at reflux for 24 h. After the reaction mixture was cooled and filtered, the filtrate was evaporated in vacuo, and then the residue was chromatographed over Si gel 60 using EtOAc-petroleum ether (1:2.5) as eluting solvent and the title compound (I) was obtained (55.2% yield). Light yellow monoclinic crystals suitable for X-ray analysis (m.p. 424 K) grew over a period of one week when the EtOH solution of I was exposed to the air at room temperature.

Refinement top

All non-H atoms were refined with anisotropic displacement parameters. The H atoms except the H(OH) were positioned geometrically[C—H = 0.93 Å for CH, and N—H = 0.86 Å] and refined using a riding model, with Uiso = 1.2Ueq of the parent atom. The H atoms attached to hydroxy O atoms were found automatically.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing. Dashed lines indicate hydrogen bonds.
[Figure 3] Fig. 3. sheet formed by weak hydrogen bonds (dashed lines).
4-Bromo-1H-pyrrole-2-carboxylic acid top
Crystal data top
C5H4BrNO2F(000) = 368
Mr = 190.00Dx = 1.955 Mg m3
Monoclinic, P21/cMelting point < 424 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 16.0028 (13) ÅCell parameters from 950 reflections
b = 4.9046 (6) Åθ = 3.5–29.1°
c = 8.2367 (7) ŵ = 6.29 mm1
β = 93.199 (7)°T = 293 K
V = 645.47 (11) Å3Block, light yellow
Z = 40.24 × 0.20 × 0.14 mm
Data collection top
Oxford Gemini S Ultra area-detector
diffractometer
1387 independent reflections
Radiation source: fine-focus sealed tube1081 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 27.0°, θmin = 3.8°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 2012
Tmin = 0.314, Tmax = 0.473k = 56
2436 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.034P)2 + 0.2705P]
where P = (Fo2 + 2Fc2)/3
1387 reflections(Δ/σ)max < 0.001
85 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C5H4BrNO2V = 645.47 (11) Å3
Mr = 190.00Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.0028 (13) ŵ = 6.29 mm1
b = 4.9046 (6) ÅT = 293 K
c = 8.2367 (7) Å0.24 × 0.20 × 0.14 mm
β = 93.199 (7)°
Data collection top
Oxford Gemini S Ultra area-detector
diffractometer
1387 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1081 reflections with I > 2σ(I)
Tmin = 0.314, Tmax = 0.473Rint = 0.021
2436 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.10Δρmax = 0.39 e Å3
1387 reflectionsΔρmin = 0.45 e Å3
85 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.07690 (2)0.68153 (9)0.16395 (4)0.04763 (17)
N10.24925 (19)0.3185 (6)0.1354 (4)0.0400 (7)
H10.26530.19830.20650.048*
C30.2505 (2)0.6756 (8)0.0297 (4)0.0321 (7)
H30.26740.82850.08610.039*
O10.40382 (15)0.4281 (6)0.2816 (3)0.0514 (7)
C40.29799 (19)0.5248 (7)0.0817 (4)0.0321 (8)
C20.17094 (19)0.5519 (8)0.0414 (4)0.0327 (8)
O20.4311 (2)0.7498 (8)0.0940 (4)0.0731 (10)
H20.40790.80990.01020.013 (15)*0.50
H2'0.48980.79730.15620.009 (13)*0.50
C10.1716 (2)0.3316 (8)0.0598 (5)0.0421 (9)
H1A0.12740.21280.07430.050*
C50.3821 (2)0.5608 (9)0.1583 (4)0.0373 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0310 (2)0.0638 (3)0.0466 (2)0.00130 (19)0.01071 (15)0.0010 (2)
N10.0398 (17)0.0338 (17)0.0453 (16)0.0004 (15)0.0077 (13)0.0041 (15)
C30.0309 (17)0.037 (2)0.0284 (15)0.0035 (16)0.0004 (12)0.0005 (16)
O10.0376 (14)0.0662 (19)0.0487 (14)0.0089 (14)0.0119 (11)0.0072 (15)
C40.0274 (15)0.036 (2)0.0329 (15)0.0019 (15)0.0013 (12)0.0050 (16)
C20.0279 (16)0.041 (2)0.0289 (15)0.0017 (16)0.0025 (12)0.0053 (17)
O20.052 (2)0.097 (3)0.069 (2)0.0130 (18)0.0158 (16)0.004 (2)
C10.0357 (19)0.042 (2)0.048 (2)0.0074 (17)0.0006 (16)0.0045 (19)
C50.0278 (17)0.048 (2)0.0357 (17)0.0020 (18)0.0038 (13)0.0053 (19)
Geometric parameters (Å, º) top
Br1—C21.876 (3)O1—C51.239 (4)
N1—C11.360 (5)C4—C51.465 (4)
N1—C41.366 (4)C2—C11.364 (5)
N1—H10.8600O2—C51.342 (5)
C3—C41.375 (5)O2—H20.8200
C3—C21.408 (4)O2—H2'1.0702
C3—H30.9300C1—H1A0.9300
C1—N1—C4109.9 (3)C3—C2—Br1125.8 (3)
C1—N1—H1125.1C5—O2—H2109.5
C4—N1—H1125.1C5—O2—H2'118.5
C4—C3—C2106.1 (3)H2—O2—H2'132.0
C4—C3—H3126.9N1—C1—C2107.1 (3)
C2—C3—H3126.9N1—C1—H1A126.5
N1—C4—C3108.1 (3)C2—C1—H1A126.5
N1—C4—C5118.5 (3)O1—C5—O2122.9 (3)
C3—C4—C5133.1 (3)O1—C5—C4119.9 (3)
C1—C2—C3108.8 (3)O2—C5—C4117.1 (3)
C1—C2—Br1125.2 (3)
C1—N1—C4—C30.6 (4)C3—C2—C1—N10.8 (4)
C1—N1—C4—C5175.0 (3)Br1—C2—C1—N1175.1 (2)
C2—C3—C4—N10.1 (4)N1—C4—C5—O18.7 (5)
C2—C3—C4—C5173.3 (3)C3—C4—C5—O1163.9 (4)
C4—C3—C2—C10.5 (4)N1—C4—C5—O2174.5 (3)
C4—C3—C2—Br1175.4 (2)C3—C4—C5—O212.8 (6)
C4—N1—C1—C20.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i1.071.862.914 (4)166
O2—H2···O1ii0.822.283.030 (4)153
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC5H4BrNO2
Mr190.00
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)16.0028 (13), 4.9046 (6), 8.2367 (7)
β (°) 93.199 (7)
V3)645.47 (11)
Z4
Radiation typeMo Kα
µ (mm1)6.29
Crystal size (mm)0.24 × 0.20 × 0.14
Data collection
DiffractometerOxford Gemini S Ultra area-detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.314, 0.473
No. of measured, independent and
observed [I > 2σ(I)] reflections
2436, 1387, 1081
Rint0.021
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.081, 1.10
No. of reflections1387
No. of parameters85
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.45

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2'···O1i1.071.862.914 (4)166
O2—H2···O1ii0.822.283.030 (4)153
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+3/2, z1/2.
 

Acknowledgements

We thank the Natural Science Foundation of Guangdong Province, China (No. 06300581) for generously supporting this study.

References

First citationBanwell, M. G., Hamel, E., Hockless, D. C. R., Verdier-Pinard, P., Willis, A. C. & Wong, D. J. (2006). Bioorg. Med. Chem. 14, 4627–4638.  Web of Science CrossRef PubMed CAS
First citationFaulkner, D. J. (2002). Nat. Prod. Rep. 18, 1–48.  Web of Science CrossRef
First citationLiu, J. F., Guo, S. P. & Jiang, B. (2005). Chin. J. Org. Chem. 25, 788–799.  CAS
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSosa, A. C. B., Yakushijin, K. & Horne, D. A. (2002). J. Org. Chem. 67, 4498–4500.  Web of Science CrossRef PubMed CAS
First citationTang, G. H., Li, D. D., Zeng, X. C., Dong, S. S. & Wang, Y. S. (2008). Acta Cryst. E64, o1867.  Web of Science CSD CrossRef IUCr Journals
First citationZeng, X.-C., Zeng, J., Li, X. & Ling, X. (2007). Acta Cryst. E63, o3424.  Web of Science CSD CrossRef IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds