organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(E)-4-Benz­yl­oxy-2-hy­dr­oxy­benzyl­­idene]benzohydrazide

aDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, and bDepartment of Chemistry, Faculty of Science, Eastern University, Sri Lanka, Chenkalady, Sri Lanka
*Correspondence e-mail: eesans@yahoo.com

(Received 12 August 2012; accepted 20 August 2012; online 25 August 2012)

The title compound, C21H18N2O3, exists in the E conformation with respect to the azomethane C=N double bond. The central benzene ring is almost coplanar with one of the substituent benzene rings [dihedral angle = 1.74 (5)°] and is approximately orthogonal to the other benzene ring of the mol­ecule [dihedral angle = 86.61 (7)°]. An intra­molecular O—H⋯N hydrogen bond occurs. The crystal packing is dominated by N—H⋯O hydrogen bonds, which lead to an infinite chain running parallel to [010].

Related literature

For the biological activity of hydrazones, see: Patil et al. (2010[Patil, S. A., Naik, V. H., Kulkarni, A. D., Kamble, U., Bagihalli, G. B. & Badami, P. S. (2010). J. Coord. Chem. 63, 688-699.]); Zhang et al. (2010[Zhang, Y. H., Zhang, L., Liu, L., Guo, J. X., Wu, D. L., Xu, G. C., Wang, X. H. & Jia, D. Z. (2010). Inorg. Chim. Acta, 363, 289-293.]). For the synthesis of related compounds, see: Emmanuel et al. (2011[Emmanuel, J., Sithambaresan, M. & Kurup, M. R. P. (2011). Acta Cryst. E67, o3267.]); Mangalam & Kurup (2011[Mangalam, N. A. & Kurup, M. R. P. (2011). Spectrochim. Acta Part A, 76, 22-28.]). For related structures, see: Lin & Sang (2009[Lin, X.-S. & Sang, Y.-L. (2009). Acta Cryst. E65, o1650.]); Mohd Lair et al. (2009[Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o190.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18N2O3

  • Mr = 346.37

  • Monoclinic, P 21

  • a = 10.8053 (6) Å

  • b = 4.8952 (2) Å

  • c = 16.3601 (10) Å

  • β = 95.813 (2)°

  • V = 860.90 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.978

  • 9033 measured reflections

  • 1705 independent reflections

  • 1593 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.082

  • S = 1.12

  • 1705 reflections

  • 243 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2′⋯O3i 0.85 (1) 2.09 (1) 2.903 (2) 160 (2)
O2—H2′′⋯N1 0.87 (2) 1.79 (2) 2.592 (2) 152 (3)
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Hydrazone compounds have received much attention due to their potential applications in biological chemistry (Patil et al., 2010; Zhang et al., 2010). As a continuous work on the hydrazone compounds, a new hydrazone compound, N'-{(E)-[4-(benzyloxy)-2-hydroxyphenyl]methylidene}benzohydrazide, was prepared and structurally characterized. The ORTEP view of the title compound is shown in Fig. 1.

The compound crystallizes in monoclinic space group P21. The molecule adopts an E configuration with respect to C14=N1 bond (Lin & Sang 2009; Mohd Lair et al., 2009) and it exists in amido form with C15=O3 bond length of 1.224 (3) Å which is very close to a formal C=O bond length [1.21 Å]. The aromatic ring C8—C13 is almost coplanar with the ring C16—C21 with dihedral angle of 1.74 (5)° whilst the ring C1—C6 is approximately orthogonal (86.61 (7)°) to the ring C16—C21.

While the intramolecular hydrogen bond O(2)—H(2'')···N(1) increases the rigidity of the molecule, intermolecular N(2)—H(2')···O(3) hydrogen bond (Table 1) links the adjacent molecules forming an infinite one-dimensional supramolecular chain running parallel to the [010] direction in the unit cell (Fig. 2). Benzohydrazone molecules within these chains also interact through very weak π···π interactions with a shortest centroid-centroid distance of 4.8950 (15) Å that not only augment the stronger N—H···O hydrogen bond but also interconnects the infinite chains forming three-dimensional network in the lattice. The parallel arrangement of the molecules along b axis is shown in Fig. 3.

Related literature top

For the biological activity of hydrazones, see: Patil et al. (2010); Zhang et al. (2010). For the synthesis of related compounds, see: Emmanuel et al. (2011); Mangalam & Kurup (2011). For related structures, see: Lin & Sang (2009); Mohd Lair et al. (2009).

Experimental top

The title compound was prepared by adapting a reported procedure (Emmanuel et al., 2011; Mangalam & Kurup, 2011) by refluxing a mixture of methanolic solutions of benzhydrazide (0.136 g,1 mmol) and 4-benzyloxysalicylaldehyde (0.2282 g,1 mmol) for 4 h. The formed crystals were collected, washed with few drops of methanol and dried over P4O10 in vacuo. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation from its methanolic solution.

Refinement top

All H atoms on C were placed in calculated positions, guided by difference maps, with C—H bond distances 0.93–0.97 Å. H atoms were assigned as Uiso=1.2Ueq. H atoms of O2—H2'' and N2—H2' bonds were located from difference maps and restrained using DFIX instructions with O—H = 0.87 ± 0.02 Å and N—H = 0.85 ± 0.01 Å.

In the absence of significant anomalous scattering effects Friedel pairs have been merged.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
Fig. 1. ORTEP view of the unique part of the compound, drawn with 50% probability displacement ellipsoids for the non-H atoms.

Fig. 2. Graphical representation showing one-dimensional supramolecular hydrogen bonding network in the crystal structure of C21H18N2O3.

Fig. 3. Packing diagram of the compound showing the parallel arrangement of the molecules along b axis.
N'-[(E)-4-Benzyloxy-2-hydroxybenzylidene]benzohydrazide top
Crystal data top
C21H18N2O3F(000) = 364
Mr = 346.37Dx = 1.336 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 5951 reflections
a = 10.8053 (6) Åθ = 2.4–28.1°
b = 4.8952 (2) ŵ = 0.09 mm1
c = 16.3601 (10) ÅT = 296 K
β = 95.813 (2)°Block, colorless
V = 860.90 (8) Å30.35 × 0.30 × 0.25 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1705 independent reflections
Radiation source: fine-focus sealed tube1593 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 8.33 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω and ϕ scanh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 55
Tmin = 0.969, Tmax = 0.978l = 1919
9033 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.0573P]
where P = (Fo2 + 2Fc2)/3
1705 reflections(Δ/σ)max = 0.005
243 parametersΔρmax = 0.12 e Å3
3 restraintsΔρmin = 0.14 e Å3
Crystal data top
C21H18N2O3V = 860.90 (8) Å3
Mr = 346.37Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.8053 (6) ŵ = 0.09 mm1
b = 4.8952 (2) ÅT = 296 K
c = 16.3601 (10) Å0.35 × 0.30 × 0.25 mm
β = 95.813 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1705 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1593 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.978Rint = 0.024
9033 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0293 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.12 e Å3
1705 reflectionsΔρmin = 0.14 e Å3
243 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08187 (12)0.6299 (3)1.18699 (7)0.0525 (4)
O20.19313 (15)0.4504 (4)0.91841 (8)0.0610 (4)
O30.43474 (14)0.3828 (3)0.76116 (9)0.0575 (4)
N10.37436 (15)0.7368 (4)0.87075 (9)0.0471 (4)
N20.44743 (17)0.8127 (3)0.81016 (10)0.0458 (4)
C10.1620 (2)0.5457 (6)1.27899 (13)0.0681 (7)
H10.19840.67161.24130.082*
C20.2072 (2)0.5169 (8)1.35467 (15)0.0812 (9)
H2A0.27370.62351.36770.097*
C30.1550 (3)0.3347 (7)1.40967 (15)0.0779 (8)
H30.18530.31741.46070.093*
C40.0583 (3)0.1761 (8)1.39081 (16)0.0890 (9)
H40.02280.05011.42880.107*
C50.0126 (2)0.2025 (7)1.31467 (15)0.0750 (7)
H50.05280.09281.30150.090*
C60.06386 (17)0.3899 (5)1.25910 (11)0.0500 (5)
C70.01383 (18)0.4243 (5)1.17735 (11)0.0531 (5)
H7A0.02030.25311.16000.064*
H7B0.07980.48081.13610.064*
C80.14629 (15)0.6828 (4)1.12181 (10)0.0424 (4)
C90.13243 (17)0.5416 (4)1.04847 (11)0.0464 (5)
H90.07250.40541.04010.056*
C100.20779 (17)0.6026 (4)0.98724 (10)0.0431 (4)
C110.29517 (17)0.8163 (4)0.99739 (10)0.0421 (4)
C120.30438 (17)0.9593 (5)1.07174 (11)0.0501 (5)
H120.36041.10341.07940.060*
C130.23345 (17)0.8937 (5)1.13355 (11)0.0493 (5)
H130.24310.98861.18300.059*
C140.37200 (17)0.8897 (5)0.93334 (11)0.0470 (4)
H140.41951.04840.93800.056*
C150.47098 (17)0.6182 (4)0.75527 (11)0.0427 (4)
C160.54733 (16)0.7030 (4)0.68911 (11)0.0433 (4)
C170.5333 (2)0.5618 (5)0.61561 (12)0.0565 (6)
H170.47380.42440.60770.068*
C180.6065 (2)0.6223 (6)0.55402 (13)0.0671 (6)
H180.59570.52730.50460.080*
C190.6950 (2)0.8216 (6)0.56521 (14)0.0673 (7)
H190.74490.86100.52360.081*
C200.7105 (2)0.9643 (6)0.63802 (14)0.0655 (6)
H200.77091.09980.64550.079*
C210.63653 (18)0.9069 (5)0.70001 (13)0.0532 (5)
H210.64661.00480.74890.064*
H2'0.4593 (19)0.9831 (9)0.8048 (13)0.047 (6)*
H2''0.249 (2)0.514 (7)0.8883 (16)0.100 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0541 (7)0.0627 (10)0.0425 (6)0.0105 (7)0.0144 (5)0.0043 (7)
O20.0859 (10)0.0528 (10)0.0474 (7)0.0177 (8)0.0207 (7)0.0110 (7)
O30.0747 (9)0.0345 (8)0.0668 (9)0.0058 (7)0.0238 (7)0.0026 (7)
N10.0560 (9)0.0423 (10)0.0454 (8)0.0030 (8)0.0161 (7)0.0061 (8)
N20.0602 (9)0.0320 (9)0.0478 (8)0.0002 (7)0.0184 (7)0.0059 (7)
C10.0652 (12)0.0807 (18)0.0605 (12)0.0120 (13)0.0162 (10)0.0076 (13)
C20.0728 (15)0.103 (2)0.0724 (15)0.0086 (16)0.0311 (12)0.0023 (17)
C30.0884 (17)0.090 (2)0.0604 (13)0.0181 (17)0.0300 (12)0.0016 (15)
C40.106 (2)0.094 (2)0.0688 (15)0.0056 (19)0.0186 (14)0.0313 (17)
C50.0768 (15)0.0803 (19)0.0712 (14)0.0118 (14)0.0235 (12)0.0150 (14)
C60.0466 (10)0.0556 (12)0.0488 (9)0.0096 (10)0.0094 (8)0.0032 (10)
C70.0530 (10)0.0581 (14)0.0497 (10)0.0071 (11)0.0115 (8)0.0053 (10)
C80.0418 (9)0.0464 (12)0.0396 (9)0.0028 (8)0.0060 (7)0.0006 (9)
C90.0505 (10)0.0439 (11)0.0454 (10)0.0058 (9)0.0078 (8)0.0003 (9)
C100.0536 (10)0.0382 (10)0.0377 (8)0.0020 (9)0.0059 (7)0.0002 (8)
C110.0447 (9)0.0407 (11)0.0414 (9)0.0028 (8)0.0061 (7)0.0016 (8)
C120.0504 (10)0.0492 (13)0.0508 (10)0.0105 (10)0.0055 (8)0.0052 (9)
C130.0542 (10)0.0547 (12)0.0391 (9)0.0051 (10)0.0055 (7)0.0061 (10)
C140.0487 (9)0.0425 (11)0.0507 (10)0.0011 (9)0.0091 (8)0.0022 (10)
C150.0482 (10)0.0349 (10)0.0460 (9)0.0024 (9)0.0089 (7)0.0057 (9)
C160.0482 (10)0.0364 (10)0.0465 (9)0.0053 (8)0.0097 (8)0.0052 (8)
C170.0673 (12)0.0523 (14)0.0515 (11)0.0063 (11)0.0139 (9)0.0026 (10)
C180.0844 (15)0.0710 (17)0.0487 (11)0.0028 (15)0.0210 (10)0.0012 (12)
C190.0731 (14)0.0721 (17)0.0613 (13)0.0023 (13)0.0296 (11)0.0135 (13)
C200.0601 (12)0.0620 (16)0.0779 (15)0.0129 (12)0.0245 (10)0.0058 (13)
C210.0565 (10)0.0488 (12)0.0558 (10)0.0040 (10)0.0131 (8)0.0003 (10)
Geometric parameters (Å, º) top
O1—C81.356 (2)C8—C91.380 (3)
O1—C71.440 (3)C8—C131.397 (3)
O2—C101.346 (2)C9—C101.386 (3)
O2—H2''0.871 (18)C9—H90.9300
O3—C151.224 (3)C10—C111.407 (3)
N1—C141.271 (2)C11—C121.398 (3)
N1—N21.379 (2)C11—C141.447 (2)
N2—C151.350 (3)C12—C131.367 (3)
N2—H2'0.8500 (11)C12—H120.9300
C1—C61.372 (3)C13—H130.9300
C1—C21.383 (3)C14—H140.9300
C1—H10.9300C15—C161.485 (2)
C2—C31.349 (4)C16—C171.382 (3)
C2—H2A0.9300C16—C211.386 (3)
C3—C41.363 (4)C17—C181.375 (3)
C3—H30.9300C17—H170.9300
C4—C51.392 (3)C18—C191.365 (4)
C4—H40.9300C18—H180.9300
C5—C61.369 (4)C19—C201.376 (3)
C5—H50.9300C19—H190.9300
C6—C71.502 (2)C20—C211.382 (3)
C7—H7A0.9700C20—H200.9300
C7—H7B0.9700C21—H210.9300
C8—O1—C7117.87 (14)O2—C10—C9117.22 (18)
C10—O2—H2''104 (2)O2—C10—C11122.05 (16)
C14—N1—N2118.70 (17)C9—C10—C11120.73 (17)
C15—N2—N1116.64 (16)C12—C11—C10117.55 (16)
C15—N2—H2'125.7 (15)C12—C11—C14120.68 (18)
N1—N2—H2'116.2 (15)C10—C11—C14121.77 (17)
C6—C1—C2120.5 (2)C13—C12—C11121.99 (19)
C6—C1—H1119.8C13—C12—H12119.0
C2—C1—H1119.8C11—C12—H12119.0
C3—C2—C1120.2 (3)C12—C13—C8119.49 (17)
C3—C2—H2A119.9C12—C13—H13120.3
C1—C2—H2A119.9C8—C13—H13120.3
C2—C3—C4120.3 (2)N1—C14—C11119.8 (2)
C2—C3—H3119.9N1—C14—H14120.1
C4—C3—H3119.9C11—C14—H14120.1
C3—C4—C5120.0 (3)O3—C15—N2121.87 (17)
C3—C4—H4120.0O3—C15—C16121.75 (18)
C5—C4—H4120.0N2—C15—C16116.34 (18)
C6—C5—C4120.0 (3)C17—C16—C21119.04 (17)
C6—C5—H5120.0C17—C16—C15118.32 (18)
C4—C5—H5120.0C21—C16—C15122.54 (18)
C5—C6—C1119.1 (2)C18—C17—C16120.6 (2)
C5—C6—C7120.6 (2)C18—C17—H17119.7
C1—C6—C7120.4 (2)C16—C17—H17119.7
O1—C7—C6107.46 (16)C19—C18—C17120.2 (2)
O1—C7—H7A110.2C19—C18—H18119.9
C6—C7—H7A110.2C17—C18—H18119.9
O1—C7—H7B110.2C18—C19—C20120.06 (19)
C6—C7—H7B110.2C18—C19—H19120.0
H7A—C7—H7B108.5C20—C19—H19120.0
O1—C8—C9124.68 (17)C19—C20—C21120.2 (2)
O1—C8—C13115.18 (16)C19—C20—H20119.9
C9—C8—C13120.13 (16)C21—C20—H20119.9
C8—C9—C10120.04 (18)C20—C21—C16119.9 (2)
C8—C9—H9120.0C20—C21—H21120.1
C10—C9—H9120.0C16—C21—H21120.1
C14—N1—N2—C15164.71 (18)C10—C11—C12—C131.2 (3)
C6—C1—C2—C30.1 (4)C14—C11—C12—C13179.66 (19)
C1—C2—C3—C40.6 (5)C11—C12—C13—C81.9 (3)
C2—C3—C4—C50.3 (5)O1—C8—C13—C12178.99 (18)
C3—C4—C5—C60.7 (5)C9—C8—C13—C120.2 (3)
C4—C5—C6—C11.4 (4)N2—N1—C14—C11179.39 (16)
C4—C5—C6—C7178.8 (3)C12—C11—C14—N1170.89 (18)
C2—C1—C6—C51.0 (4)C10—C11—C14—N110.0 (3)
C2—C1—C6—C7179.1 (3)N1—N2—C15—O33.6 (3)
C8—O1—C7—C6175.83 (17)N1—N2—C15—C16178.67 (15)
C5—C6—C7—O190.4 (3)O3—C15—C16—C1728.2 (3)
C1—C6—C7—O189.8 (2)N2—C15—C16—C17154.05 (19)
C7—O1—C8—C94.4 (3)O3—C15—C16—C21148.1 (2)
C7—O1—C8—C13176.89 (17)N2—C15—C16—C2129.7 (3)
O1—C8—C9—C10176.51 (17)C21—C16—C17—C180.1 (3)
C13—C8—C9—C102.1 (3)C15—C16—C17—C18176.5 (2)
C8—C9—C10—O2177.42 (18)C16—C17—C18—C190.7 (4)
C8—C9—C10—C112.9 (3)C17—C18—C19—C200.6 (4)
O2—C10—C11—C12179.1 (2)C18—C19—C20—C210.1 (4)
C9—C10—C11—C121.2 (3)C19—C20—C21—C160.6 (4)
O2—C10—C11—C141.8 (3)C17—C16—C21—C200.5 (3)
C9—C10—C11—C14177.93 (18)C15—C16—C21—C20175.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.85 (1)2.09 (1)2.903 (2)160 (2)
O2—H2···N10.87 (2)1.79 (2)2.592 (2)152 (3)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC21H18N2O3
Mr346.37
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)10.8053 (6), 4.8952 (2), 16.3601 (10)
β (°) 95.813 (2)
V3)860.90 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.969, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
9033, 1705, 1593
Rint0.024
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.082, 1.12
No. of reflections1705
No. of parameters243
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.12, 0.14

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and DIAMOND (Brandenburg, 2010), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2'···O3i0.8500 (11)2.090 (8)2.903 (2)160 (2)
O2—H2''···N10.871 (18)1.79 (2)2.592 (2)152 (3)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors are grateful to the Sophisticated Analytical Instruments Facility, Cochin University of Science and Technology, Kochi-22, India, for providing the single-crystal X-ray diffraction data. PRR thanks the Council of Scientific and Industrial Research, New Delhi, India, for a Junior Research Fellowship.

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEmmanuel, J., Sithambaresan, M. & Kurup, M. R. P. (2011). Acta Cryst. E67, o3267.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLin, X.-S. & Sang, Y.-L. (2009). Acta Cryst. E65, o1650.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMangalam, N. A. & Kurup, M. R. P. (2011). Spectrochim. Acta Part A, 76, 22–28.  Google Scholar
First citationMohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatil, S. A., Naik, V. H., Kulkarni, A. D., Kamble, U., Bagihalli, G. B. & Badami, P. S. (2010). J. Coord. Chem. 63, 688–699.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y. H., Zhang, L., Liu, L., Guo, J. X., Wu, D. L., Xu, G. C., Wang, X. H. & Jia, D. Z. (2010). Inorg. Chim. Acta, 363, 289–293.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds