organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-[4-(4-Nitro­phen­­oxy)phen­yl]penta­n­amide

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan, bChemistry Department, Loughborough University, Loughborough LE11 3TU, England, and cNESCOM, PO Box 2216, Islamabad, Pakistan
*Correspondence e-mail: zareenakhter@yahoo.com

(Received 27 July 2012; accepted 24 August 2012; online 31 August 2012)

The asymmetric unit of the title compound, C17H18N2O4, contains two independent mol­ecules (A and B) differing principally in the conformations of the alkyl chains, anti for molecule A and gauche for molecule B. The dihedral angles between the aromatic rings are 82.51 (6) and 82.25 (6)° in the two molecules. In the crystal, amide–amide inter­actions (as N—H⋯O=C) results in distinct chains of A and B mol­ecules running parallel to the a-axis direction. C—H⋯O inter­actions also occur.

Related literature

For the related structures N-(4-(4-nitro­phen­oxy)phen­yl)pro­pionamide, 4-nitro-N-(4-(4-nitro­phen­oxy)phen­yl)benzamide and N-[4-(4-nitro­phen­oxy)phen­yl]acetamide see: Nigar et al. (2008[Nigar, A., Akhter, Z., Bolte, M., Siddiqi, H. M. & Hussain, R. (2008). Acta Cryst. E64, o2186.]), Butt et al. (2007[Butt, M. S., Akhter, Z., Bolte, M., Siddiqi, H. M. & Shamsi, E. (2007). Acta Cryst. E63, o476-o478.]) and Nigar et al. (2012[Nigar, A., Akhter, Z. & Tahir, M. N. (2012). Acta Cryst. E68, o2485.]), respectively.

[Scheme 1]

Experimental

Crystal data
  • C17H18N2O4

  • Mr = 314.33

  • Triclinic, [P \overline 1]

  • a = 4.9776 (5) Å

  • b = 10.1139 (10) Å

  • c = 30.572 (3) Å

  • α = 92.069 (2)°

  • β = 90.087 (2)°

  • γ = 91.060 (2)°

  • V = 1537.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 150 K

  • 0.33 × 0.32 × 0.13 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.968, Tmax = 0.987

  • 17614 measured reflections

  • 6018 independent reflections

  • 4664 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.135

  • S = 1.09

  • 6018 reflections

  • 415 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2A1⋯O4Ai 0.88 2.08 2.955 (2) 178
N2B—H2B1⋯O4Bi 0.88 2.05 2.929 (2) 174
C3A—H3A⋯O1Aii 0.95 2.49 3.341 (3) 150
C5A—H5A⋯O2Aiii 0.95 2.62 3.376 (3) 137
C3B—H3B⋯O1Biv 0.95 2.49 3.360 (3) 153
Symmetry codes: (i) x-1, y, z; (ii) -x, -y+2, -z+1; (iii) -x+1, -y+3, -z+1; (iv) -x-1, -y, -z.

Data collection: APEX2 (Bruker 1998[Bruker (1998). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker 1998[Bruker (1998). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The crystal structure of N-[4-(4-Nitrophenoxy)phenyl]acetamide (Nigar et al.2012) has been published and is related to that of the title compound, (Fig. 1).

There are two independent molecules in the asymmetric unit, differing primarily in the conformations of the alkyl chains (Fig. 1). The unsaturated sections of the molecules have quite similar orientations, with interplanar angles between the mean planes of the two aromatic rings of 82.51 (6)° for the molecule with 'A' labels and 82.25 (6)° for the molecule with 'B' labels.

Each molecule is linked to two crystallographically identical molecules via H-bonding involving the amide groups (N—H ···OC distances 2.956 (2) Å and 2.929 (2) Å for N2A···O4A and N2B···O4B respectively, both under symmetry operation x - 1, y, z). This results in separate H-bonded chains of 'A' and 'B' molecules running parallel to the a axis (Fig 2, Table 3).

The nitro groups are involved in weaker H-bonding to aromatic C—H groups. Each molecule 'A' makes four bonds with identical neighbours, linking the chains together (C3A—H···O1A 3.341 (3) Å under -x, 2 - y, 1 - z and C5A—H···O2A 3.376 (3) Å under 1 - x, 3 - y, 1 - z, Fig 3, Table 3). Molecule 'B' only forms one such interaction; C3B···O1B 3.360 (3) Å under -1 - x,-y,-z (Fig 4, Table 3).

Related literature top

For the related structures N-(4-(4-nitrophenoxy)phenyl)propionamide, 4-nitro-N-(4-(4-nitrophenoxy)phenyl)benzamide and N-[4-(4-nitrophenoxy)phenyl]acetamide see: Nigar et al. (2008), Butt et al. (2007) and Nigar et al. (2012), respectively.

Experimental top

Synthesis of N-[4-(4'-Nitrophenoxy)phenyl] pentanamide

A mixture of 2.50 g (25 mmol) 4-aminophenol, 3.46 g (25 mmol) anhydrous K2CO3 and 2.65 ml (25 mmol) 4-nitrofluorobenzene in 35 ml DMF was heated at 373 K for 18 h in an inert atmosphere. After cooling to room temperature, the reaction mixture was poured into 400 ml of water to yield a yellow solid. The product was filtered, dried, and then recrystallized from n-hexane (yield, 86%). In the second step, pentanoic acid and thionylchloride were refluxed in equimolar amounts for 30 min. The excessive amount of thionylchloride was rotary evaporated and pentanoylchloride obtained was reacted with 4-(4-nitrophenoxy) aniline, as prepared in the first step, in appropriate molar ratios. THF was used as solvent and 1 ml of triethylamine was also added for 1.0 g of 4-(4-nitrophenoxy) aniline. The reaction mixture was refluxed for 2 h under inert conditions and allowed to stand overnight at room temperature. The settled salt was filtered off and filtrate was evaporated to get the crude product, which was recrystallized from toluene (89% yield, m.p. 390 K)

Refinement top

C-bound H atoms were positioned geometrically in ideal distances (0.95 Å for aromatic H and 0.98, 0.99 Å for aliphatic H) and treated as riding on their parent atoms. N-Bound atoms were positioned in a similar fashion at 0.88 Å.

Computing details top

Data collection: APEX2 (Bruker 1998); cell refinement: SAINT (Bruker 1998); data reduction: SAINT (Bruker 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
Fig 1. Perspective view of the two independent molecules in the asymmetric unit. Thermal ellipsoids shown at the 50% probability level.

Fig 2. Packing diagram showing the NH ··· O C H-bonds. Carbon atoms coloured according to symmetry equivalence.

Fig 3. C—H···O interactions between 'A' molecules.

Fig 4. C—H···O interactions between 'B' molecules.
N-[4-(4-Nitrophenoxy)phenyl]pentanamide top
Crystal data top
C17H18N2O4Z = 4
Mr = 314.33F(000) = 664
Triclinic, P1Dx = 1.358 Mg m3
Hall symbol: -P 1Melting point: 390 K
a = 4.9776 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1139 (10) ÅCell parameters from 4085 reflections
c = 30.572 (3) Åθ = 2.4–25.3°
α = 92.069 (2)°µ = 0.10 mm1
β = 90.087 (2)°T = 150 K
γ = 91.060 (2)°Wedge, brown
V = 1537.8 (3) Å30.33 × 0.32 × 0.13 mm
Data collection top
Bruker APEXII CCD
diffractometer
6018 independent reflections
Radiation source: fine-focus sealed tube4664 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 26.0°, θmin = 0.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 66
Tmin = 0.968, Tmax = 0.987k = 1212
17614 measured reflectionsl = 3737
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0389P)2 + 1.2455P]
where P = (Fo2 + 2Fc2)/3
6018 reflections(Δ/σ)max < 0.001
415 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C17H18N2O4γ = 91.060 (2)°
Mr = 314.33V = 1537.8 (3) Å3
Triclinic, P1Z = 4
a = 4.9776 (5) ÅMo Kα radiation
b = 10.1139 (10) ŵ = 0.10 mm1
c = 30.572 (3) ÅT = 150 K
α = 92.069 (2)°0.33 × 0.32 × 0.13 mm
β = 90.087 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
6018 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
4664 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.987Rint = 0.033
17614 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.09Δρmax = 0.34 e Å3
6018 reflectionsΔρmin = 0.21 e Å3
415 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.6952 (5)1.1513 (2)0.41515 (8)0.0331 (5)
C2A0.5007 (5)1.0629 (2)0.42860 (8)0.0323 (5)
H2A0.47890.97890.41400.039*
C3A0.3375 (5)1.0977 (2)0.46368 (8)0.0330 (5)
H3A0.20371.03770.47360.040*
C4A0.3722 (5)1.2207 (2)0.48397 (7)0.0313 (5)
N1A0.1898 (4)1.2606 (2)0.51924 (7)0.0387 (5)
O1A0.0553 (4)1.17409 (19)0.53686 (6)0.0511 (5)
O2A0.1772 (4)1.37879 (18)0.52958 (6)0.0489 (5)
C5A0.5702 (5)1.3092 (2)0.47140 (8)0.0350 (5)
H5A0.59331.39260.48640.042*
C6A0.7335 (5)1.2738 (2)0.43667 (8)0.0357 (5)
H6A0.87131.33270.42750.043*
O3A0.8658 (3)1.12568 (18)0.38088 (6)0.0442 (5)
C7A0.7902 (5)1.0268 (2)0.34970 (8)0.0349 (5)
C8A0.5830 (5)1.0467 (2)0.32109 (8)0.0394 (6)
H8A0.47871.12420.32400.047*
C9A0.5272 (5)0.9532 (2)0.28806 (8)0.0360 (6)
H9A0.38320.96630.26830.043*
C10A0.6800 (4)0.8405 (2)0.28355 (7)0.0278 (5)
C11A0.8841 (5)0.8202 (2)0.31316 (8)0.0377 (6)
H11A0.98720.74220.31070.045*
C12A0.9385 (5)0.9137 (3)0.34648 (8)0.0417 (6)
H12A1.07770.89960.36700.050*
N2A0.6189 (4)0.74848 (19)0.24853 (6)0.0305 (4)
H2A10.44810.73210.24270.037*
C13A0.8018 (4)0.6841 (2)0.22349 (7)0.0295 (5)
O4A1.0444 (3)0.68820 (17)0.23109 (5)0.0367 (4)
C14A0.6836 (5)0.6108 (3)0.18369 (8)0.0380 (6)
H14A0.51920.56240.19260.046*
H14B0.63000.67630.16220.046*
C15A0.8712 (5)0.5141 (3)0.16170 (8)0.0371 (6)
H15A0.91360.44420.18230.044*
H15B1.04130.56090.15460.044*
C16A0.7546 (5)0.4497 (3)0.11993 (8)0.0393 (6)
H16A0.73000.51800.09800.047*
H16B0.57620.41000.12620.047*
C17A0.9380 (6)0.3430 (3)0.10128 (10)0.0523 (7)
H17A0.85800.30320.07450.078*
H17B0.96030.27460.12280.078*
H17C1.11370.38240.09450.078*
C1B0.1775 (5)0.1421 (2)0.09199 (8)0.0355 (5)
C2B0.0018 (5)0.0524 (2)0.07505 (8)0.0355 (5)
H2B0.00410.03550.08700.043*
C3B0.1649 (5)0.0917 (2)0.04060 (8)0.0367 (6)
H3B0.28680.03140.02870.044*
C4B0.1514 (5)0.2198 (2)0.02386 (8)0.0358 (5)
N1B0.3357 (5)0.2628 (2)0.01144 (7)0.0452 (5)
O1B0.4575 (5)0.1779 (2)0.03068 (7)0.0630 (6)
O2B0.3609 (4)0.3815 (2)0.02012 (7)0.0585 (6)
C5B0.0274 (5)0.3092 (2)0.03978 (8)0.0403 (6)
H5B0.03470.39660.02740.048*
C6B0.1945 (5)0.2697 (3)0.07381 (9)0.0417 (6)
H6B0.32100.32930.08490.050*
O3B0.3504 (4)0.11092 (19)0.12585 (6)0.0511 (5)
C7B0.2903 (5)0.0041 (2)0.15468 (8)0.0374 (6)
C8B0.0770 (5)0.0121 (3)0.18294 (8)0.0414 (6)
H8B0.04340.08610.18120.050*
C9B0.0393 (5)0.0892 (2)0.21400 (8)0.0364 (6)
H9B0.10910.08480.23340.044*
C10B0.2158 (4)0.1966 (2)0.21698 (7)0.0292 (5)
C11B0.4253 (5)0.2041 (3)0.18721 (8)0.0383 (6)
H11B0.54430.27870.18830.046*
C12B0.4618 (5)0.1036 (3)0.15602 (8)0.0429 (6)
H12B0.60500.10920.13560.051*
N2B0.1717 (4)0.29683 (19)0.24937 (6)0.0318 (4)
H2B10.00350.31390.25600.038*
C13B0.3637 (4)0.3693 (2)0.27129 (7)0.0313 (5)
O4B0.6048 (3)0.35562 (18)0.26473 (6)0.0424 (4)
C14B0.2633 (5)0.4669 (2)0.30584 (8)0.0359 (6)
H14C0.06540.47230.30360.043*
H14D0.34100.55570.30060.043*
C15B0.3385 (5)0.4267 (3)0.35172 (8)0.0417 (6)
H15C0.53550.41580.35330.050*
H15D0.25220.34010.35750.050*
C16B0.2540 (5)0.5274 (3)0.38710 (8)0.0402 (6)
H16C0.06040.54490.38340.048*
H16D0.27750.48820.41600.048*
C17B0.4077 (5)0.6579 (3)0.38696 (9)0.0447 (6)
H17D0.34050.71700.41040.067*
H17E0.38300.69880.35870.067*
H17F0.59920.64240.39170.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0290 (12)0.0373 (13)0.0328 (12)0.0016 (10)0.0005 (10)0.0023 (10)
C2A0.0350 (13)0.0281 (12)0.0333 (13)0.0004 (10)0.0023 (10)0.0051 (10)
C3A0.0340 (12)0.0312 (12)0.0338 (13)0.0013 (10)0.0010 (10)0.0006 (10)
C4A0.0317 (12)0.0334 (12)0.0287 (12)0.0056 (10)0.0030 (9)0.0021 (9)
N1A0.0404 (12)0.0429 (13)0.0325 (11)0.0060 (10)0.0006 (9)0.0043 (9)
O1A0.0585 (12)0.0512 (12)0.0433 (11)0.0046 (10)0.0158 (9)0.0016 (9)
O2A0.0591 (12)0.0395 (11)0.0473 (11)0.0092 (9)0.0072 (9)0.0122 (8)
C5A0.0384 (13)0.0292 (12)0.0369 (13)0.0012 (10)0.0039 (10)0.0056 (10)
C6A0.0335 (13)0.0324 (13)0.0406 (14)0.0040 (10)0.0011 (10)0.0041 (10)
O3A0.0358 (9)0.0478 (11)0.0471 (11)0.0099 (8)0.0101 (8)0.0188 (8)
C7A0.0294 (12)0.0403 (14)0.0340 (13)0.0053 (10)0.0063 (10)0.0085 (10)
C8A0.0432 (14)0.0351 (13)0.0399 (14)0.0108 (11)0.0033 (11)0.0010 (11)
C9A0.0318 (12)0.0428 (14)0.0338 (13)0.0086 (10)0.0025 (10)0.0028 (11)
C10A0.0234 (11)0.0339 (12)0.0260 (11)0.0025 (9)0.0020 (9)0.0001 (9)
C11A0.0344 (13)0.0391 (14)0.0392 (14)0.0100 (10)0.0067 (11)0.0070 (11)
C12A0.0309 (13)0.0523 (16)0.0410 (14)0.0042 (11)0.0082 (11)0.0110 (12)
N2A0.0191 (9)0.0385 (11)0.0336 (10)0.0009 (8)0.0017 (8)0.0033 (8)
C13A0.0227 (11)0.0336 (12)0.0321 (12)0.0008 (9)0.0020 (9)0.0016 (10)
O4A0.0223 (8)0.0474 (10)0.0398 (10)0.0009 (7)0.0026 (7)0.0088 (8)
C14A0.0256 (12)0.0470 (15)0.0408 (14)0.0009 (10)0.0061 (10)0.0076 (11)
C15A0.0294 (12)0.0443 (14)0.0371 (13)0.0013 (10)0.0028 (10)0.0035 (11)
C16A0.0329 (13)0.0474 (15)0.0368 (14)0.0040 (11)0.0045 (10)0.0050 (11)
C17A0.0418 (15)0.0628 (19)0.0507 (17)0.0022 (13)0.0084 (13)0.0196 (14)
C1B0.0318 (12)0.0384 (14)0.0361 (13)0.0053 (10)0.0003 (10)0.0036 (10)
C2B0.0369 (13)0.0302 (12)0.0391 (14)0.0046 (10)0.0012 (10)0.0042 (10)
C3B0.0386 (13)0.0372 (13)0.0343 (13)0.0054 (11)0.0003 (10)0.0006 (10)
C4B0.0372 (13)0.0385 (14)0.0312 (13)0.0057 (11)0.0029 (10)0.0001 (10)
N1B0.0473 (13)0.0493 (14)0.0383 (12)0.0052 (11)0.0008 (10)0.0044 (11)
O1B0.0697 (14)0.0609 (14)0.0582 (13)0.0056 (11)0.0255 (11)0.0036 (11)
O2B0.0713 (14)0.0471 (12)0.0557 (13)0.0152 (10)0.0069 (10)0.0106 (10)
C5B0.0498 (15)0.0301 (13)0.0405 (14)0.0019 (11)0.0043 (12)0.0044 (11)
C6B0.0457 (15)0.0366 (14)0.0429 (15)0.0117 (11)0.0014 (12)0.0033 (11)
O3B0.0468 (11)0.0528 (12)0.0528 (12)0.0211 (9)0.0167 (9)0.0187 (9)
C7B0.0359 (13)0.0403 (14)0.0360 (13)0.0123 (11)0.0075 (11)0.0065 (11)
C8B0.0425 (15)0.0413 (15)0.0406 (14)0.0049 (11)0.0045 (11)0.0050 (11)
C9B0.0326 (13)0.0442 (14)0.0323 (13)0.0020 (11)0.0025 (10)0.0030 (11)
C10B0.0245 (11)0.0353 (12)0.0280 (12)0.0071 (9)0.0026 (9)0.0021 (9)
C11B0.0311 (13)0.0444 (15)0.0388 (14)0.0041 (11)0.0050 (10)0.0057 (11)
C12B0.0301 (13)0.0611 (17)0.0366 (14)0.0025 (12)0.0051 (10)0.0111 (12)
N2B0.0216 (9)0.0440 (12)0.0297 (10)0.0067 (8)0.0025 (8)0.0014 (9)
C13B0.0259 (12)0.0376 (13)0.0304 (12)0.0052 (10)0.0011 (9)0.0004 (10)
O4B0.0221 (8)0.0595 (12)0.0445 (10)0.0046 (8)0.0008 (7)0.0129 (9)
C14B0.0298 (12)0.0402 (14)0.0378 (14)0.0096 (10)0.0015 (10)0.0035 (11)
C15B0.0467 (15)0.0408 (14)0.0382 (14)0.0114 (12)0.0052 (11)0.0019 (11)
C16B0.0427 (14)0.0446 (15)0.0337 (13)0.0106 (11)0.0067 (11)0.0003 (11)
C17B0.0429 (15)0.0489 (16)0.0418 (15)0.0079 (12)0.0005 (12)0.0061 (12)
Geometric parameters (Å, º) top
C1A—O3A1.370 (3)C1B—O3B1.369 (3)
C1A—C2A1.379 (3)C1B—C2B1.385 (3)
C1A—C6A1.391 (3)C1B—C6B1.390 (3)
C2A—C3A1.386 (3)C2B—C3B1.382 (3)
C2A—H2A0.9500C2B—H2B0.9500
C3A—C4A1.378 (3)C3B—C4B1.378 (3)
C3A—H3A0.9500C3B—H3B0.9500
C4A—C5A1.383 (3)C4B—C5B1.381 (3)
C4A—N1A1.461 (3)C4B—N1B1.464 (3)
N1A—O2A1.229 (3)N1B—O2B1.225 (3)
N1A—O1A1.232 (3)N1B—O1B1.227 (3)
C5A—C6A1.379 (3)C5B—C6B1.374 (4)
C5A—H5A0.9500C5B—H5B0.9500
C6A—H6A0.9500C6B—H6B0.9500
O3A—C7A1.403 (3)O3B—C7B1.406 (3)
C7A—C12A1.373 (3)C7B—C12B1.371 (4)
C7A—C8A1.373 (3)C7B—C8B1.373 (4)
C8A—C9A1.383 (3)C8B—C9B1.387 (4)
C8A—H8A0.9500C8B—H8B0.9500
C9A—C10A1.385 (3)C9B—C10B1.385 (3)
C9A—H9A0.9500C9B—H9B0.9500
C10A—C11A1.383 (3)C10B—C11B1.388 (3)
C10A—N2A1.422 (3)C10B—N2B1.412 (3)
C11A—C12A1.387 (3)C11B—C12B1.383 (3)
C11A—H11A0.9500C11B—H11B0.9500
C12A—H12A0.9500C12B—H12B0.9500
N2A—C13A1.352 (3)N2B—C13B1.355 (3)
N2A—H2A10.8800N2B—H2B10.8800
C13A—O4A1.229 (3)C13B—O4B1.227 (3)
C13A—C14A1.514 (3)C13B—C14B1.512 (3)
C14A—C15A1.506 (3)C14B—C15B1.522 (3)
C14A—H14A0.9900C14B—H14C0.9900
C14A—H14B0.9900C14B—H14D0.9900
C15A—C16A1.522 (3)C15B—C16B1.524 (3)
C15A—H15A0.9900C15B—H15C0.9900
C15A—H15B0.9900C15B—H15D0.9900
C16A—C17A1.522 (4)C16B—C17B1.513 (4)
C16A—H16A0.9900C16B—H16C0.9900
C16A—H16B0.9900C16B—H16D0.9900
C17A—H17A0.9800C17B—H17D0.9800
C17A—H17B0.9800C17B—H17E0.9800
C17A—H17C0.9800C17B—H17F0.9800
O3A—C1A—C2A123.5 (2)O3B—C1B—C2B123.2 (2)
O3A—C1A—C6A115.3 (2)O3B—C1B—C6B116.0 (2)
C2A—C1A—C6A121.2 (2)C2B—C1B—C6B120.8 (2)
C1A—C2A—C3A119.4 (2)C3B—C2B—C1B119.5 (2)
C1A—C2A—H2A120.3C3B—C2B—H2B120.2
C3A—C2A—H2A120.3C1B—C2B—H2B120.2
C4A—C3A—C2A119.0 (2)C4B—C3B—C2B118.9 (2)
C4A—C3A—H3A120.5C4B—C3B—H3B120.5
C2A—C3A—H3A120.5C2B—C3B—H3B120.5
C3A—C4A—C5A122.2 (2)C3B—C4B—C5B122.1 (2)
C3A—C4A—N1A119.0 (2)C3B—C4B—N1B118.8 (2)
C5A—C4A—N1A118.8 (2)C5B—C4B—N1B119.1 (2)
O2A—N1A—O1A123.4 (2)O2B—N1B—O1B123.5 (2)
O2A—N1A—C4A118.3 (2)O2B—N1B—C4B118.3 (2)
O1A—N1A—C4A118.4 (2)O1B—N1B—C4B118.2 (2)
C6A—C5A—C4A118.6 (2)C6B—C5B—C4B118.9 (2)
C6A—C5A—H5A120.7C6B—C5B—H5B120.5
C4A—C5A—H5A120.7C4B—C5B—H5B120.5
C5A—C6A—C1A119.6 (2)C5B—C6B—C1B119.7 (2)
C5A—C6A—H6A120.2C5B—C6B—H6B120.1
C1A—C6A—H6A120.2C1B—C6B—H6B120.1
C1A—O3A—C7A118.14 (18)C1B—O3B—C7B118.86 (18)
C12A—C7A—C8A120.8 (2)C12B—C7B—C8B121.1 (2)
C12A—C7A—O3A118.7 (2)C12B—C7B—O3B118.1 (2)
C8A—C7A—O3A120.4 (2)C8B—C7B—O3B120.6 (2)
C7A—C8A—C9A119.6 (2)C7B—C8B—C9B119.2 (2)
C7A—C8A—H8A120.2C7B—C8B—H8B120.4
C9A—C8A—H8A120.2C9B—C8B—H8B120.4
C8A—C9A—C10A120.4 (2)C10B—C9B—C8B120.7 (2)
C8A—C9A—H9A119.8C10B—C9B—H9B119.7
C10A—C9A—H9A119.8C8B—C9B—H9B119.7
C11A—C10A—C9A119.5 (2)C9B—C10B—C11B119.0 (2)
C11A—C10A—N2A122.2 (2)C9B—C10B—N2B118.8 (2)
C9A—C10A—N2A118.4 (2)C11B—C10B—N2B122.2 (2)
C10A—C11A—C12A120.1 (2)C12B—C11B—C10B120.3 (2)
C10A—C11A—H11A120.0C12B—C11B—H11B119.8
C12A—C11A—H11A120.0C10B—C11B—H11B119.8
C7A—C12A—C11A119.7 (2)C7B—C12B—C11B119.7 (2)
C7A—C12A—H12A120.1C7B—C12B—H12B120.2
C11A—C12A—H12A120.1C11B—C12B—H12B120.2
C13A—N2A—C10A125.31 (18)C13B—N2B—C10B126.19 (18)
C13A—N2A—H2A1117.3C13B—N2B—H2B1116.9
C10A—N2A—H2A1117.3C10B—N2B—H2B1116.9
O4A—C13A—N2A123.5 (2)O4B—C13B—N2B123.0 (2)
O4A—C13A—C14A122.4 (2)O4B—C13B—C14B121.2 (2)
N2A—C13A—C14A114.11 (19)N2B—C13B—C14B115.74 (19)
C15A—C14A—C13A114.24 (19)C13B—C14B—C15B111.66 (19)
C15A—C14A—H14A108.7C13B—C14B—H14C109.3
C13A—C14A—H14A108.7C15B—C14B—H14C109.3
C15A—C14A—H14B108.7C13B—C14B—H14D109.3
C13A—C14A—H14B108.7C15B—C14B—H14D109.3
H14A—C14A—H14B107.6H14C—C14B—H14D107.9
C14A—C15A—C16A113.0 (2)C14B—C15B—C16B112.8 (2)
C14A—C15A—H15A109.0C14B—C15B—H15C109.0
C16A—C15A—H15A109.0C16B—C15B—H15C109.0
C14A—C15A—H15B109.0C14B—C15B—H15D109.0
C16A—C15A—H15B109.0C16B—C15B—H15D109.0
H15A—C15A—H15B107.8H15C—C15B—H15D107.8
C15A—C16A—C17A111.2 (2)C17B—C16B—C15B114.6 (2)
C15A—C16A—H16A109.4C17B—C16B—H16C108.6
C17A—C16A—H16A109.4C15B—C16B—H16C108.6
C15A—C16A—H16B109.4C17B—C16B—H16D108.6
C17A—C16A—H16B109.4C15B—C16B—H16D108.6
H16A—C16A—H16B108.0H16C—C16B—H16D107.6
C16A—C17A—H17A109.5C16B—C17B—H17D109.5
C16A—C17A—H17B109.5C16B—C17B—H17E109.5
H17A—C17A—H17B109.5H17D—C17B—H17E109.5
C16A—C17A—H17C109.5C16B—C17B—H17F109.5
H17A—C17A—H17C109.5H17D—C17B—H17F109.5
H17B—C17A—H17C109.5H17E—C17B—H17F109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2A1···O4Ai0.882.082.955 (2)178
N2B—H2B1···O4Bi0.882.052.929 (2)174
C3A—H3A···O1Aii0.952.493.341 (3)150
C5A—H5A···O2Aiii0.952.623.376 (3)137
C3B—H3B···O1Biv0.952.493.360 (3)153
Symmetry codes: (i) x1, y, z; (ii) x, y+2, z+1; (iii) x+1, y+3, z+1; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formulaC17H18N2O4
Mr314.33
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)4.9776 (5), 10.1139 (10), 30.572 (3)
α, β, γ (°)92.069 (2), 90.087 (2), 91.060 (2)
V3)1537.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.33 × 0.32 × 0.13
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.968, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
17614, 6018, 4664
Rint0.033
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.135, 1.09
No. of reflections6018
No. of parameters415
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.21

Computer programs: APEX2 (Bruker 1998), SAINT (Bruker 1998), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), SHELXTL (Sheldrick, 2008b) and Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2A1···O4Ai0.882.082.955 (2)178
N2B—H2B1···O4Bi0.882.052.929 (2)174
C3A—H3A···O1Aii0.952.493.341 (3)150
C5A—H5A···O2Aiii0.952.623.376 (3)137
C3B—H3B···O1Biv0.952.493.360 (3)153
Symmetry codes: (i) x1, y, z; (ii) x, y+2, z+1; (iii) x+1, y+3, z+1; (iv) x1, y, z.
 

Acknowledgements

The authors are grateful to the Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan, and the Chemistry Department, Loughborough University, Loughborough, England, for providing laboratory and analytical facilities.

References

First citationBruker (1998). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButt, M. S., Akhter, Z., Bolte, M., Siddiqi, H. M. & Shamsi, E. (2007). Acta Cryst. E63, o476–o478.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNigar, A., Akhter, Z., Bolte, M., Siddiqi, H. M. & Hussain, R. (2008). Acta Cryst. E64, o2186.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNigar, A., Akhter, Z. & Tahir, M. N. (2012). Acta Cryst. E68, o2485.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds