organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 3,3′-[(4,5-di­cyano-1,2-phenyl­ene)bis­­(­­oxy)]dibenzoate

aMarine College, Shandong University at Weihai, Weihai 264209, People's Republic of China
*Correspondence e-mail: ming_bai@sdu.edu.cn

(Received 13 June 2012; accepted 17 June 2012; online 1 August 2012)

In the title compound, C24H16N2O6, the dihedral angles between the central 4,5-dicyano-1,2-phenyl­ene unit [maximum deviation from planarity = 0.014 (4) Å] and the pendant benzene rings are 73.62 (5) and 84.08 (6)°.

Related literature

For background to the properties and applications of phthalocyanines, see: Jiang & Ng (2009[Jiang, J. & Ng, D. K. P. (2009). Acc. Chem. Res. 42, 79-88.]); Wang et al. (2011[Wang, H., Qian, K., Wang, K., Bian, Y., Jiang, J. & Gao, S. (2011). Chem. Commun. 47, 9624-9626.]). For the synthesis, see Wang et al. (2009[Wang, H., Zhang, D., Sun, D., Chen, Y., Zhang, L. F., Ni, Z. H., Tian, L. & Jiang, J. (2009). Cryst. Growth Des. 9, 5273-5282.]).

[Scheme 1]

Experimental

Crystal data
  • C24H16N2O6

  • Mr = 428.39

  • Triclinic, [P \overline 1]

  • a = 10.1092 (11) Å

  • b = 10.3408 (11) Å

  • c = 10.8190 (14) Å

  • α = 82.284 (10)°

  • β = 85.991 (10)°

  • γ = 64.721 (11)°

  • V = 1013.3 (2) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.86 mm−1

  • T = 293 K

  • 0.15 × 0.11 × 0.08 mm

Data collection
  • Agilent Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technolgies, Yanton, England.]) Tmin = 0.882, Tmax = 0.935

  • 6668 measured reflections

  • 3484 independent reflections

  • 2790 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.119

  • S = 1.07

  • 3484 reflections

  • 292 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technolgies, Yanton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Phthalocyanines are a class of dye and pigments with a wide range of applications. Their macrocyclic basic unit contain four isoindole, which can complex with a range of metal ions. Large rare earth metal ions can bring together these tetrapyrrole derivatives to form sandwich-type double- and triple-decker complexes (Jiang et al., 2009). Depending on the metal centers and the nature of the macrocyclic ligands, these compounds exhibit tunable spectroscopic, electronic, and redox properties, and different extents of intramolecular π-π interactions. Some of the properties of the sandwich-type complexes are unique and enable them to be used as advanced materials for various applications (Wang et al., 2011). As an initial extension of our work on the substituent effect on the phthalocyanine properties, the title compound, as a precursor to synthesize phthalocyanine, was synthesized and characterized by X-ray diffraction, as shown in Fig. 1.

The compound (I) crystallizes in the triclinic system with only two molecule per unit cell, contains one 4,5-dicyano-1,2-phenylene C8H2N2 as main framework and two 3-(methoxycarbonyl)phenolate C8H7O3 substituents, and the C8H2N2 framework is essentially flat, with the maximum deviation from the least-squares mean plane being 0.014 (4) Å. The dihedral angels between the C8H2N2 unit and two benzene planes 3-(methoxycarbonyl)phenolate substituents are 73.62 (5) and 84.08 (6)°, respectively. As shown in Table 1, the C—C and C—O bond lengths within C8H2N2 framework are not clear distinction, indicating the strongly delocalized π-system nature of the 4,5-dicyano-1,2-phenylene framework.

Related literature top

For background to the properties and applications of phthalocyanines, see: Jiang & Ng (2009); Wang et al. (2011). For the synthesis, see Wang et al. (2009).

Experimental top

On The basis of report lately(Wang et al., 2009), to a solution of methyl 3-hydroxybenzoate (3.04 g, 0.02 mol) and anhydrous Na2CO3 (4.20 g, 0.02 mol) in DMF(25 ml) stirred for 30 min, 4,5-dichlorophthalonitrile (0.98 g, 0.01 mol) was added. The resulting mixture was stirred at 60 oC for 48 h on the basis of TLC monitored. Then the mixture was poured into water (100 ml), and a slightly yellow solid was yielded and isolated by filtration. The crude product was dried in air, yielding dimethyl 3,3'-((4,5-dicyano-1,2-phenylene)bis(oxy))dibenzoate (2.08 g). The solid mixture was chromatographed on a silica gel column using CH2Cl3/hexane (1:1) as eluent. Repeated chromatography followed by recrystallization from CH2Cl3 and hexane gave the target compound as colorless blocks. Yield:1.98 g, 46%.

Refinement top

All H atoms were placed in geometrically idealized positions and treated as riding on their parent atoms with C—H = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic atoms and C—H = 0.96 Å, Uiso = 1.5Ueq (C) for methyl atoms.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. Figure 2. A view of supramolecular configuration of (I).
Dimethyl 3,3'-[(4,5-dicyano-1,2-phenylene)bis(oxy)]dibenzoate top
Crystal data top
C24H16N2O6Z = 2
Mr = 428.39F(000) = 444
Triclinic, P1Dx = 1.404 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 10.1092 (11) ÅCell parameters from 3269 reflections
b = 10.3408 (11) Åθ = 2.1–64.7°
c = 10.8190 (14) ŵ = 0.86 mm1
α = 82.284 (10)°T = 293 K
β = 85.991 (10)°Block, colorless
γ = 64.721 (11)°0.15 × 0.11 × 0.08 mm
V = 1013.3 (2) Å3
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
3484 independent reflections
Radiation source: fine-focus sealed tube2790 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 0 pixels mm-1θmax = 66.0°, θmin = 4.1°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 912
Tmin = 0.882, Tmax = 0.935l = 912
6668 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.063P)2 + 0.0632P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.010
3484 reflectionsΔρmax = 0.21 e Å3
292 parametersΔρmin = 0.20 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0036 (6)
Crystal data top
C24H16N2O6γ = 64.721 (11)°
Mr = 428.39V = 1013.3 (2) Å3
Triclinic, P1Z = 2
a = 10.1092 (11) ÅCu Kα radiation
b = 10.3408 (11) ŵ = 0.86 mm1
c = 10.8190 (14) ÅT = 293 K
α = 82.284 (10)°0.15 × 0.11 × 0.08 mm
β = 85.991 (10)°
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
3484 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2790 reflections with I > 2σ(I)
Tmin = 0.882, Tmax = 0.935Rint = 0.019
6668 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.119H-atom parameters constrained
S = 1.07Δρmax = 0.21 e Å3
3484 reflectionsΔρmin = 0.20 e Å3
292 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.35.19 (release 27-10-2011 CrysAlis171 .NET) (compiled Oct 27 2011,15:02:11) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.36679 (12)0.87260 (13)0.45190 (11)0.0500 (3)
O20.53609 (14)0.59249 (13)0.39290 (10)0.0547 (3)
O30.2830 (2)0.7221 (2)0.11360 (13)0.0933 (6)
O40.26548 (15)0.56809 (16)0.04354 (12)0.0648 (4)
O50.01163 (14)0.88074 (16)0.18060 (12)0.0635 (4)
O60.19904 (13)0.89259 (17)0.30884 (15)0.0738 (4)
N11.0057 (2)0.4624 (2)0.7376 (2)0.0809 (6)
N20.7608 (2)0.8509 (2)0.83423 (15)0.0723 (5)
C10.75592 (17)0.61523 (18)0.63383 (14)0.0447 (4)
C20.66927 (17)0.75363 (18)0.66704 (13)0.0430 (4)
C30.53669 (17)0.83798 (18)0.60837 (14)0.0450 (4)
H30.47780.92890.63150.054*
C40.49313 (17)0.78577 (18)0.51556 (14)0.0432 (4)
C50.57990 (18)0.64856 (18)0.48157 (14)0.0449 (4)
C60.71024 (19)0.56367 (18)0.54090 (15)0.0479 (4)
H60.76750.47200.51870.058*
C70.51505 (17)0.66227 (18)0.27123 (14)0.0449 (4)
C80.57881 (19)0.7533 (2)0.22567 (16)0.0514 (4)
H80.63740.77280.27610.062*
C90.5536 (2)0.8156 (2)0.10261 (17)0.0586 (5)
H90.59480.87830.07060.070*
C100.4682 (2)0.7854 (2)0.02736 (16)0.0568 (5)
H100.45230.82750.05500.068*
C110.40625 (18)0.69222 (19)0.07461 (15)0.0482 (4)
C120.43022 (18)0.62997 (18)0.19734 (15)0.0469 (4)
H120.38940.56690.22960.056*
C130.24755 (16)0.83783 (17)0.47464 (14)0.0416 (4)
C140.21672 (18)0.78724 (18)0.59275 (15)0.0491 (4)
H140.28010.76670.65830.059*
C150.0898 (2)0.7680 (2)0.61111 (17)0.0587 (5)
H150.06710.73390.68990.070*
C160.00390 (19)0.7989 (2)0.51367 (18)0.0575 (5)
H160.09050.78790.52770.069*
C170.02986 (17)0.84627 (18)0.39509 (16)0.0469 (4)
C180.15724 (17)0.86604 (17)0.37489 (15)0.0429 (4)
H180.18150.89770.29570.051*
C190.71881 (18)0.8084 (2)0.76095 (15)0.0500 (4)
C200.8951 (2)0.5287 (2)0.69212 (18)0.0556 (4)
C210.07390 (18)0.87628 (19)0.29280 (18)0.0537 (4)
C220.3129 (2)0.6638 (2)0.00915 (16)0.0563 (5)
C230.1746 (2)0.5351 (3)0.0331 (2)0.0756 (6)
H23A0.08140.61650.04460.113*
H23B0.16050.45330.00730.113*
H23C0.22150.51370.11280.113*
C240.1000 (3)0.8966 (3)0.0748 (2)0.0795 (7)
H24A0.13240.82100.08420.119*
H24B0.04280.89130.00060.119*
H24C0.18340.98820.07060.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0467 (6)0.0577 (7)0.0502 (6)0.0286 (6)0.0169 (5)0.0096 (5)
O20.0801 (9)0.0585 (7)0.0403 (6)0.0430 (7)0.0184 (5)0.0024 (5)
O30.1357 (15)0.1149 (14)0.0484 (8)0.0717 (12)0.0370 (9)0.0116 (8)
O40.0720 (9)0.0846 (10)0.0503 (7)0.0426 (8)0.0150 (6)0.0085 (7)
O50.0553 (7)0.0812 (9)0.0595 (8)0.0331 (7)0.0194 (6)0.0020 (6)
O60.0421 (7)0.0856 (10)0.0996 (11)0.0272 (7)0.0076 (7)0.0257 (8)
N10.0627 (11)0.0727 (12)0.1003 (14)0.0196 (9)0.0356 (10)0.0000 (10)
N20.0790 (12)0.0964 (14)0.0541 (9)0.0447 (11)0.0119 (8)0.0180 (9)
C10.0451 (9)0.0530 (9)0.0404 (8)0.0258 (8)0.0071 (6)0.0011 (7)
C20.0454 (8)0.0566 (9)0.0331 (7)0.0273 (7)0.0041 (6)0.0034 (6)
C30.0462 (9)0.0517 (9)0.0400 (8)0.0233 (7)0.0017 (6)0.0052 (7)
C40.0443 (8)0.0520 (9)0.0374 (7)0.0257 (7)0.0096 (6)0.0040 (6)
C50.0548 (9)0.0540 (9)0.0363 (8)0.0332 (8)0.0091 (7)0.0003 (7)
C60.0546 (10)0.0472 (9)0.0444 (9)0.0230 (8)0.0073 (7)0.0047 (7)
C70.0479 (9)0.0506 (9)0.0374 (8)0.0214 (7)0.0064 (6)0.0035 (7)
C80.0511 (9)0.0613 (10)0.0504 (9)0.0318 (8)0.0033 (7)0.0063 (8)
C90.0630 (11)0.0674 (12)0.0525 (10)0.0370 (10)0.0042 (8)0.0002 (8)
C100.0604 (11)0.0681 (12)0.0402 (9)0.0276 (9)0.0014 (7)0.0012 (8)
C110.0484 (9)0.0570 (10)0.0386 (8)0.0209 (8)0.0031 (7)0.0067 (7)
C120.0512 (9)0.0541 (9)0.0403 (8)0.0265 (8)0.0048 (7)0.0050 (7)
C130.0391 (8)0.0427 (8)0.0440 (8)0.0178 (7)0.0048 (6)0.0047 (6)
C140.0530 (9)0.0520 (10)0.0395 (8)0.0195 (8)0.0034 (7)0.0040 (7)
C150.0596 (11)0.0651 (11)0.0501 (10)0.0279 (9)0.0105 (8)0.0031 (8)
C160.0458 (9)0.0620 (11)0.0661 (11)0.0254 (9)0.0077 (8)0.0076 (9)
C170.0407 (8)0.0447 (9)0.0557 (10)0.0169 (7)0.0034 (7)0.0094 (7)
C180.0418 (8)0.0459 (8)0.0423 (8)0.0199 (7)0.0046 (6)0.0030 (6)
C190.0508 (9)0.0649 (11)0.0396 (8)0.0286 (9)0.0041 (7)0.0064 (7)
C200.0548 (11)0.0584 (11)0.0580 (10)0.0272 (9)0.0146 (8)0.0024 (8)
C210.0429 (9)0.0481 (9)0.0723 (12)0.0185 (8)0.0101 (8)0.0124 (8)
C220.0604 (11)0.0652 (11)0.0419 (9)0.0232 (9)0.0091 (8)0.0087 (8)
C230.0767 (14)0.0902 (16)0.0725 (13)0.0414 (13)0.0213 (11)0.0192 (12)
C240.0740 (14)0.0946 (17)0.0736 (14)0.0367 (13)0.0357 (11)0.0003 (12)
Geometric parameters (Å, º) top
O1—C41.3746 (19)C8—H80.9300
O1—C131.3956 (19)C9—C101.379 (3)
O2—C51.3714 (19)C9—H90.9300
O2—C71.3970 (19)C10—C111.386 (3)
O3—C221.200 (2)C10—H100.9300
O4—C221.323 (2)C11—C121.385 (2)
O4—C231.449 (2)C11—C221.491 (2)
O5—C211.332 (2)C12—H120.9300
O5—C241.450 (2)C13—C141.381 (2)
O6—C211.206 (2)C13—C181.382 (2)
N1—C201.138 (2)C14—C151.378 (3)
N2—C191.141 (2)C14—H140.9300
C1—C61.388 (2)C15—C161.379 (3)
C1—C21.403 (2)C15—H150.9300
C1—C201.440 (2)C16—C171.384 (3)
C2—C31.390 (2)C16—H160.9300
C2—C191.440 (2)C17—C181.386 (2)
C3—C41.380 (2)C17—C211.488 (2)
C3—H30.9300C18—H180.9300
C4—C51.396 (2)C23—H23A0.9600
C5—C61.378 (2)C23—H23B0.9600
C6—H60.9300C23—H23C0.9600
C7—C81.376 (2)C24—H24A0.9600
C7—C121.378 (2)C24—H24B0.9600
C8—C91.389 (3)C24—H24C0.9600
C4—O1—C13117.31 (12)C11—C12—H12120.3
C5—O2—C7118.67 (13)C14—C13—C18122.10 (15)
C22—O4—C23115.98 (16)C14—C13—O1121.36 (14)
C21—O5—C24116.20 (16)C18—C13—O1116.39 (13)
C6—C1—C2119.92 (15)C15—C14—C13118.36 (16)
C6—C1—C20119.81 (16)C15—C14—H14120.8
C2—C1—C20120.21 (15)C13—C14—H14120.8
C3—C2—C1119.98 (14)C14—C15—C16120.56 (16)
C3—C2—C19120.20 (15)C14—C15—H15119.7
C1—C2—C19119.82 (15)C16—C15—H15119.7
C4—C3—C2119.47 (16)C15—C16—C17120.55 (17)
C4—C3—H3120.3C15—C16—H16119.7
C2—C3—H3120.3C17—C16—H16119.7
O1—C4—C3119.52 (15)C16—C17—C18119.65 (16)
O1—C4—C5119.78 (14)C16—C17—C21118.46 (16)
C3—C4—C5120.62 (15)C18—C17—C21121.89 (16)
O2—C5—C6118.30 (15)C13—C18—C17118.74 (15)
O2—C5—C4121.55 (15)C13—C18—H18120.6
C6—C5—C4120.09 (15)C17—C18—H18120.6
C5—C6—C1119.90 (16)N2—C19—C2178.62 (18)
C5—C6—H6120.0N1—C20—C1178.7 (2)
C1—C6—H6120.0O6—C21—O5123.65 (17)
C8—C7—C12121.66 (15)O6—C21—C17124.32 (18)
C8—C7—O2122.68 (14)O5—C21—C17112.02 (14)
C12—C7—O2115.61 (15)O3—C22—O4123.13 (18)
C7—C8—C9118.44 (16)O3—C22—C11123.71 (19)
C7—C8—H8120.8O4—C22—C11113.16 (15)
C9—C8—H8120.8O4—C23—H23A109.5
C10—C9—C8120.78 (18)O4—C23—H23B109.5
C10—C9—H9119.6H23A—C23—H23B109.5
C8—C9—H9119.6O4—C23—H23C109.5
C9—C10—C11119.90 (16)H23A—C23—H23C109.5
C9—C10—H10120.0H23B—C23—H23C109.5
C11—C10—H10120.0O5—C24—H24A109.5
C12—C11—C10119.81 (16)O5—C24—H24B109.5
C12—C11—C22121.87 (16)H24A—C24—H24B109.5
C10—C11—C22118.31 (16)O5—C24—H24C109.5
C7—C12—C11119.39 (16)H24A—C24—H24C109.5
C7—C12—H12120.3H24B—C24—H24C109.5

Experimental details

Crystal data
Chemical formulaC24H16N2O6
Mr428.39
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.1092 (11), 10.3408 (11), 10.8190 (14)
α, β, γ (°)82.284 (10), 85.991 (10), 64.721 (11)
V3)1013.3 (2)
Z2
Radiation typeCu Kα
µ (mm1)0.86
Crystal size (mm)0.15 × 0.11 × 0.08
Data collection
DiffractometerAgilent Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.882, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
6668, 3484, 2790
Rint0.019
(sin θ/λ)max1)0.593
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.119, 1.07
No. of reflections3484
No. of parameters292
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.20

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

 

Acknowledgements

Financial support from the National Natural Science Foundation of China, grant No. 21001069, is acknowledged.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technolgies, Yanton, England.  Google Scholar
First citationJiang, J. & Ng, D. K. P. (2009). Acc. Chem. Res. 42, 79–88.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H., Qian, K., Wang, K., Bian, Y., Jiang, J. & Gao, S. (2011). Chem. Commun. 47, 9624–9626.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, H., Zhang, D., Sun, D., Chen, Y., Zhang, L. F., Ni, Z. H., Tian, L. & Jiang, J. (2009). Cryst. Growth Des. 9, 5273–5282.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds