metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dimorpholinium tetra­chlorido­cobaltate(II)

aSchool of Biology and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
*Correspondence e-mail: clz1977@sina.com

(Received 26 July 2012; accepted 15 August 2012; online 23 August 2012)

In the title mol­ecular salt, (C4H10NO)2[CoCl4], the morpholinium cations adopt chair conformations and the tetra­chloridocobaltate(II) anion is significantly distorted from regular tetra­hedral geometry [Cl—Co—Cl = 102.183 (19)–117.59 (2)°]. The Co—Cl bond lengths for the chloride ions not accepting hydrogen bonds are significantly shorter than those for the chloride ions accepting such bonds. In the crystal, the components are linked by N—H⋯O and N—H⋯Cl and bifurcated N—H⋯(O,Cl) hydrogen bonds to generate (100) sheets.

Related literature

For a phase transition in morpholinium tetra­fluoridoborate, see: Szklarz et al. (2009[Szklarz, P., Owczarek, M., Bator, G., Lis, T., Gatner, K. & Jakubas, R. (2009). J. Mol. Struct. 929, 48.]); Owczarek et al. (2008[Owczarek, M., Szklarz, P., Jakubas, R. & Lis, T. (2008). Acta Cryst. E64, o667.]). For the structure of dimorpholinium penta­chloridoanti­monate(III), see: Chen (2009[Chen, L. Z. (2009). Acta Cryst. E65, m689.]).

[Scheme 1]

Experimental

Crystal data
  • (C4H10NO)2[CoCl4]

  • Mr = 376.99

  • Monoclinic, P 21 /c

  • a = 6.5952 (13) Å

  • b = 13.696 (3) Å

  • c = 17.039 (3) Å

  • β = 92.930 (2)°

  • V = 1537.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.80 mm−1

  • T = 291 K

  • 0.26 × 0.12 × 0.08 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.90, Tmax = 1.00

  • 11708 measured reflections

  • 2997 independent reflections

  • 2761 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.074

  • S = 1.07

  • 2997 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected bond lengths (Å)

Co1—Cl1 2.3029 (6)
Co1—Cl2 2.2720 (6)
Co1—Cl3 2.2455 (6)
Co1—Cl4 2.2811 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯Cl1 0.90 2.39 3.1819 (15) 148
N1—H1D⋯O2i 0.90 1.97 2.8294 (19) 160
N2—H2C⋯O1ii 0.90 2.47 3.0577 (18) 123
N2—H2C⋯Cl4iii 0.90 2.57 3.3322 (15) 143
N2—H2D⋯Cl1iv 0.90 2.43 3.3003 (15) 164
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x+1, y-1, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Related literature top

For a phase transition in morpholinium tetrafluoridoborate, see: Szklarz et al. (2009); Owczarek et al. (2008). For the structure of dimorpholinium pentachloridoantimonate(III), see: Chen (2009).

Experimental top

CoCl2 (2.37 g, 10 mmol), morpholine (1.01 g, 10 mmol) and 20% aqueous HCl in a molar ratio of 1:1:1 were mixed and dissolved in sufficient water by heating to 353 K forming a clear solution. The reaction mixture was cooled slowly to room temperature, blue blocks of the title compound were formed, collected and washed with dilute aqueous HCl.

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.97 Å and N—H = 0.90 Å, and refined using a riding model, with Uiso(H)=1.2Ueq(C, N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing viewed along the a axis. Hydrogen bonds are drawn as dashed lines
Dimorpholinium tetrachloridocobaltate(II) top
Crystal data top
(C4H10NO)2[CoCl4]F(000) = 772
Mr = 376.99Dx = 1.629 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2761 reflections
a = 6.5952 (13) Åθ = 2.5–26.0°
b = 13.696 (3) ŵ = 1.80 mm1
c = 17.039 (3) ÅT = 291 K
β = 92.930 (2)°Block, blue
V = 1537.1 (5) Å30.26 × 0.12 × 0.08 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
2997 independent reflections
Radiation source: fine-focus sealed tube2761 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 13.66612 pixels mm-1θmax = 26.0°, θmin = 1.9°
ω scansh = 78
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1616
Tmin = 0.90, Tmax = 1.00l = 2020
11708 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.055P)2 + 0.0459P]
where P = (Fo2 + 2Fc2)/3
2997 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
(C4H10NO)2[CoCl4]V = 1537.1 (5) Å3
Mr = 376.99Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.5952 (13) ŵ = 1.80 mm1
b = 13.696 (3) ÅT = 291 K
c = 17.039 (3) Å0.26 × 0.12 × 0.08 mm
β = 92.930 (2)°
Data collection top
Rigaku SCXmini
diffractometer
2997 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2761 reflections with I > 2σ(I)
Tmin = 0.90, Tmax = 1.00Rint = 0.019
11708 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 1.07Δρmax = 0.25 e Å3
2997 reflectionsΔρmin = 0.42 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1713 (3)0.61037 (13)0.55358 (11)0.0444 (4)
H1A0.23540.66390.58010.053*
H1B0.27560.56290.53880.053*
C20.0788 (3)0.64794 (13)0.48120 (10)0.0404 (4)
H2A0.02100.59430.45260.048*
H2B0.18190.67910.44720.048*
C30.2348 (3)0.67437 (14)0.56019 (11)0.0479 (4)
H3A0.33490.72260.57760.057*
H3B0.30430.62210.53420.057*
C40.1303 (3)0.63460 (14)0.62962 (10)0.0471 (4)
H4A0.22960.60330.66530.056*
H4B0.06960.68800.65760.056*
C51.1478 (3)0.07758 (13)0.35868 (11)0.0472 (4)
H5A1.19970.01420.37540.057*
H5B1.25970.12360.36160.057*
C61.0622 (3)0.07100 (13)0.27501 (11)0.0459 (4)
H6A1.02230.13550.25640.055*
H6B1.16520.04630.24150.055*
C70.7310 (3)0.03294 (13)0.32823 (11)0.0427 (4)
H7A0.62260.01500.32800.051*
H7B0.67200.09570.31370.051*
C80.8328 (3)0.03920 (13)0.40899 (10)0.0428 (4)
H8A0.73460.05880.44640.051*
H8B0.88540.02450.42450.051*
Cl10.10686 (6)0.80041 (3)0.33040 (2)0.04020 (12)
Cl20.55058 (7)0.83591 (3)0.45501 (2)0.04426 (13)
Cl30.59472 (7)0.79781 (4)0.23183 (2)0.04472 (13)
Cl40.45151 (7)0.59332 (3)0.36450 (3)0.04461 (13)
Co10.44468 (3)0.757637 (14)0.342708 (12)0.02945 (10)
N10.0826 (2)0.71964 (10)0.50476 (8)0.0392 (3)
H1C0.14380.74060.46180.047*
H1D0.02660.77160.52770.047*
N20.8819 (2)0.00444 (10)0.27066 (8)0.0395 (3)
H2C0.82310.00640.22180.047*
H2D0.92310.05720.28040.047*
O10.02319 (19)0.56588 (8)0.60621 (7)0.0402 (3)
O20.9955 (2)0.10839 (9)0.40987 (7)0.0454 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0361 (9)0.0437 (9)0.0533 (11)0.0013 (7)0.0020 (8)0.0055 (8)
C20.0476 (10)0.0389 (8)0.0335 (9)0.0042 (7)0.0083 (7)0.0026 (7)
C30.0440 (10)0.0619 (11)0.0373 (9)0.0188 (8)0.0023 (8)0.0045 (8)
C40.0601 (11)0.0511 (10)0.0292 (9)0.0191 (9)0.0060 (8)0.0041 (7)
C50.0418 (10)0.0453 (9)0.0544 (11)0.0079 (8)0.0031 (8)0.0097 (8)
C60.0550 (11)0.0393 (8)0.0448 (10)0.0053 (8)0.0159 (8)0.0002 (8)
C70.0412 (9)0.0418 (9)0.0450 (10)0.0019 (7)0.0015 (8)0.0046 (7)
C80.0515 (10)0.0412 (9)0.0363 (9)0.0102 (7)0.0061 (8)0.0041 (7)
Cl10.0353 (2)0.0502 (2)0.0352 (2)0.00980 (16)0.00288 (17)0.01069 (17)
Cl20.0559 (3)0.0427 (2)0.0342 (2)0.01302 (18)0.00315 (19)0.00842 (17)
Cl30.0403 (2)0.0616 (3)0.0330 (2)0.00275 (18)0.00952 (18)0.00554 (18)
Cl40.0543 (3)0.0295 (2)0.0487 (3)0.00623 (16)0.0107 (2)0.00300 (16)
Co10.03183 (15)0.02976 (14)0.02686 (15)0.00168 (7)0.00255 (10)0.00081 (7)
N10.0550 (9)0.0368 (7)0.0266 (7)0.0064 (6)0.0108 (6)0.0019 (6)
N20.0549 (9)0.0347 (7)0.0283 (7)0.0001 (6)0.0038 (6)0.0015 (5)
O10.0462 (7)0.0356 (6)0.0384 (6)0.0088 (5)0.0005 (5)0.0075 (5)
O20.0522 (7)0.0415 (6)0.0428 (7)0.0124 (6)0.0053 (6)0.0148 (5)
Geometric parameters (Å, º) top
C1—O11.428 (2)C6—N21.497 (2)
C1—C21.495 (2)C6—H6A0.9700
C1—H1A0.9700C6—H6B0.9700
C1—H1B0.9700C7—N21.485 (2)
C2—N11.488 (2)C7—C81.503 (2)
C2—H2A0.9700C7—H7A0.9700
C2—H2B0.9700C7—H7B0.9700
C3—N11.479 (2)C8—O21.431 (2)
C3—C41.502 (2)C8—H8A0.9700
C3—H3A0.9700C8—H8B0.9700
C3—H3B0.9700Co1—Cl12.3029 (6)
C4—O11.424 (2)Co1—Cl22.2720 (6)
C4—H4A0.9700Co1—Cl32.2455 (6)
C4—H4B0.9700Co1—Cl42.2811 (6)
C5—O21.427 (2)N1—H1C0.9000
C5—C61.509 (3)N1—H1D0.9000
C5—H5A0.9700N2—H2C0.9000
C5—H5B0.9700N2—H2D0.9000
O1—C1—C2111.70 (14)C5—C6—H6B109.7
O1—C1—H1A109.3H6A—C6—H6B108.2
C2—C1—H1A109.3N2—C7—C8109.66 (14)
O1—C1—H1B109.3N2—C7—H7A109.7
C2—C1—H1B109.3C8—C7—H7A109.7
H1A—C1—H1B107.9N2—C7—H7B109.7
N1—C2—C1108.73 (14)C8—C7—H7B109.7
N1—C2—H2A109.9H7A—C7—H7B108.2
C1—C2—H2A109.9O2—C8—C7110.32 (14)
N1—C2—H2B109.9O2—C8—H8A109.6
C1—C2—H2B109.9C7—C8—H8A109.6
H2A—C2—H2B108.3O2—C8—H8B109.6
N1—C3—C4109.34 (15)C7—C8—H8B109.6
N1—C3—H3A109.8H8A—C8—H8B108.1
C4—C3—H3A109.8Cl3—Co1—Cl2117.59 (2)
N1—C3—H3B109.8Cl3—Co1—Cl4111.892 (19)
C4—C3—H3B109.8Cl2—Co1—Cl4109.01 (2)
H3A—C3—H3B108.3Cl3—Co1—Cl1109.083 (19)
O1—C4—C3111.56 (14)Cl2—Co1—Cl1102.183 (19)
O1—C4—H4A109.3Cl4—Co1—Cl1106.068 (18)
C3—C4—H4A109.3C3—N1—C2110.39 (13)
O1—C4—H4B109.3C3—N1—H1C109.6
C3—C4—H4B109.3C2—N1—H1C109.6
H4A—C4—H4B108.0C3—N1—H1D109.6
O2—C5—C6110.74 (15)C2—N1—H1D109.6
O2—C5—H5A109.5H1C—N1—H1D108.1
C6—C5—H5A109.5C7—N2—C6111.39 (13)
O2—C5—H5B109.5C7—N2—H2C109.3
C6—C5—H5B109.5C6—N2—H2C109.3
H5A—C5—H5B108.1C7—N2—H2D109.3
N2—C6—C5109.93 (14)C6—N2—H2D109.3
N2—C6—H6A109.7H2C—N2—H2D108.0
C5—C6—H6A109.7C4—O1—C1110.33 (13)
N2—C6—H6B109.7C5—O2—C8110.38 (12)
O1—C1—C2—N158.22 (18)C8—C7—N2—C653.66 (19)
N1—C3—C4—O157.4 (2)C5—C6—N2—C752.48 (19)
O2—C5—C6—N255.95 (19)C3—C4—O1—C158.9 (2)
N2—C7—C8—O258.34 (18)C2—C1—O1—C459.74 (19)
C4—C3—N1—C256.12 (19)C6—C5—O2—C861.60 (19)
C1—C2—N1—C356.46 (18)C7—C8—O2—C562.79 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Cl10.902.393.1819 (15)148
N1—H1D···O2i0.901.972.8294 (19)160
N2—H2C···O1ii0.902.473.0577 (18)123
N2—H2C···Cl4iii0.902.573.3322 (15)143
N2—H2D···Cl1iv0.902.433.3003 (15)164
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1, y1, z.

Experimental details

Crystal data
Chemical formula(C4H10NO)2[CoCl4]
Mr376.99
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)6.5952 (13), 13.696 (3), 17.039 (3)
β (°) 92.930 (2)
V3)1537.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.80
Crystal size (mm)0.26 × 0.12 × 0.08
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.90, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
11708, 2997, 2761
Rint0.019
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.074, 1.07
No. of reflections2997
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.42

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—Cl12.3029 (6)Co1—Cl32.2455 (6)
Co1—Cl22.2720 (6)Co1—Cl42.2811 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···Cl10.902.393.1819 (15)148
N1—H1D···O2i0.901.972.8294 (19)160
N2—H2C···O1ii0.902.473.0577 (18)123
N2—H2C···Cl4iii0.902.573.3322 (15)143
N2—H2D···Cl1iv0.902.433.3003 (15)164
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1, y1, z.
 

Acknowledgements

This work was supported by a start-up grant from Jiangsu University of Science and Technology and the Foundation of Jiangsu Educational Committee (grant No. 11KJB150004), China.

References

First citationChen, L. Z. (2009). Acta Cryst. E65, m689.  Web of Science CSD CrossRef IUCr Journals
First citationOwczarek, M., Szklarz, P., Jakubas, R. & Lis, T. (2008). Acta Cryst. E64, o667.  Web of Science CrossRef IUCr Journals
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSzklarz, P., Owczarek, M., Bator, G., Lis, T., Gatner, K. & Jakubas, R. (2009). J. Mol. Struct. 929, 48.  Web of Science CSD CrossRef

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds