organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Di­bromo-3-(4-chloro­phen­yl)-1-(4-nitro­thio­phen-2-yl)propan-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangothri 574 199, Karnataka, India
*Correspondence e-mail: hkfun@usm.my

(Received 26 July 2012; accepted 3 August 2012; online 11 August 2012)

The title compound, C13H8Br2ClNO3S, exhibits whole-mol­ecule disorder over two orientations in a 0.805 (6):0.195 (6) ratio. The dihedral angles between the thio­phene ring [maximum deviations = 0.017 (4) and 0.033 (9) Å for the major and minor components, respectively] and the chloro-substituted phenyl ring are 32.1 (5) (major component) and 26.3 (18)° (minor component). In the crystal, C—H⋯Cl and C—H⋯O hydrogen bonds link the mol­ecules into sheets lying parallel to the bc plane. Aromatic ππ stacking inter­actions [centroid–centroid distance = 3.550 (7) Å] are also observed.

Related literature

For background to nitro­thio­phene derivatives, see: Holla et al. (1986[Holla, B. S., Kalluraya, B. & Shridhar, K. R. (1986). Curr. Sci. 55, 73-76.]); Kalluraya et al. (1994[Kalluraya, B., D'Souza, A. & Holla, B. S. (1994). Indian. J. Chem. Sect. B, 33, 1017-1022.]); Kalluraya & Shetty (1997[Kalluraya, B. & Shetty, S. N. (1997). Indian J. Heterocycl. Chem. 6, 287-290.]); Rai et al. (2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]). For related structures, see: Fun et al. (2010[Fun, H.-K., Yeap, C. S., Shetty, S. & Kalluraya, B. (2010). Acta Cryst. E66, o3220.], 2011[Fun, H.-K., Loh, W.-S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011). Acta Cryst. E67, o2651-o2652.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C13H8Br2ClNO3S

  • Mr = 453.53

  • Monoclinic, C 2/c

  • a = 28.5425 (17) Å

  • b = 9.5470 (5) Å

  • c = 11.4047 (7) Å

  • β = 103.224 (2)°

  • V = 3025.3 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.68 mm−1

  • T = 100 K

  • 0.31 × 0.24 × 0.11 mm

Data collection
  • Bruker SMART APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.269, Tmax = 0.564

  • 33329 measured reflections

  • 5031 independent reflections

  • 4272 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.112

  • S = 1.11

  • 5031 reflections

  • 275 parameters

  • 504 restraints

  • H-atom parameters constrained

  • Δρmax = 1.33 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7BA⋯Cl1i 1.00 2.82 3.441 (4) 121
C11—H11B⋯O1ii 0.95 2.49 3.435 (6) 175
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) [x, -y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Nitrothiophene and its derivatives possess a wide variety of pharmacological activity. The presence of a nitro group at the 4-position of the molecule conferred antibacterial activity (Holla et al., 1986). A large number of nitrothiophene derivatives are reported to exhibit a variety of biological activity such as antibacterial, antifungal etc. (Kalluraya et al., 1994; Kalluraya & Shetty, 1997). Dibromopropanones were obtained by the bromination of 1-aryl-3-(4-nitro-2-thienyl)-2-propen-1-ones. Acid-catalysed condensation of acetophenones with 4-nitrothiophenediacetate in acetic acid yielded the required 1-aryl-3-(4-nitro-2-thienyl)-2-propen-1-ones known as chalcones (Rai et al., 2008).

The molecular structure is shown in Fig. 1. Bond lengths and angles are within normal ranges and comparable to the related structures (Fun et al., 2010; Fun et al., 2011). The whole molecule of the title compound is disordered over two positions with a refined site-occupancies ratio of 0.805 (6): 0.195 (6). For the major disorder component, the thiophene ring (S1/C10–C13) is approximately planar with maximum deviation of 0.017 (4) Å at atom C10 and forms a dihedral angle of 32.1 (5)° with the chloro-substituted phenyl ring (C1–C6). Meanwhile, for the minor disorder component, the approximately planar thiophene ring [S1X/C10X–C13X, with maximum deviation of 0.033 (9) Å at atom S1X] makes a dihedral angle of 26.3 (18)° with the chloro-substituted phenyl ring (C1X–C6X).

In the crystal (Fig. 2), C7—H7BA···Cl1 and C11—H11A···O1 hydrogen bonds (Table 1) link the molecules into a two-dimensional network parallel to the bc-plane. ππ interaction of Cg1···Cg1 = 3.550 (7) Å (symmetry code: 1/2 - x, -1/2 - y,-z) consolidate the crystal structure [Cg1 is the centroid of the major component of the thiophene ring (S1/C10–C13)].

Related literature top

For background to nitrothiophene derivatives, see: Holla et al. (1986); Kalluraya et al. (1994); Kalluraya & Shetty (1997); Rai et al. (2008). For related structures, see: Fun et al. (2010, 2011). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

3-(4-Chlorophenyl)-1-(4-nitrothiophen-2-yl)prop-2-en-1-one (0.01 mol) was dissolved in glacial acetic acid (25 ml) by gentle warming. A solution of bromine in glacial acetic acid (30% w/v) was added to it with constant stirring until the yellow color of the bromine persisted. The reaction mixture was kept aside at room temperature for overnight. Crystals of dibromopropanone that separated out were collected by filtration and washed with petroleum ether and dried. They were then recrystallized from glacial acetic acid. Colourless blocks were obtained from 1:2 mixtures of DMF and ethanol solution by slow evaporation.

Refinement top

The title compound is disordered over two sets of positions with a refined site-occupancies ratio of 0.805 (6): 0.195 (6). The minor disorder component was refined isotropically. All disordered atoms were subjected to similarity restraints (SAME) except for atoms Br1X, Br2X, C7X and C8X. The similar-ADP restraint (SIMU) was applied to all atoms in the molecule. A FLAT restraint was also used to the minor component of the chloro-phenyl ring (Cl1X/C1X–C6X). All H atoms were positioned geometrically [C–H = 0.95 and 1.00 Å] and refined using a riding model with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. Both disorder components are shown.
[Figure 2] Fig. 2. The crystal packing of the title compound. Dashed lines represent the hydrogen bonds. Only major disorder component is shown.
2,3-Dibromo-3-(4-chlorophenyl)-1-(4-nitrothiophen-2-yl)propan-1-one top
Crystal data top
C13H8Br2ClNO3SF(000) = 1760
Mr = 453.53Dx = 1.991 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9951 reflections
a = 28.5425 (17) Åθ = 2.8–31.4°
b = 9.5470 (5) ŵ = 5.68 mm1
c = 11.4047 (7) ÅT = 100 K
β = 103.224 (2)°Block, colourless
V = 3025.3 (3) Å30.31 × 0.24 × 0.11 mm
Z = 8
Data collection top
Bruker SMART APEX DUO CCD
diffractometer
5031 independent reflections
Radiation source: fine-focus sealed tube4272 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ϕ and ω scansθmax = 31.6°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 4141
Tmin = 0.269, Tmax = 0.564k = 1414
33329 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0628P)2 + 5.4597P]
where P = (Fo2 + 2Fc2)/3
5031 reflections(Δ/σ)max = 0.001
275 parametersΔρmax = 1.33 e Å3
504 restraintsΔρmin = 0.75 e Å3
Crystal data top
C13H8Br2ClNO3SV = 3025.3 (3) Å3
Mr = 453.53Z = 8
Monoclinic, C2/cMo Kα radiation
a = 28.5425 (17) ŵ = 5.68 mm1
b = 9.5470 (5) ÅT = 100 K
c = 11.4047 (7) Å0.31 × 0.24 × 0.11 mm
β = 103.224 (2)°
Data collection top
Bruker SMART APEX DUO CCD
diffractometer
5031 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4272 reflections with I > 2σ(I)
Tmin = 0.269, Tmax = 0.564Rint = 0.057
33329 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041504 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.11Δρmax = 1.33 e Å3
5031 reflectionsΔρmin = 0.75 e Å3
275 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.30443 (7)0.1934 (2)0.09470 (18)0.0220 (2)0.805 (6)
Br20.45859 (4)0.04291 (14)0.08975 (14)0.0328 (3)0.805 (6)
Cl10.46000 (9)0.7011 (2)0.3575 (2)0.0325 (4)0.805 (6)
S10.31346 (12)0.2888 (4)0.0725 (3)0.0278 (8)0.805 (6)
O10.35091 (17)0.0087 (5)0.1008 (4)0.0250 (8)0.805 (6)
O20.2644 (3)0.5160 (6)0.2173 (6)0.0280 (10)0.805 (6)
O30.3097 (3)0.3704 (7)0.3399 (4)0.0359 (11)0.805 (6)
N10.29043 (19)0.4130 (6)0.2375 (4)0.0219 (9)0.805 (6)
C90.34861 (14)0.0298 (3)0.0020 (3)0.0196 (7)0.805 (6)
C100.33008 (15)0.1624 (4)0.0378 (3)0.0186 (8)0.805 (6)
C110.32325 (14)0.2035 (4)0.1496 (4)0.0191 (8)0.805 (6)
H11B0.33130.15010.22170.023*0.805 (6)
C120.3022 (2)0.3397 (6)0.1375 (4)0.0199 (9)0.805 (6)
C130.2942 (8)0.3972 (12)0.0240 (6)0.0211 (14)0.805 (6)
H13B0.27970.48600.00260.025*0.805 (6)
C10.40955 (16)0.4341 (4)0.0905 (4)0.0228 (9)0.805 (6)
H1BA0.39580.43890.00640.027*0.805 (6)
C20.4226 (2)0.5568 (6)0.1542 (5)0.0246 (9)0.805 (6)
H2A0.41780.64520.11490.029*0.805 (6)
C30.4427 (4)0.5479 (5)0.2764 (5)0.0226 (9)0.805 (6)
C40.44978 (18)0.4192 (5)0.3367 (4)0.0242 (9)0.805 (6)
H4BA0.46360.41500.42070.029*0.805 (6)
C50.43608 (16)0.2978 (4)0.2707 (4)0.0239 (7)0.805 (6)
H5A0.44030.20950.31010.029*0.805 (6)
C60.41604 (14)0.3040 (3)0.1464 (3)0.0202 (6)0.805 (6)
C70.40208 (11)0.1763 (3)0.0704 (3)0.0195 (6)0.805 (6)
H7BA0.39190.20520.01590.023*0.805 (6)
C80.36384 (11)0.0820 (3)0.1003 (3)0.0186 (6)0.805 (6)
H8BA0.37540.03760.18120.022*0.805 (6)
Br1X0.3073 (3)0.1867 (8)0.1063 (7)0.0159 (8)*0.195 (6)
Br2X0.45697 (15)0.0543 (4)0.0743 (4)0.0118 (6)*0.195 (6)
Cl1X0.4684 (3)0.6876 (9)0.3684 (9)0.0225 (15)*0.195 (6)
S1X0.3131 (3)0.2879 (11)0.0739 (10)0.0085 (17)*0.195 (6)
O1X0.3601 (6)0.023 (2)0.1041 (15)0.016 (3)*0.195 (6)
O2X0.2680 (13)0.499 (3)0.225 (3)0.035 (5)*0.195 (6)
O3X0.3116 (13)0.348 (3)0.343 (2)0.041 (5)*0.195 (6)
N1X0.2988 (10)0.408 (3)0.2442 (19)0.023 (3)*0.195 (6)
C9X0.3611 (6)0.0443 (15)0.0001 (15)0.018 (2)*0.195 (6)
C10X0.3400 (7)0.1710 (17)0.0376 (15)0.018 (3)*0.195 (6)
C11X0.3338 (7)0.208 (2)0.1501 (16)0.019 (3)*0.195 (6)
H11A0.34400.15470.22180.023*0.195 (6)
C12X0.3095 (12)0.338 (3)0.1411 (19)0.020 (2)*0.195 (6)
C13X0.298 (3)0.396 (5)0.028 (2)0.021 (3)*0.195 (6)
H13A0.28270.48530.00910.026*0.195 (6)
C1X0.4024 (8)0.4497 (18)0.0976 (19)0.022 (3)*0.195 (6)
H1A0.38940.46340.01410.027*0.195 (6)
C2X0.4233 (8)0.561 (2)0.168 (2)0.025 (3)*0.195 (6)
H2BA0.42330.65150.13370.030*0.195 (6)
C3X0.4443 (17)0.539 (2)0.288 (2)0.024 (3)*0.195 (6)
C4X0.4420 (9)0.410 (2)0.343 (2)0.024 (3)*0.195 (6)
H4A0.45350.39830.42770.029*0.195 (6)
C5X0.4221 (6)0.2990 (17)0.2698 (14)0.022 (2)*0.195 (6)
H5BA0.42320.20750.30300.027*0.195 (6)
C6X0.4003 (6)0.3189 (15)0.1474 (14)0.023 (2)*0.195 (6)
C7X0.3736 (5)0.1993 (13)0.0709 (13)0.022 (2)*0.195 (6)
H7A0.37120.21730.01670.026*0.195 (6)
C8X0.3891 (5)0.0534 (14)0.1024 (14)0.024 (2)*0.195 (6)
H8A0.38710.02440.18540.029*0.195 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0208 (4)0.0242 (4)0.0211 (5)0.0032 (2)0.0050 (3)0.0006 (3)
Br20.0255 (2)0.0390 (4)0.0325 (6)0.0105 (2)0.0038 (3)0.0058 (3)
Cl10.0392 (10)0.0234 (6)0.0339 (8)0.0051 (6)0.0061 (7)0.0101 (5)
S10.0432 (11)0.0217 (7)0.0185 (7)0.0039 (3)0.0069 (4)0.0021 (3)
O10.030 (2)0.0236 (15)0.0216 (14)0.0009 (14)0.0072 (13)0.0021 (10)
O20.040 (2)0.0171 (17)0.031 (2)0.0044 (12)0.0148 (15)0.0032 (14)
O30.061 (2)0.035 (2)0.0115 (13)0.0088 (19)0.0079 (12)0.0039 (12)
N10.027 (2)0.0211 (14)0.0198 (14)0.0022 (16)0.0091 (14)0.0028 (11)
C90.0198 (15)0.0191 (13)0.0197 (14)0.0005 (11)0.0043 (12)0.0030 (10)
C100.0210 (18)0.0182 (13)0.0167 (14)0.0012 (12)0.0042 (13)0.0014 (10)
C110.0191 (18)0.0176 (12)0.0204 (15)0.0010 (13)0.0040 (13)0.0006 (10)
C120.024 (3)0.0178 (12)0.0185 (14)0.0002 (14)0.0063 (14)0.0004 (10)
C130.028 (4)0.0171 (13)0.0187 (15)0.0002 (14)0.0058 (17)0.0003 (11)
C10.0227 (18)0.0226 (15)0.0231 (16)0.0032 (12)0.0048 (13)0.0021 (12)
C20.0262 (15)0.0213 (14)0.026 (2)0.0008 (10)0.0051 (14)0.0017 (13)
C30.0257 (16)0.0191 (14)0.0224 (19)0.0040 (14)0.0038 (16)0.0066 (13)
C40.025 (2)0.0268 (15)0.0207 (16)0.0038 (13)0.0048 (14)0.0034 (12)
C50.0247 (17)0.0219 (13)0.0238 (16)0.0002 (13)0.0030 (14)0.0018 (11)
C60.0194 (14)0.0200 (13)0.0208 (14)0.0001 (10)0.0041 (12)0.0020 (10)
C70.0209 (13)0.0196 (12)0.0182 (14)0.0017 (9)0.0052 (10)0.0009 (10)
C80.0224 (13)0.0158 (11)0.0173 (13)0.0007 (10)0.0042 (10)0.0005 (10)
Geometric parameters (Å, º) top
Br1—C81.990 (4)Br1X—C7X2.029 (16)
Br2—C72.027 (3)Br2X—C8X2.034 (16)
Cl1—C31.741 (4)Cl1X—C3X1.742 (14)
S1—C131.691 (5)S1X—C13X1.687 (15)
S1—C101.730 (4)S1X—C10X1.733 (14)
O1—C91.206 (5)O1X—C9X1.198 (15)
O2—N11.223 (5)O2X—N1X1.216 (15)
O3—N11.239 (5)O3X—N1X1.240 (16)
N1—C121.441 (4)N1X—C12X1.444 (14)
C9—C101.466 (4)C9X—C10X1.459 (14)
C9—C81.537 (4)C9X—C8X1.56 (2)
C10—C111.390 (5)C10X—C11X1.381 (15)
C11—C121.426 (5)C11X—C12X1.419 (15)
C11—H11B0.9500C11X—H11A0.9500
C12—C131.377 (5)C12X—C13X1.376 (15)
C13—H13B0.9500C13X—H13A0.9500
C1—C21.384 (5)C1X—C6X1.378 (15)
C1—C61.389 (5)C1X—C2X1.379 (15)
C1—H1BA0.9500C1X—H1A0.9500
C2—C31.383 (5)C2X—C3X1.378 (15)
C2—H2A0.9500C2X—H2BA0.9500
C3—C41.400 (5)C3X—C4X1.395 (15)
C4—C51.389 (5)C4X—C5X1.390 (15)
C4—H4BA0.9500C4X—H4A0.9500
C5—C61.403 (5)C5X—C6X1.404 (15)
C5—H5A0.9500C5X—H5BA0.9500
C6—C71.496 (4)C6X—C7X1.531 (19)
C7—C81.513 (4)C7X—C8X1.480 (19)
C7—H7BA1.0000C7X—H7A1.0000
C8—H8BA1.0000C8X—H8A1.0000
C13—S1—C1091.7 (3)C13X—S1X—C10X91.9 (9)
O2—N1—O3124.1 (5)O2X—N1X—O3X123 (2)
O2—N1—C12118.8 (4)O2X—N1X—C12X117 (2)
O3—N1—C12116.9 (4)O3X—N1X—C12X116.6 (19)
O1—C9—C10121.2 (4)O1X—C9X—C10X121.2 (16)
O1—C9—C8121.6 (3)O1X—C9X—C8X121.9 (15)
C10—C9—C8117.2 (3)C10X—C9X—C8X116.7 (13)
C11—C10—C9129.4 (3)C11X—C10X—C9X129.4 (14)
C11—C10—S1113.5 (3)C11X—C10X—S1X112.8 (11)
C9—C10—S1117.1 (3)C9X—C10X—S1X117.4 (11)
C10—C11—C12108.2 (3)C10X—C11X—C12X108.8 (13)
C10—C11—H11B125.9C10X—C11X—H11A125.6
C12—C11—H11B125.9C12X—C11X—H11A125.6
C13—C12—C11115.5 (4)C13X—C12X—C11X115.6 (14)
C13—C12—N1122.2 (4)C13X—C12X—N1X121.8 (15)
C11—C12—N1122.4 (4)C11X—C12X—N1X122.5 (16)
C12—C13—S1111.1 (3)C12X—C13X—S1X110.5 (13)
C12—C13—H13B124.5C12X—C13X—H13A124.7
S1—C13—H13B124.5S1X—C13X—H13A124.7
C2—C1—C6121.6 (4)C6X—C1X—C2X120.7 (17)
C2—C1—H1BA119.2C6X—C1X—H1A119.6
C6—C1—H1BA119.2C2X—C1X—H1A119.6
C3—C2—C1118.4 (4)C3X—C2X—C1X119.6 (18)
C3—C2—H2A120.8C3X—C2X—H2BA120.2
C1—C2—H2A120.8C1X—C2X—H2BA120.2
C2—C3—C4122.0 (4)C2X—C3X—C4X121.9 (15)
C2—C3—Cl1119.0 (4)C2X—C3X—Cl1X115.6 (14)
C4—C3—Cl1119.0 (4)C4X—C3X—Cl1X122.3 (15)
C5—C4—C3118.3 (4)C5X—C4X—C3X117.1 (16)
C5—C4—H4BA120.8C5X—C4X—H4A121.5
C3—C4—H4BA120.8C3X—C4X—H4A121.5
C4—C5—C6120.8 (4)C4X—C5X—C6X121.6 (15)
C4—C5—H5A119.6C4X—C5X—H5BA119.2
C6—C5—H5A119.6C6X—C5X—H5BA119.2
C1—C6—C5118.9 (3)C1X—C6X—C5X118.7 (14)
C1—C6—C7118.2 (3)C1X—C6X—C7X120.3 (14)
C5—C6—C7122.9 (3)C5X—C6X—C7X121.0 (13)
C6—C7—C8117.7 (3)C8X—C7X—C6X118.8 (12)
C6—C7—Br2110.4 (2)C8X—C7X—Br1X97.8 (10)
C8—C7—Br2101.46 (19)C6X—C7X—Br1X107.2 (10)
C6—C7—H7BA108.9C8X—C7X—H7A110.7
C8—C7—H7BA108.9C6X—C7X—H7A110.7
Br2—C7—H7BA108.9Br1X—C7X—H7A110.7
C7—C8—C9110.3 (3)C7X—C8X—C9X107.9 (12)
C7—C8—Br1109.2 (2)C7X—C8X—Br2X101.5 (9)
C9—C8—Br1104.5 (2)C9X—C8X—Br2X103.1 (10)
C7—C8—H8BA110.9C7X—C8X—H8A114.3
C9—C8—H8BA110.9C9X—C8X—H8A114.3
Br1—C8—H8BA110.9Br2X—C8X—H8A114.3
O1—C9—C10—C11177.6 (4)O1X—C9X—C10X—C11X173 (2)
C8—C9—C10—C111.1 (6)C8X—C9X—C10X—C11X12 (3)
O1—C9—C10—S11.9 (6)O1X—C9X—C10X—S1X1 (3)
C8—C9—C10—S1179.4 (3)C8X—C9X—C10X—S1X174.9 (13)
C13—S1—C10—C112.8 (9)C13X—S1X—C10X—C11X5 (4)
C13—S1—C10—C9176.8 (9)C13X—S1X—C10X—C9X179 (4)
C9—C10—C11—C12177.2 (4)C9X—C10X—C11X—C12X177 (2)
S1—C10—C11—C122.3 (5)S1X—C10X—C11X—C12X4 (3)
C10—C11—C12—C130.5 (12)C10X—C11X—C12X—C13X1 (6)
C10—C11—C12—N1179.9 (5)C10X—C11X—C12X—N1X178 (3)
O2—N1—C12—C1314.5 (14)O2X—N1X—C12X—C13X20 (7)
O3—N1—C12—C13162.0 (13)O3X—N1X—C12X—C13X179 (6)
O2—N1—C12—C11166.2 (7)O2X—N1X—C12X—C11X162 (4)
O3—N1—C12—C1117.3 (9)O3X—N1X—C12X—C11X1 (5)
C11—C12—C13—S11.5 (17)C11X—C12X—C13X—S1X3 (8)
N1—C12—C13—S1177.9 (8)N1X—C12X—C13X—S1X178 (4)
C10—S1—C13—C122.4 (14)C10X—S1X—C13X—C12X5 (6)
C6—C1—C2—C30.3 (8)C6X—C1X—C2X—C3X3 (3)
C1—C2—C3—C40.6 (13)C1X—C2X—C3X—C4X5 (5)
C1—C2—C3—Cl1179.2 (5)C1X—C2X—C3X—Cl1X178.7 (17)
C2—C3—C4—C50.2 (13)C2X—C3X—C4X—C5X7 (6)
Cl1—C3—C4—C5179.6 (5)Cl1X—C3X—C4X—C5X180 (3)
C3—C4—C5—C60.5 (8)C3X—C4X—C5X—C6X7 (4)
C2—C1—C6—C50.3 (6)C2X—C1X—C6X—C5X3 (2)
C2—C1—C6—C7178.6 (4)C2X—C1X—C6X—C7X175.2 (11)
C4—C5—C6—C10.8 (6)C4X—C5X—C6X—C1X5 (3)
C4—C5—C6—C7178.1 (4)C4X—C5X—C6X—C7X173.1 (18)
C1—C6—C7—C8119.9 (4)C1X—C6X—C7X—C8X152.4 (17)
C5—C6—C7—C861.3 (5)C5X—C6X—C7X—C8X29 (2)
C1—C6—C7—Br2124.3 (3)C1X—C6X—C7X—Br1X98.1 (18)
C5—C6—C7—Br254.5 (4)C5X—C6X—C7X—Br1X80.3 (17)
C6—C7—C8—C9171.2 (3)C6X—C7X—C8X—C9X171.9 (13)
Br2—C7—C8—C968.2 (3)Br1X—C7X—C8X—C9X73.4 (12)
C6—C7—C8—Br156.9 (3)C6X—C7X—C8X—Br2X63.9 (15)
Br2—C7—C8—Br1177.45 (15)Br1X—C7X—C8X—Br2X178.6 (6)
O1—C9—C8—C728.4 (5)O1X—C9X—C8X—C7X51 (2)
C10—C9—C8—C7153.0 (3)C10X—C9X—C8X—C7X134.3 (16)
O1—C9—C8—Br188.9 (4)O1X—C9X—C8X—Br2X55.5 (18)
C10—C9—C8—Br189.8 (3)C10X—C9X—C8X—Br2X118.8 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7BA···Cl1i1.002.823.441 (4)121
C11—H11B···O1ii0.952.493.435 (6)175
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H8Br2ClNO3S
Mr453.53
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)28.5425 (17), 9.5470 (5), 11.4047 (7)
β (°) 103.224 (2)
V3)3025.3 (3)
Z8
Radiation typeMo Kα
µ (mm1)5.68
Crystal size (mm)0.31 × 0.24 × 0.11
Data collection
DiffractometerBruker SMART APEX DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.269, 0.564
No. of measured, independent and
observed [I > 2σ(I)] reflections
33329, 5031, 4272
Rint0.057
(sin θ/λ)max1)0.737
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.112, 1.11
No. of reflections5031
No. of parameters275
No. of restraints504
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.33, 0.75

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7BA···Cl1i1.002.823.441 (4)121
C11—H11B···O1ii0.952.493.435 (6)175
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). SA also thanks the Malaysian Government and USM for the Academic Staff Training Scheme (ASTS) award.

References

First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Loh, W.-S., Sarojini, B. K., Khaleel, V. M. & Narayana, B. (2011). Acta Cryst. E67, o2651–o2652.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Yeap, C. S., Shetty, S. & Kalluraya, B. (2010). Acta Cryst. E66, o3220.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHolla, B. S., Kalluraya, B. & Shridhar, K. R. (1986). Curr. Sci. 55, 73–76.  CAS Google Scholar
First citationKalluraya, B., D'Souza, A. & Holla, B. S. (1994). Indian. J. Chem. Sect. B, 33, 1017–1022.  Google Scholar
First citationKalluraya, B. & Shetty, S. N. (1997). Indian J. Heterocycl. Chem. 6, 287–290.  CAS Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds