organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl (E)-3,5-dimeth­­oxy-2-{[2-(4-meth­­oxy­benzo­yl)hydrazin-1-yl­­idene]meth­yl}benzoate

aAtta-ur-Rahman Research Institute for Natural Products Discovery (RiND), Universiti Tecknologi MARA, Puncak Alam 42300, Selangor, Malaysia, bFaculty of Pharmacy, Universiti Tecknologi MARA, Puncak Alam 42300, Selangor, Malaysia, and cH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

(Received 28 July 2012; accepted 6 August 2012; online 11 August 2012)

In the title compound, C19H20N2O6, the azomethine [C=N = 1.269 (2) Å] double bond adopts an E conformation and the dihedral angle between the planes of the benzene rings is 17.41 (11)°. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R22(16) loops. The dimers are connected by C—H⋯O and C—H⋯N hydrogen bonds, forming sheets lying parallel to (100).

Related literature

For the biological activity of benzohydraazides, see: Khan et al. (2011[Khan, K. M., Shah, Z., Ahmad, V. U., Muhammad, K., Taha, M., Rahim, F., Jahun, H., Perveen, S. & Choudhary, M. I. (2011). Med. Chem. 7, 572-580.]); Chahan et al. (2006[Chahan, Z. H., Arif, M., Shafiq, Z., Yaqub, M. & Supuran, C. T. (2006). J. Enzyme Inhib. Med Chem., 21, 95-103.]). For a related structure, see: Zhang (2009[Zhang, X. (2009). Acta Cryst. E65, o1388.]).

[Scheme 1]

Experimental

Crystal data
  • C19H20N2O6

  • Mr = 372.37

  • Triclinic, [P \overline 1]

  • a = 8.8468 (7) Å

  • b = 10.7392 (8) Å

  • c = 10.9764 (8) Å

  • α = 113.377 (2)°

  • β = 90.656 (2)°

  • γ = 104.695 (2)°

  • V = 918.52 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.28 × 0.14 × 0.11 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.989

  • 10426 measured reflections

  • 3415 independent reflections

  • 2224 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.114

  • S = 1.02

  • 3415 reflections

  • 252 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O5i 0.84 (2) 2.13 (2) 2.969 (2) 172.3 (19)
C18—H18B⋯N2ii 0.96 2.62 3.501 (3) 153
C19—H19B⋯O5iii 0.96 2.57 3.511 (3) 168
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x, -y+2, -z+2; (iii) x, y, z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Phenyl hydrazones represent a very important class of bioactive organic compounds and are reported to have antibacterial, anticancer, antifungal, herbicidal activities, anticonvulsant, antiproliferative, antioxidant and antidiabetic activities (e.g. Khan et al., 2011; Chahan et al., 2006). The title compound was prepared as a part of our ongoing research to synthesize libraries of different bioactive benzohydrazone. The structure of title compound (Fig. 1) is similar to that of the previously published 4-Methoxy-N'-(2-methoxybenzylidene)-benzohydrazide (Zhang, 2009) with the difference that 2-methoxy benzne ring is replaced by 3,5-dimethoxybenzoate moiety (C9–C14). The azomethine (C=N,1.269 (2) Å) double bond adopt an E conformation (Fig. 1). The benzene rings (C1–C6 and C9–C14) subtend a dihedral angle 17.41 (11)° between them and maximum deviation of 0.014 (2) Å for C6 atom from the root mean square plane of 4-methoxybenzene ring (C1–C6).

The crystal structure features N1—H1A···O5, C18—H18B···N2 and C19—H19B···O5 intrmolecular hydrogen bonds and inked to form chains (symmetry codes as in Table 2) arranged parallel to (100) in (Fig. 2).

Related literature top

For the biological activity of benzohydraazides, see: Khan et al. (2011); Chahan et al. (2006). For a related structure, see: Zhang (2009).

Experimental top

A mixture of 2 mmol of each 4-methoxybenzohydrazide and methyl 2-formyl-3,5-dimethoxybenzoate and catalytical amount of acetic acid was refluxed for 3 h. The progress of the reaction was monitored by TLC. After completion of reaction, the solvent was evaporated by vacuum to afford the crude product (0.610 g, yield 82%), which was re-crystallized from methanol solution to yield colourless blocks of the title compound.

Refinement top

H atoms on Methyl, phenyl and methine were positioned geometrically with C—H = 0.95 Å (CH3), and 0.93 Å (CH) and constrained to ride on their parent atoms with Uiso(H)= 1.5Ueq(CH3) 1.2Ueq(CH). The H atoms on the nitrogen (N–H= 0.85 (2) Å) was located in difference Fourier maps and refined isotropically. A rotating group model was applied to the methyl groups.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound I. Only hydrogen atoms involved in hydrogen bonding are shown.
Methyl (E)-3,5-dimethoxy-2-{[2-(4-methoxybenzoyl)hydrazin-1- ylidene]methyl}benzoate top
Crystal data top
C19H20N2O6Z = 2
Mr = 372.37F(000) = 392
Triclinic, P1Dx = 1.346 Mg m3
a = 8.8468 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.7392 (8) ÅCell parameters from 1645 reflections
c = 10.9764 (8) Åθ = 2.0–25.5°
α = 113.377 (2)°µ = 0.10 mm1
β = 90.656 (2)°T = 298 K
γ = 104.695 (2)°Block, colorless
V = 918.52 (12) Å30.28 × 0.14 × 0.11 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3415 independent reflections
Radiation source: fine-focus sealed tube2224 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scanθmax = 25.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1010
Tmin = 0.972, Tmax = 0.989k = 1313
10426 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.0289P]
where P = (Fo2 + 2Fc2)/3
3415 reflections(Δ/σ)max < 0.001
252 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C19H20N2O6γ = 104.695 (2)°
Mr = 372.37V = 918.52 (12) Å3
Triclinic, P1Z = 2
a = 8.8468 (7) ÅMo Kα radiation
b = 10.7392 (8) ŵ = 0.10 mm1
c = 10.9764 (8) ÅT = 298 K
α = 113.377 (2)°0.28 × 0.14 × 0.11 mm
β = 90.656 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3415 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2224 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.989Rint = 0.033
10426 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.16 e Å3
3415 reflectionsΔρmin = 0.17 e Å3
252 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6563 (2)0.64890 (18)1.46257 (16)0.0820 (5)
O20.24378 (19)0.62729 (15)0.97724 (16)0.0730 (5)
O30.17303 (18)1.25061 (14)1.10340 (13)0.0614 (4)
O40.0119 (2)1.17046 (16)0.65074 (14)0.0691 (5)
O50.40868 (17)0.87627 (14)0.73902 (14)0.0564 (4)
O60.16475 (16)0.73913 (14)0.65091 (13)0.0549 (4)
N10.3446 (2)0.86420 (19)1.08462 (18)0.0507 (5)
N20.26850 (18)0.88947 (17)0.98968 (16)0.0477 (4)
C10.4660 (3)0.8228 (2)1.3057 (2)0.0636 (6)
H1B0.44720.90981.32570.076*
C20.5451 (3)0.8037 (2)1.4035 (2)0.0631 (6)
H2B0.57700.87661.48840.076*
C30.5760 (2)0.6779 (2)1.3750 (2)0.0537 (5)
C40.5221 (3)0.5694 (2)1.2506 (2)0.0721 (7)
H4A0.54020.48231.23110.087*
C50.4413 (3)0.5890 (2)1.1549 (2)0.0603 (6)
H5A0.40430.51421.07170.072*
C60.4143 (2)0.7167 (2)1.17971 (19)0.0448 (5)
C70.3274 (2)0.7306 (2)1.0710 (2)0.0488 (5)
C80.2808 (2)1.0184 (2)1.01728 (19)0.0475 (5)
H8A0.33421.08781.09900.057*
C90.2117 (2)1.05887 (19)0.92205 (18)0.0410 (5)
C100.1566 (2)1.17821 (19)0.96804 (18)0.0434 (5)
C110.0895 (2)1.2190 (2)0.88060 (19)0.0491 (5)
H11A0.05541.30010.91290.059*
C120.0739 (2)1.1378 (2)0.74496 (19)0.0480 (5)
C130.1234 (2)1.0168 (2)0.69618 (19)0.0493 (5)
H13A0.10940.96110.60470.059*
C140.1937 (2)0.97907 (19)0.78374 (18)0.0419 (5)
C150.2684 (3)0.8614 (2)0.72612 (18)0.0442 (5)
C160.2293 (3)0.6196 (2)0.5973 (3)0.0761 (7)
H16A0.14610.53530.54700.114*
H16B0.27880.60890.66940.114*
H16C0.30580.63530.53980.114*
C170.0109 (3)1.3070 (2)0.6920 (2)0.0695 (7)
H17A0.03801.32150.61460.104*
H17B0.08441.37750.74200.104*
H17C0.09451.31420.74710.104*
C180.0967 (3)1.3593 (2)1.1573 (2)0.0617 (6)
H18A0.11471.39881.25320.093*
H18B0.01451.32031.12820.093*
H18C0.13831.43201.12680.093*
C190.7245 (3)0.7605 (3)1.5882 (3)0.0943 (9)
H19A0.78830.72921.63500.141*
H19B0.64250.78831.64000.141*
H19C0.78880.83961.57500.141*
H1A0.412 (2)0.936 (2)1.141 (2)0.054 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1044 (13)0.1002 (13)0.0638 (11)0.0587 (11)0.0016 (10)0.0388 (10)
O20.0884 (12)0.0517 (9)0.0698 (11)0.0157 (9)0.0233 (9)0.0191 (8)
O30.0889 (11)0.0613 (9)0.0364 (8)0.0409 (8)0.0007 (7)0.0109 (7)
O40.1052 (12)0.0728 (10)0.0478 (9)0.0528 (9)0.0012 (8)0.0271 (8)
O50.0507 (9)0.0559 (9)0.0602 (9)0.0234 (7)0.0022 (7)0.0164 (7)
O60.0585 (9)0.0437 (8)0.0583 (9)0.0197 (7)0.0020 (7)0.0138 (7)
N10.0596 (12)0.0468 (11)0.0467 (11)0.0137 (10)0.0095 (9)0.0216 (9)
N20.0520 (10)0.0511 (11)0.0444 (10)0.0180 (8)0.0025 (8)0.0225 (8)
C10.0948 (18)0.0525 (13)0.0532 (14)0.0362 (13)0.0017 (13)0.0225 (11)
C20.0890 (17)0.0623 (15)0.0427 (13)0.0324 (13)0.0019 (12)0.0200 (11)
C30.0572 (13)0.0682 (15)0.0521 (13)0.0309 (12)0.0097 (11)0.0333 (12)
C40.0968 (19)0.0615 (15)0.0710 (17)0.0434 (14)0.0009 (15)0.0279 (13)
C50.0732 (15)0.0511 (13)0.0551 (14)0.0251 (12)0.0022 (12)0.0162 (11)
C60.0472 (12)0.0476 (12)0.0461 (12)0.0172 (10)0.0074 (10)0.0235 (10)
C70.0529 (13)0.0457 (13)0.0476 (12)0.0164 (11)0.0014 (10)0.0177 (10)
C80.0559 (13)0.0474 (12)0.0402 (11)0.0182 (10)0.0031 (9)0.0171 (9)
C90.0432 (11)0.0439 (11)0.0380 (11)0.0144 (9)0.0002 (9)0.0180 (9)
C100.0508 (12)0.0436 (11)0.0360 (11)0.0180 (10)0.0012 (9)0.0138 (9)
C110.0607 (13)0.0476 (12)0.0467 (12)0.0279 (10)0.0057 (10)0.0197 (10)
C120.0583 (13)0.0541 (13)0.0407 (12)0.0250 (10)0.0026 (10)0.0233 (10)
C130.0610 (13)0.0531 (13)0.0361 (11)0.0259 (11)0.0017 (10)0.0149 (9)
C140.0460 (11)0.0426 (11)0.0410 (11)0.0179 (9)0.0034 (9)0.0178 (9)
C150.0536 (13)0.0476 (12)0.0347 (11)0.0175 (11)0.0005 (10)0.0184 (9)
C160.0824 (17)0.0435 (13)0.0919 (18)0.0268 (12)0.0028 (15)0.0121 (12)
C170.0943 (18)0.0737 (16)0.0675 (16)0.0477 (14)0.0140 (14)0.0416 (13)
C180.0781 (16)0.0566 (14)0.0459 (13)0.0327 (12)0.0067 (11)0.0082 (10)
C190.106 (2)0.133 (3)0.0602 (17)0.065 (2)0.0023 (16)0.0375 (17)
Geometric parameters (Å, º) top
O1—C31.364 (2)C6—C71.488 (3)
O1—C191.416 (3)C8—C91.461 (2)
O2—C71.224 (2)C8—H8A0.9300
O3—C101.362 (2)C9—C101.394 (2)
O3—C181.425 (2)C9—C141.399 (3)
O4—C121.366 (2)C10—C111.385 (2)
O4—C171.422 (2)C11—C121.378 (3)
O5—C151.209 (2)C11—H11A0.9300
O6—C151.326 (2)C12—C131.382 (3)
O6—C161.450 (2)C13—C141.377 (2)
N1—C71.350 (2)C13—H13A0.9300
N1—N21.383 (2)C14—C151.494 (3)
N1—H1A0.85 (2)C16—H16A0.9600
N2—C81.269 (2)C16—H16B0.9600
C1—C61.375 (3)C16—H16C0.9600
C1—C21.384 (3)C17—H17A0.9600
C1—H1B0.9300C17—H17B0.9600
C2—C31.361 (3)C17—H17C0.9600
C2—H2B0.9300C18—H18A0.9600
C3—C41.375 (3)C18—H18B0.9600
C4—C51.376 (3)C18—H18C0.9600
C4—H4A0.9300C19—H19A0.9600
C5—C61.373 (3)C19—H19B0.9600
C5—H5A0.9300C19—H19C0.9600
C3—O1—C19118.05 (19)C12—C11—H11A120.5
C10—O3—C18118.26 (15)C10—C11—H11A120.5
C12—O4—C17118.22 (16)O4—C12—C11123.46 (18)
C15—O6—C16114.98 (16)O4—C12—C13115.72 (17)
C7—N1—N2120.43 (18)C11—C12—C13120.82 (17)
C7—N1—H1A124.2 (14)C14—C13—C12119.67 (18)
N2—N1—H1A114.6 (14)C14—C13—H13A120.2
C8—N2—N1115.63 (17)C12—C13—H13A120.2
C6—C1—C2121.78 (19)C13—C14—C9121.17 (17)
C6—C1—H1B119.1C13—C14—C15117.78 (17)
C2—C1—H1B119.1C9—C14—C15120.59 (16)
C3—C2—C1119.8 (2)O5—C15—O6123.04 (18)
C3—C2—H2B120.1O5—C15—C14124.35 (18)
C1—C2—H2B120.1O6—C15—C14112.46 (17)
C2—C3—O1124.7 (2)O6—C16—H16A109.5
C2—C3—C4119.3 (2)O6—C16—H16B109.5
O1—C3—C4116.04 (19)H16A—C16—H16B109.5
C3—C4—C5120.3 (2)O6—C16—H16C109.5
C3—C4—H4A119.8H16A—C16—H16C109.5
C5—C4—H4A119.8H16B—C16—H16C109.5
C6—C5—C4121.4 (2)O4—C17—H17A109.5
C6—C5—H5A119.3O4—C17—H17B109.5
C4—C5—H5A119.3H17A—C17—H17B109.5
C5—C6—C1117.35 (19)O4—C17—H17C109.5
C5—C6—C7118.43 (18)H17A—C17—H17C109.5
C1—C6—C7124.20 (18)H17B—C17—H17C109.5
O2—C7—N1122.64 (19)O3—C18—H18A109.5
O2—C7—C6121.79 (18)O3—C18—H18B109.5
N1—C7—C6115.55 (18)H18A—C18—H18B109.5
N2—C8—C9120.71 (18)O3—C18—H18C109.5
N2—C8—H8A119.6H18A—C18—H18C109.5
C9—C8—H8A119.6H18B—C18—H18C109.5
C10—C9—C14117.63 (16)O1—C19—H19A109.5
C10—C9—C8120.10 (17)O1—C19—H19B109.5
C14—C9—C8122.24 (17)H19A—C19—H19B109.5
O3—C10—C11122.77 (17)O1—C19—H19C109.5
O3—C10—C9115.61 (16)H19A—C19—H19C109.5
C11—C10—C9121.61 (17)H19B—C19—H19C109.5
C12—C11—C10119.05 (18)
C7—N1—N2—C8174.00 (18)C14—C9—C10—O3178.40 (17)
C6—C1—C2—C31.2 (4)C8—C9—C10—O30.3 (3)
C1—C2—C3—O1178.3 (2)C14—C9—C10—C111.4 (3)
C1—C2—C3—C42.7 (3)C8—C9—C10—C11179.51 (18)
C19—O1—C3—C25.8 (3)O3—C10—C11—C12178.44 (18)
C19—O1—C3—C4175.3 (2)C9—C10—C11—C121.4 (3)
C2—C3—C4—C51.7 (4)C17—O4—C12—C1111.9 (3)
O1—C3—C4—C5179.3 (2)C17—O4—C12—C13167.25 (19)
C3—C4—C5—C60.9 (4)C10—C11—C12—O4178.79 (19)
C4—C5—C6—C12.4 (3)C10—C11—C12—C130.4 (3)
C4—C5—C6—C7179.4 (2)O4—C12—C13—C14177.21 (18)
C2—C1—C6—C51.4 (3)C11—C12—C13—C142.0 (3)
C2—C1—C6—C7179.4 (2)C12—C13—C14—C91.9 (3)
N2—N1—C7—O21.1 (3)C12—C13—C14—C15170.38 (18)
N2—N1—C7—C6179.71 (16)C10—C9—C14—C130.2 (3)
C5—C6—C7—O220.4 (3)C8—C9—C14—C13177.79 (18)
C1—C6—C7—O2157.6 (2)C10—C9—C14—C15171.85 (18)
C5—C6—C7—N1160.94 (19)C8—C9—C14—C1510.1 (3)
C1—C6—C7—N121.0 (3)C16—O6—C15—O57.0 (3)
N1—N2—C8—C9177.12 (17)C16—O6—C15—C14177.25 (18)
N2—C8—C9—C10148.9 (2)C13—C14—C15—O5111.9 (2)
N2—C8—C9—C1429.1 (3)C9—C14—C15—O560.4 (3)
C18—O3—C10—C119.9 (3)C13—C14—C15—O663.8 (2)
C18—O3—C10—C9169.98 (18)C9—C14—C15—O6123.87 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O5i0.84 (2)2.13 (2)2.969 (2)172.3 (19)
C18—H18B···N2ii0.962.623.501 (3)153
C19—H19B···O5iii0.962.573.511 (3)168
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+2, z+2; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC19H20N2O6
Mr372.37
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.8468 (7), 10.7392 (8), 10.9764 (8)
α, β, γ (°)113.377 (2), 90.656 (2), 104.695 (2)
V3)918.52 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.28 × 0.14 × 0.11
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.972, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
10426, 3415, 2224
Rint0.033
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.114, 1.02
No. of reflections3415
No. of parameters252
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.17

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O5i0.84 (2)2.13 (2)2.969 (2)172.3 (19)
C18—H18B···N2ii0.962.623.501 (3)153
C19—H19B···O5iii0.962.573.511 (3)168
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+2, z+2; (iii) x, y, z+1.
 

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationChahan, Z. H., Arif, M., Shafiq, Z., Yaqub, M. & Supuran, C. T. (2006). J. Enzyme Inhib. Med Chem., 21, 95–103.  Web of Science PubMed
First citationKhan, K. M., Shah, Z., Ahmad, V. U., Muhammad, K., Taha, M., Rahim, F., Jahun, H., Perveen, S. & Choudhary, M. I. (2011). Med. Chem. 7, 572–580.  Web of Science CAS PubMed
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationZhang, X. (2009). Acta Cryst. E65, o1388.  Web of Science CSD CrossRef IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds