organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Bromo­phen­yl)-2-(naphthalen-1-yl)acetamide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P.A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 31 July 2012; accepted 2 August 2012; online 8 August 2012)

In the title compound, C18H14BrNO, the naphthalene ring system [maximum deviation = 0.015 (3) Å] forms a dihedral angle of 67.70 (10)° with the benzene ring. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds into C(4) chains propagating in [100]. A C—H⋯O inter­action reinforces the chain connectivity, generating an R21(6) loop.

Related literature

For general background to and related structures of the title compound, see: Fun et al. (2010[Fun, H.-K., Quah, C. K., Vijesh, A. M., Malladi, S. & Isloor, A. M. (2010). Acta Cryst. E66, o29-o30.], 2011a[Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2926-o2927.],b[Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2941-o2942.], 2012[Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o1385.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14BrNO

  • Mr = 340.21

  • Orthorhombic, P 21 21 21

  • a = 4.7603 (1) Å

  • b = 11.4614 (3) Å

  • c = 26.6255 (6) Å

  • V = 1452.68 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.83 mm−1

  • T = 100 K

  • 0.32 × 0.16 × 0.13 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.463, Tmax = 0.719

  • 16642 measured reflections

  • 3864 independent reflections

  • 3516 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.061

  • S = 1.03

  • 3864 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.33 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1587 Friedel pairs

  • Flack parameter: 0.001 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.86 (3) 2.03 (3) 2.855 (3) 163 (2)
C11—H11A⋯O1i 0.99 2.55 3.279 (3) 130
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on synthesis of amides (Fun et al., 2010, 2011a, 2011b, 2012), we report herein the crystal structure of the title compound.

The molecular structure is shown in Fig. 1. Bond lengths are comparable to related structures (Fun et al., 2010, 2011a, 2011b, 2012). The naphthalene ring system (C1-C10, maximum deviation of 0.015 (3) Å at atom C9) forms a dihedral angle of 67.70 (10)° with the benzene ring (C13-C18).

In the crystal structure, Fig. 2, molecules are linked via N1–H1N1···O1 and C11–H11A···O1 hydrogen bonds (Table 1) into one-dimensional [100] chains which contain R21 (6) ring motifs (Bernstein et al., 1995).

Related literature top

For general background to and related structures of the title compound, see: Fun et al. (2010, 2011a, 2011b, 2012). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

1-Naphthaleneacetic acid (0.186 g, 1 mmol), 2-bromoaniline (0.1 ml, 1 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (1.0 g, 0.01 mol) were dissolved in dichloromethane (20 ml). The mixture was stirred in presence of triethylamine at 273 K for about 3 h. The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring. The concotion was then extracted thrice with dichloromethane. The organic layer was washed with saturated NaHCO3 solution and brine solution, dried and concentrated under reduced pressure to give the title compound. Colourless blocks were grown from toluene solution by the slow evaporation method (m.p.: 421K).

Refinement top

Atom H1N1 was located in a difference Fourier map and refined freely [N–H = 0.86 (3) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.95 or 0.99 Å and Uiso(H) = 1.2 Ueq(C). The reported Flack parameter was obtained by TWIN/BASF procedure in SHELXL (Sheldrick, 2008).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 40% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the c axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
N-(2-Bromophenyl)-2-(naphthalen-1-yl)acetamide top
Crystal data top
C18H14BrNOF(000) = 688
Mr = 340.21Dx = 1.556 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8019 reflections
a = 4.7603 (1) Åθ = 2.3–30.8°
b = 11.4614 (3) ŵ = 2.83 mm1
c = 26.6255 (6) ÅT = 100 K
V = 1452.68 (6) Å3Block, colourless
Z = 40.32 × 0.16 × 0.13 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3864 independent reflections
Radiation source: fine-focus sealed tube3516 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 29.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 66
Tmin = 0.463, Tmax = 0.719k = 1515
16642 measured reflectionsl = 3636
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0272P)2 + 0.2223P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3864 reflectionsΔρmax = 0.63 e Å3
195 parametersΔρmin = 0.33 e Å3
0 restraintsAbsolute structure: Flack (1983), 1587 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.001 (8)
Crystal data top
C18H14BrNOV = 1452.68 (6) Å3
Mr = 340.21Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.7603 (1) ŵ = 2.83 mm1
b = 11.4614 (3) ÅT = 100 K
c = 26.6255 (6) Å0.32 × 0.16 × 0.13 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3864 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3516 reflections with I > 2σ(I)
Tmin = 0.463, Tmax = 0.719Rint = 0.031
16642 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.061Δρmax = 0.63 e Å3
S = 1.03Δρmin = 0.33 e Å3
3864 reflectionsAbsolute structure: Flack (1983), 1587 Friedel pairs
195 parametersAbsolute structure parameter: 0.001 (8)
0 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.44680 (5)0.197949 (18)0.766005 (8)0.01881 (6)
O11.1551 (4)0.32404 (15)0.64580 (7)0.0288 (4)
N10.7212 (5)0.25292 (18)0.66352 (8)0.0205 (4)
C10.9798 (6)0.4924 (2)0.54712 (8)0.0243 (5)
C20.8336 (6)0.3968 (2)0.52540 (10)0.0290 (6)
H2A0.71220.35120.54580.035*
C30.8643 (7)0.3692 (3)0.47576 (10)0.0362 (7)
H3A0.76160.30600.46180.043*
C41.0465 (8)0.4340 (3)0.44572 (10)0.0404 (7)
H4A1.07020.41330.41140.048*
C51.1896 (7)0.5257 (3)0.46455 (10)0.0342 (7)
H5A1.30990.56910.44310.041*
C61.1646 (6)0.5586 (2)0.51556 (9)0.0254 (5)
C71.3132 (7)0.6544 (2)0.53578 (11)0.0327 (6)
H7A1.43700.69810.51510.039*
C81.2791 (6)0.6844 (2)0.58521 (10)0.0318 (6)
H8A1.37880.74880.59890.038*
C91.0935 (6)0.6184 (2)0.61591 (9)0.0274 (6)
H9A1.06880.64080.65000.033*
C100.9508 (6)0.52492 (19)0.59833 (8)0.0237 (5)
C110.7656 (6)0.45304 (19)0.63269 (9)0.0238 (5)
H11A0.58460.43740.61560.029*
H11B0.72540.49840.66350.029*
C120.9006 (6)0.3379 (2)0.64713 (8)0.0211 (6)
C130.8129 (5)0.14552 (19)0.68404 (8)0.0169 (5)
C140.7098 (5)0.10589 (17)0.73006 (8)0.0159 (4)
C150.7974 (5)0.00074 (19)0.75029 (8)0.0202 (5)
H15A0.72120.02600.78120.024*
C160.9963 (5)0.06519 (18)0.72528 (8)0.0244 (6)
H16A1.06040.13650.73940.029*
C171.1024 (5)0.0273 (2)0.67953 (9)0.0240 (6)
H17A1.23860.07290.66230.029*
C181.0100 (5)0.07691 (19)0.65886 (8)0.0207 (5)
H18A1.08150.10180.62730.025*
H1N10.543 (6)0.261 (2)0.6612 (8)0.015 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01624 (11)0.01879 (9)0.02138 (9)0.00023 (10)0.00331 (10)0.00085 (8)
O10.0139 (9)0.0299 (10)0.0427 (10)0.0035 (8)0.0034 (9)0.0116 (8)
N10.0126 (11)0.0246 (10)0.0244 (9)0.0045 (9)0.0025 (10)0.0081 (8)
C10.0171 (14)0.0310 (11)0.0249 (10)0.0080 (11)0.0005 (11)0.0072 (9)
C20.0178 (13)0.0312 (13)0.0380 (14)0.0009 (12)0.0006 (13)0.0094 (11)
C30.0269 (17)0.0460 (16)0.0359 (14)0.0036 (14)0.0049 (13)0.0062 (12)
C40.0273 (15)0.0627 (19)0.0312 (12)0.0067 (18)0.0001 (15)0.0022 (12)
C50.0229 (15)0.0514 (17)0.0282 (13)0.0013 (14)0.0047 (13)0.0095 (12)
C60.0188 (13)0.0313 (13)0.0261 (11)0.0052 (12)0.0023 (12)0.0084 (10)
C70.0226 (15)0.0352 (13)0.0404 (14)0.0043 (13)0.0041 (13)0.0134 (11)
C80.0249 (15)0.0285 (14)0.0419 (14)0.0021 (13)0.0034 (12)0.0033 (11)
C90.0242 (17)0.0307 (12)0.0271 (11)0.0073 (12)0.0011 (12)0.0060 (9)
C100.0189 (12)0.0245 (11)0.0278 (10)0.0071 (12)0.0013 (13)0.0058 (8)
C110.0214 (15)0.0234 (11)0.0264 (11)0.0057 (11)0.0021 (11)0.0045 (9)
C120.0202 (16)0.0237 (11)0.0195 (10)0.0030 (10)0.0020 (11)0.0028 (8)
C130.0116 (12)0.0168 (10)0.0222 (10)0.0002 (9)0.0031 (10)0.0016 (8)
C140.0123 (11)0.0158 (9)0.0197 (9)0.0006 (8)0.0020 (11)0.0013 (8)
C150.0157 (12)0.0187 (10)0.0262 (10)0.0041 (10)0.0027 (10)0.0052 (8)
C160.0170 (15)0.0169 (10)0.0393 (13)0.0006 (9)0.0036 (12)0.0034 (8)
C170.0140 (15)0.0231 (11)0.0349 (12)0.0026 (10)0.0006 (11)0.0088 (9)
C180.0146 (15)0.0267 (11)0.0210 (9)0.0031 (10)0.0019 (10)0.0022 (8)
Geometric parameters (Å, º) top
Br1—C141.896 (2)C8—C91.422 (4)
O1—C121.223 (3)C8—H8A0.9500
N1—C121.367 (3)C9—C101.352 (4)
N1—C131.416 (3)C9—H9A0.9500
N1—H1N10.86 (3)C10—C111.514 (3)
C1—C101.420 (3)C11—C121.517 (3)
C1—C21.421 (4)C11—H11A0.9900
C1—C61.434 (3)C11—H11B0.9900
C2—C31.367 (4)C13—C181.396 (3)
C2—H2A0.9500C13—C141.396 (3)
C3—C41.394 (4)C14—C151.384 (3)
C3—H3A0.9500C15—C161.382 (3)
C4—C51.349 (4)C15—H15A0.9500
C4—H4A0.9500C16—C171.388 (3)
C5—C61.415 (4)C16—H16A0.9500
C5—H5A0.9500C17—C181.386 (3)
C6—C71.412 (4)C17—H17A0.9500
C7—C81.370 (4)C18—H18A0.9500
C7—H7A0.9500
C12—N1—C13123.4 (2)C9—C10—C1119.4 (2)
C12—N1—H1N1121.0 (16)C9—C10—C11121.0 (2)
C13—N1—H1N1115.6 (16)C1—C10—C11119.6 (2)
C10—C1—C2123.1 (2)C10—C11—C12112.3 (2)
C10—C1—C6118.9 (2)C10—C11—H11A109.1
C2—C1—C6118.0 (2)C12—C11—H11A109.1
C3—C2—C1121.3 (3)C10—C11—H11B109.1
C3—C2—H2A119.3C12—C11—H11B109.1
C1—C2—H2A119.3H11A—C11—H11B107.9
C2—C3—C4119.9 (3)O1—C12—N1122.4 (2)
C2—C3—H3A120.1O1—C12—C11121.7 (2)
C4—C3—H3A120.1N1—C12—C11115.8 (2)
C5—C4—C3121.0 (3)C18—C13—C14118.3 (2)
C5—C4—H4A119.5C18—C13—N1120.8 (2)
C3—C4—H4A119.5C14—C13—N1120.9 (2)
C4—C5—C6121.5 (3)C15—C14—C13121.2 (2)
C4—C5—H5A119.3C15—C14—Br1119.14 (17)
C6—C5—H5A119.3C13—C14—Br1119.61 (16)
C7—C6—C5122.1 (2)C16—C15—C14119.7 (2)
C7—C6—C1119.7 (2)C16—C15—H15A120.2
C5—C6—C1118.2 (2)C14—C15—H15A120.2
C8—C7—C6120.1 (3)C15—C16—C17120.1 (2)
C8—C7—H7A119.9C15—C16—H16A120.0
C6—C7—H7A119.9C17—C16—H16A120.0
C7—C8—C9119.5 (3)C18—C17—C16120.2 (2)
C7—C8—H8A120.2C18—C17—H17A119.9
C9—C8—H8A120.2C16—C17—H17A119.9
C10—C9—C8122.3 (2)C17—C18—C13120.5 (2)
C10—C9—H9A118.8C17—C18—H18A119.7
C8—C9—H9A118.8C13—C18—H18A119.7
C10—C1—C2—C3179.1 (3)C6—C1—C10—C11177.6 (2)
C6—C1—C2—C30.9 (4)C9—C10—C11—C12104.1 (3)
C1—C2—C3—C41.4 (4)C1—C10—C11—C1274.6 (3)
C2—C3—C4—C51.5 (5)C13—N1—C12—O15.2 (4)
C3—C4—C5—C61.1 (5)C13—N1—C12—C11172.3 (2)
C4—C5—C6—C7180.0 (3)C10—C11—C12—O123.2 (3)
C4—C5—C6—C10.6 (4)C10—C11—C12—N1159.3 (2)
C10—C1—C6—C70.1 (4)C12—N1—C13—C1850.8 (3)
C2—C1—C6—C7179.9 (2)C12—N1—C13—C14128.9 (3)
C10—C1—C6—C5179.5 (3)C18—C13—C14—C150.6 (3)
C2—C1—C6—C50.4 (4)N1—C13—C14—C15179.7 (2)
C5—C6—C7—C8178.9 (3)C18—C13—C14—Br1178.87 (17)
C1—C6—C7—C80.5 (4)N1—C13—C14—Br10.8 (3)
C6—C7—C8—C90.0 (4)C13—C14—C15—C161.7 (3)
C7—C8—C9—C101.1 (4)Br1—C14—C15—C16177.77 (17)
C8—C9—C10—C11.7 (4)C14—C15—C16—C171.5 (3)
C8—C9—C10—C11177.0 (2)C15—C16—C17—C180.2 (4)
C2—C1—C10—C9178.8 (2)C16—C17—C18—C130.9 (4)
C6—C1—C10—C91.2 (4)C14—C13—C18—C170.7 (3)
C2—C1—C10—C112.5 (4)N1—C13—C18—C17179.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.86 (3)2.03 (3)2.855 (3)163 (2)
C11—H11A···O1i0.992.553.279 (3)130
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC18H14BrNO
Mr340.21
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)4.7603 (1), 11.4614 (3), 26.6255 (6)
V3)1452.68 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.83
Crystal size (mm)0.32 × 0.16 × 0.13
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.463, 0.719
No. of measured, independent and
observed [I > 2σ(I)] reflections
16642, 3864, 3516
Rint0.031
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.061, 1.03
No. of reflections3864
No. of parameters195
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.63, 0.33
Absolute structureFlack (1983), 1587 Friedel pairs
Absolute structure parameter0.001 (8)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.86 (3)2.03 (3)2.855 (3)163 (2)
C11—H11A···O1i0.992.553.279 (3)130
Symmetry code: (i) x1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). BN also thanks UGC, New Delhi, and the Government of India for the purchase of chemicals through the SAP-DRS-Phase 1 programme.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2926–o2927.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2941–o2942.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o1385.  CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Vijesh, A. M., Malladi, S. & Isloor, A. M. (2010). Acta Cryst. E66, o29–o30.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds