supplementary materials


hg5234 scheme

Acta Cryst. (2012). E68, m1206-m1207    [ doi:10.1107/S1600536812036367 ]

Bis[(1,10-phenanthroline-[kappa]2N,N')bis(triphenylphosphane-[kappa]P)copper(I)] nonadecaoxidohexamolybdate(VI)

F. Gschwind and M. Jansen

Abstract top

The title compound, [Cu(C12H8N2)(C18H15P)2]2[Mo6O19], was obtained by co-crystallization of the mixed-ligand copper complex cation (1,10-phenanthroline)bis(triphenylphosphane)copper(I), [Cu(phen)(PPh3)2]+, with the Lindquist polyanion [Mo6O19]2-. The asymmetric unit consists of half a Lindquist anion and one [Cu(phen)(PPh3)2]+ cationic complex. In the cation, there are intramolecular [pi]-[pi] interactions [centroid-centroid distances = 3.617 (2) and 3.7272 (18) Å]. This inorganic-organic adduct is connected by C-H...O hydrogen bonds, forming a two dimensional network lying in the ab plane. These networks are connected by C-H...[pi] interactions into a three-dimensional structure.

Comment top

Only very few examples of combinations between Lindquist anions with copper(I) complexes exist. Some examples are the MOF-like honeycomb compounds of (Sha et al., 2009) and the charged directed assemblies of (Hou et al., 2011) which form macrocycles and polymer chains. Another example is the Anderson-type heteropolyanion (Al(OH)6Mo6O18) connected to a copper(I)phenanthroline complex which has been investigated by (Shivaiah et al., 2007) and possesess large water-pipes formed by 28 cocrystallized water molecules.

The mixed-ligand copper complex (1,10-phenanthroline)bis(triphenylphosphanecopper(I), [Cu(phen)(PPh3)2]+, was cocrystallized with the Lindquist polyanion [Mo6O19]2- to form the title compound (Fig. 1). The asymmetric unit consists of half a Lindquist anion, and one [Cu(phen)(PPh3)2]+ cationic complex.

In the cation there are two intramolecular ππ contacts present: one involving ring N1/C2–C6 (Cg(2)) of the phenanthroline moiety and phenyl ring C15–C20 (Cg(5)) with a centroid–centroid distance of 3.7272 (18) Å; the other involves ring C5–C10 (Cg(4)) of the phenanthroline moiety and the same phenyl ring C15–C20 (Cg(5)) with a centroid-centroid distance of 3.617 (2) Å.

In the crystal, each [Cu(phen)(PPh3)2]+ cation connects via C—H···O hydrogen bonds (Table 1 and Fig. 2) to neighbouring Linquist anions, [Mo6O19]2-, to form a two-dimensional hydrogen bonded network lying in the ab plane.

These networks are linked via C—H···π interactions to form a densely packed three-dimensional structure (Table 1).

The polyoxoanion [Mo6O19]2- is built from six distorted MoO6 octahedra sharing common edges and one common vertex at the central O atom, and has crystallographic m3m (Oh) symmetry (Jaypal et al., 2010; Rheingold et al., 1993). The commercially available complex (1,10-phenanthroline)bis(triphenylphosphanecopper(I), [Cu(phen)(PPh3)2]+, was first characterized by McMillin et al., ((1985). In our case the coordination geometry (distorted tetrahedral) and the average Cu—N [2.098 (2) Å] and Cu—P [2.2599 (4) Å] distances fit very well to the values for the free complexes [Cu—N 2.075 Å and Cu—P 2.258 Å]. This shows that the building blocks retain their original conformations (Gruber & Jansen, 2011).

Related literature top

For general background to mixed-ligand copper complexes and Lindquist anions, see: Gruber & Jansen (2011). For details concerning the [Mo6O19]2- polyoxidoanion, see: Jaypal et al. (2010); Rheingold et al. (1993). For the synthesis of the complex cation (1,10-phenanthroline)bis(triphenylphosphanecopper(I), [Cu(phen)(PPh3)2]+, see: McMillin et al. (1985). For the synthesis of polyoxidoanions and the Anderson-type heteropolyanion [Al(OH)6Mo6O18], see: Kemperer & Silavwe (2007). For examples of combinations of Lindquist anions with copper(I) complexes, see: Sha et al. (2009); Hou et al. (2011). For the synthesis of Cu2+ complexes, see: Shivaiah et al. (2007).

Experimental top

The polyoxomolybdate [NBu4]2[Mo6O19] was prepared following the synthetic procedure of tetrabutylammonium hexatungstate, replacing sodium tungstate with sodium molybdate (Kemperer & Silavwe, 2007). The title compound was prepared by mixing 0.24 g of (1,10- phenanthroline)bis(triphenylphosphanecopper(I) and the 0.2 g polymolybdate dissolved in a 1:1 mixture of acetonitrile (15 ml) and methanol (15 ml), and stirred over–night. The reaction-solution was overlayered with diethylether. Green crystals, suitable for X-ray diffraction analysis, grew after a few days at the interface of the solvents.

Refinement top

The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 Å with Uiso(H) = 1.2Ueq(parent C-atom).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-RED32 (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with the atom numbering. The displacement ellipsoids are drawn at the 50% probability level. Symmetry code: (a) -x + 1, -y + 1, -z + 1.
[Figure 2] Fig. 2. A view along the x-axis of the crystal packing of the title compound.
Bis[(1,10-phenanthroline-κ2N,N')bis(triphenylphosphane- κP)copper(I)] nonadecaoxidohexamolybdate(VI) top
Crystal data top
[Cu(C12H8N2)(C18H15P)2]2[Mo6O19]Z = 1
Mr = 2416.23F(000) = 1202
Triclinic, P1Dx = 1.765 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.287 (2) ÅCell parameters from 22955 reflections
b = 13.572 (3) Åθ = 1.3–26.7°
c = 16.307 (3) ŵ = 1.40 mm1
α = 109.03 (3)°T = 298 K
β = 102.98 (3)°Block, green
γ = 93.93 (3)°0.3 × 0.2 × 0.1 mm
V = 2273.7 (8) Å3
Data collection top
Stoe IPDS 2
diffractometer
9593 independent reflections
Radiation source: fine-focus sealed tube7714 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 6.67 pixels mm-1θmax = 26.7°, θmin = 1.4°
ω and φ scansh = 1414
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 2009)
k = 1717
Tmin = 0.818, Tmax = 0.908l = 1920
22882 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 0.86 w = 1/[σ2(Fo2) + (0.0449P)2]
where P = (Fo2 + 2Fc2)/3
9593 reflections(Δ/σ)max = 0.001
592 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
[Cu(C12H8N2)(C18H15P)2]2[Mo6O19]γ = 93.93 (3)°
Mr = 2416.23V = 2273.7 (8) Å3
Triclinic, P1Z = 1
a = 11.287 (2) ÅMo Kα radiation
b = 13.572 (3) ŵ = 1.40 mm1
c = 16.307 (3) ÅT = 298 K
α = 109.03 (3)°0.3 × 0.2 × 0.1 mm
β = 102.98 (3)°
Data collection top
Stoe IPDS 2
diffractometer
9593 independent reflections
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 2009)
7714 reflections with I > 2σ(I)
Tmin = 0.818, Tmax = 0.908Rint = 0.024
22882 measured reflectionsθmax = 26.7°
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.063Δρmax = 0.25 e Å3
S = 0.86Δρmin = 0.57 e Å3
9593 reflectionsAbsolute structure: ?
592 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.77376 (18)0.75215 (17)0.33346 (13)0.0316 (4)
C20.7543 (2)0.8190 (2)0.40689 (18)0.0395 (6)
H20.70610.87040.40110.047*
C30.8023 (3)0.8165 (3)0.49267 (18)0.0475 (7)
H30.78520.86460.54240.057*
C40.8742 (3)0.7429 (3)0.50257 (19)0.0496 (7)
H40.90690.74030.55940.060*
C50.8988 (2)0.6712 (2)0.42729 (18)0.0392 (6)
C60.8446 (2)0.6764 (2)0.34301 (16)0.0306 (5)
C70.9768 (3)0.5924 (3)0.4315 (2)0.0490 (7)
H71.01520.58930.48720.059*
C80.9951 (2)0.5240 (3)0.3575 (2)0.0478 (7)
H81.04590.47400.36270.057*
C90.9388 (2)0.5253 (2)0.27000 (19)0.0371 (6)
C100.86382 (19)0.60291 (19)0.26322 (17)0.0305 (5)
N20.81050 (17)0.61224 (16)0.18323 (13)0.0310 (4)
C120.8292 (2)0.5449 (2)0.10935 (18)0.0394 (6)
H120.79270.55070.05430.047*
C130.9012 (3)0.4656 (2)0.1106 (2)0.0480 (7)
H130.91200.41950.05730.058*
C140.9558 (2)0.4563 (2)0.1909 (2)0.0473 (7)
H141.00420.40380.19250.057*
C151.0301 (2)0.85331 (19)0.29914 (16)0.0294 (5)
C161.0508 (2)0.9196 (2)0.38800 (18)0.0382 (6)
H161.01010.97780.40200.046*
C171.1321 (3)0.8991 (3)0.45586 (18)0.0459 (7)
H171.14530.94340.51530.055*
C181.1938 (2)0.8131 (3)0.4357 (2)0.0463 (7)
H181.24780.79950.48150.056*
C191.1749 (2)0.7481 (2)0.3481 (2)0.0430 (6)
H191.21730.69090.33440.052*
C201.0929 (2)0.7674 (2)0.28012 (17)0.0351 (5)
H201.07960.72230.22100.042*
C210.9724 (2)0.8439 (2)0.11557 (17)0.0358 (5)
C221.0965 (3)0.8739 (3)0.12552 (19)0.0454 (7)
H221.15050.89990.18260.054*
C231.1404 (3)0.8655 (3)0.0515 (2)0.0592 (8)
H231.22360.88610.05890.071*
C241.0614 (4)0.8270 (3)0.0332 (2)0.0657 (10)
H241.09110.82180.08300.079*
C250.9396 (4)0.7963 (3)0.0442 (2)0.0625 (9)
H250.88620.77090.10160.075*
C260.8947 (3)0.8027 (3)0.02979 (19)0.0475 (7)
H260.81210.77910.02150.057*
C270.8914 (2)1.0043 (2)0.24709 (16)0.0331 (5)
C280.9738 (3)1.0803 (2)0.2400 (2)0.0453 (6)
H281.04021.06070.21680.054*
C330.4973 (2)0.7708 (2)0.03642 (16)0.0320 (5)
C290.9572 (3)1.1848 (2)0.2673 (2)0.0566 (8)
H291.01231.23490.26180.068*
C340.5743 (3)0.8412 (2)0.01921 (19)0.0441 (6)
H340.64340.88140.06400.053*
C350.5489 (3)0.8519 (3)0.0645 (2)0.0618 (9)
H350.60040.89980.07550.074*
C300.8613 (3)1.2152 (3)0.3019 (2)0.0606 (9)
H30A0.85111.28580.32000.073*
C360.4480 (3)0.7919 (3)0.1310 (2)0.0676 (10)
H360.43180.79820.18730.081*
C310.7794 (3)1.1418 (3)0.3103 (2)0.0589 (9)
H31A0.71451.16290.33490.071*
C320.7935 (3)1.0358 (2)0.28200 (19)0.0442 (6)
H320.73690.98600.28660.053*
C370.3714 (3)0.7229 (3)0.1144 (2)0.0648 (10)
H370.30250.68280.15940.078*
C380.3955 (3)0.7122 (3)0.03103 (18)0.0477 (7)
H380.34260.66490.02040.057*
C390.4811 (2)0.8713 (2)0.21782 (16)0.0307 (5)
C400.4625 (3)0.9616 (2)0.19788 (19)0.0430 (6)
H400.47460.96560.14440.052*
C410.4265 (3)1.0456 (2)0.2562 (2)0.0556 (8)
H410.41551.10600.24200.067*
C420.4066 (3)1.0410 (3)0.3349 (2)0.0550 (8)
H420.38091.09730.37360.066*
C430.4250 (3)0.9524 (3)0.3559 (2)0.0568 (8)
H430.41290.94920.40960.068*
C440.4614 (3)0.8676 (2)0.29817 (18)0.0426 (6)
H440.47280.80780.31310.051*
C450.4334 (2)0.6472 (2)0.14044 (16)0.0317 (5)
C460.3092 (2)0.6507 (2)0.1356 (2)0.0431 (6)
H460.27640.71090.13270.052*
C470.2343 (3)0.5654 (3)0.1349 (2)0.0532 (8)
H470.15140.56850.13160.064*
C480.2821 (3)0.4760 (3)0.1391 (2)0.0565 (8)
H480.23170.41900.13940.068*
C490.4036 (3)0.4711 (3)0.1428 (3)0.0678 (10)
H490.43570.41040.14490.081*
C500.4790 (3)0.5563 (2)0.1436 (2)0.0525 (8)
H500.56160.55230.14630.063*
O10.38560 (15)0.66417 (14)0.55476 (12)0.0365 (4)
O20.48099 (18)0.77098 (16)0.45498 (14)0.0468 (5)
O30.35276 (15)0.56076 (15)0.38050 (12)0.0370 (4)
O40.53226 (16)0.60361 (15)0.67428 (11)0.0366 (4)
O50.25802 (14)0.46973 (14)0.47725 (12)0.0352 (4)
O60.62731 (15)0.69308 (14)0.57680 (12)0.0352 (4)
O70.20889 (17)0.35874 (17)0.28887 (13)0.0474 (5)
O80.27708 (17)0.57790 (17)0.66223 (14)0.0477 (5)
O100.59376 (15)0.58943 (14)0.40197 (12)0.0361 (4)
Mo10.332353 (18)0.417707 (18)0.376775 (14)0.03313 (6)
Mo20.488590 (19)0.656614 (17)0.473466 (15)0.03361 (6)
Mo30.368576 (19)0.544685 (18)0.592333 (15)0.03407 (6)
Cu10.73671 (2)0.75378 (2)0.202353 (19)0.02976 (7)
P10.90530 (5)0.86401 (5)0.21108 (4)0.02878 (13)
P20.53840 (5)0.75954 (5)0.14762 (4)0.02702 (12)
O90.50000.50000.50000.0240 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0313 (10)0.0342 (11)0.0294 (10)0.0039 (8)0.0077 (8)0.0118 (9)
C20.0360 (13)0.0427 (16)0.0377 (14)0.0036 (11)0.0126 (11)0.0099 (12)
C30.0464 (15)0.0571 (19)0.0314 (13)0.0081 (14)0.0135 (11)0.0066 (13)
C40.0484 (16)0.066 (2)0.0330 (14)0.0054 (14)0.0029 (12)0.0240 (15)
C50.0351 (12)0.0449 (16)0.0383 (14)0.0057 (11)0.0027 (10)0.0224 (13)
C60.0249 (10)0.0354 (13)0.0345 (12)0.0011 (9)0.0050 (9)0.0188 (11)
C70.0402 (14)0.0559 (19)0.0551 (18)0.0020 (13)0.0038 (13)0.0369 (16)
C80.0338 (13)0.0505 (18)0.069 (2)0.0085 (12)0.0044 (13)0.0400 (17)
C90.0257 (11)0.0339 (14)0.0553 (16)0.0032 (10)0.0071 (10)0.0230 (13)
C100.0230 (10)0.0308 (13)0.0409 (13)0.0021 (9)0.0058 (9)0.0190 (11)
N20.0303 (10)0.0294 (11)0.0328 (10)0.0066 (8)0.0059 (8)0.0115 (9)
C120.0384 (13)0.0372 (15)0.0368 (14)0.0061 (11)0.0071 (11)0.0074 (12)
C130.0445 (15)0.0383 (16)0.0558 (18)0.0094 (12)0.0172 (13)0.0060 (14)
C140.0347 (13)0.0339 (15)0.074 (2)0.0113 (11)0.0147 (13)0.0190 (15)
C150.0231 (10)0.0316 (13)0.0339 (12)0.0021 (9)0.0070 (9)0.0127 (11)
C160.0356 (12)0.0372 (15)0.0393 (14)0.0118 (11)0.0089 (11)0.0094 (12)
C170.0436 (15)0.0550 (19)0.0315 (13)0.0105 (13)0.0037 (11)0.0089 (13)
C180.0335 (13)0.064 (2)0.0471 (16)0.0132 (12)0.0036 (11)0.0301 (15)
C190.0340 (13)0.0459 (16)0.0530 (17)0.0149 (11)0.0117 (12)0.0204 (14)
C200.0316 (12)0.0344 (14)0.0368 (13)0.0078 (10)0.0087 (10)0.0085 (11)
C210.0407 (13)0.0346 (14)0.0337 (13)0.0088 (11)0.0108 (10)0.0128 (11)
C220.0414 (14)0.0573 (19)0.0399 (14)0.0070 (13)0.0126 (11)0.0191 (14)
C230.0530 (17)0.075 (2)0.060 (2)0.0114 (16)0.0291 (15)0.0281 (18)
C240.082 (2)0.080 (3)0.0453 (18)0.017 (2)0.0322 (17)0.0247 (18)
C250.080 (2)0.069 (2)0.0313 (15)0.0105 (18)0.0099 (15)0.0108 (16)
C260.0475 (15)0.0504 (18)0.0377 (14)0.0052 (13)0.0076 (12)0.0093 (13)
C270.0358 (12)0.0299 (13)0.0304 (12)0.0066 (10)0.0017 (10)0.0110 (11)
C280.0528 (16)0.0360 (15)0.0476 (16)0.0035 (12)0.0133 (13)0.0161 (13)
C330.0321 (11)0.0363 (14)0.0312 (12)0.0111 (10)0.0099 (9)0.0141 (11)
C290.078 (2)0.0342 (16)0.0512 (18)0.0013 (15)0.0015 (16)0.0190 (15)
C340.0427 (14)0.0526 (18)0.0419 (15)0.0028 (12)0.0075 (11)0.0262 (14)
C350.064 (2)0.081 (3)0.0583 (19)0.0035 (17)0.0147 (16)0.0494 (19)
C300.076 (2)0.0313 (16)0.058 (2)0.0152 (15)0.0122 (17)0.0125 (15)
C360.069 (2)0.105 (3)0.0437 (17)0.019 (2)0.0097 (15)0.047 (2)
C310.0549 (18)0.053 (2)0.0558 (19)0.0285 (16)0.0021 (15)0.0059 (16)
C320.0404 (14)0.0419 (16)0.0456 (15)0.0120 (12)0.0062 (12)0.0117 (13)
C370.0557 (18)0.096 (3)0.0355 (15)0.0036 (18)0.0028 (13)0.0262 (18)
C380.0447 (15)0.060 (2)0.0344 (14)0.0022 (13)0.0054 (11)0.0168 (14)
C390.0290 (11)0.0315 (13)0.0311 (12)0.0033 (9)0.0053 (9)0.0123 (11)
C400.0542 (16)0.0393 (16)0.0455 (15)0.0148 (12)0.0218 (13)0.0207 (13)
C410.072 (2)0.0363 (17)0.072 (2)0.0204 (15)0.0349 (17)0.0246 (16)
C420.0656 (19)0.0402 (17)0.0587 (19)0.0100 (14)0.0318 (16)0.0058 (15)
C430.077 (2)0.053 (2)0.0420 (16)0.0074 (16)0.0287 (15)0.0110 (15)
C440.0550 (16)0.0395 (16)0.0379 (14)0.0064 (12)0.0153 (12)0.0176 (13)
C450.0329 (11)0.0312 (13)0.0314 (12)0.0030 (9)0.0083 (9)0.0119 (11)
C460.0391 (13)0.0343 (15)0.0542 (17)0.0035 (11)0.0169 (12)0.0107 (13)
C470.0460 (16)0.0453 (18)0.0620 (19)0.0043 (13)0.0279 (14)0.0039 (15)
C480.071 (2)0.0468 (19)0.0502 (17)0.0146 (15)0.0235 (15)0.0147 (15)
C490.071 (2)0.0416 (19)0.099 (3)0.0047 (16)0.015 (2)0.041 (2)
C500.0444 (15)0.0394 (17)0.078 (2)0.0079 (12)0.0130 (15)0.0285 (16)
O10.0363 (9)0.0307 (9)0.0466 (10)0.0124 (7)0.0155 (8)0.0146 (8)
O20.0502 (11)0.0387 (11)0.0603 (12)0.0110 (9)0.0116 (9)0.0302 (10)
O30.0332 (9)0.0413 (10)0.0395 (9)0.0089 (7)0.0026 (7)0.0220 (9)
O40.0388 (9)0.0391 (10)0.0303 (9)0.0038 (8)0.0095 (7)0.0101 (8)
O50.0237 (8)0.0408 (10)0.0424 (10)0.0056 (7)0.0087 (7)0.0161 (8)
O60.0347 (9)0.0287 (9)0.0401 (10)0.0018 (7)0.0059 (7)0.0125 (8)
O70.0355 (9)0.0545 (13)0.0433 (11)0.0015 (8)0.0040 (8)0.0168 (10)
O80.0446 (10)0.0517 (13)0.0515 (11)0.0103 (9)0.0255 (9)0.0150 (10)
O100.0360 (9)0.0391 (10)0.0399 (10)0.0061 (7)0.0134 (7)0.0202 (8)
Mo10.02695 (10)0.03652 (13)0.03166 (11)0.00235 (8)0.00018 (8)0.01217 (9)
Mo20.03471 (11)0.02880 (12)0.04289 (12)0.00829 (8)0.00839 (9)0.02038 (10)
Mo30.03162 (11)0.03736 (13)0.03706 (12)0.00855 (9)0.01645 (9)0.01242 (10)
Cu10.02732 (14)0.03106 (16)0.03130 (15)0.00607 (11)0.00420 (11)0.01348 (13)
P10.0275 (3)0.0278 (3)0.0308 (3)0.0047 (2)0.0066 (2)0.0107 (3)
P20.0253 (3)0.0291 (3)0.0286 (3)0.0045 (2)0.0053 (2)0.0138 (3)
O90.0214 (10)0.0259 (12)0.0260 (11)0.0051 (8)0.0051 (8)0.0112 (9)
Geometric parameters (Å, º) top
N1—C21.320 (3)C35—C361.371 (5)
N1—C61.372 (3)C35—H350.9300
N1—Cu12.092 (2)C30—C311.372 (5)
C2—C31.394 (4)C30—H30A0.9300
C2—H20.9300C36—C371.362 (5)
C3—C41.356 (5)C36—H360.9300
C3—H30.9300C31—C321.393 (4)
C4—C51.394 (4)C31—H31A0.9300
C4—H40.9300C32—H320.9300
C5—C61.399 (3)C37—C381.382 (4)
C5—C71.440 (4)C37—H370.9300
C6—C101.430 (4)C38—H380.9300
C7—C81.330 (5)C39—C401.384 (4)
C7—H70.9300C39—C441.393 (4)
C8—C91.431 (4)C39—P21.834 (3)
C8—H80.9300C40—C411.379 (4)
C9—C141.388 (4)C40—H400.9300
C9—C101.412 (3)C41—C421.373 (5)
C10—N21.358 (3)C41—H410.9300
N2—C121.324 (3)C42—C431.369 (5)
N2—Cu12.104 (2)C42—H420.9300
C12—C131.395 (4)C43—C441.382 (4)
C12—H120.9300C43—H430.9300
C13—C141.366 (4)C44—H440.9300
C13—H130.9300C45—C501.381 (4)
C14—H140.9300C45—C461.391 (4)
C15—C161.390 (4)C45—P21.821 (3)
C15—C201.391 (3)C46—C471.382 (4)
C15—P11.823 (2)C46—H460.9300
C16—C171.387 (4)C47—C481.377 (5)
C16—H160.9300C47—H470.9300
C17—C181.385 (4)C48—C491.366 (5)
C17—H170.9300C48—H480.9300
C18—C191.371 (4)C49—C501.383 (4)
C18—H180.9300C49—H490.9300
C19—C201.385 (4)C50—H500.9300
C19—H190.9300O1—Mo31.9236 (18)
C20—H200.9300O1—Mo21.9336 (18)
C21—C261.382 (4)O2—Mo21.6791 (18)
C21—C221.389 (4)O3—Mo11.9189 (18)
C21—P11.831 (3)O3—Mo21.933 (2)
C22—C231.380 (4)O4—Mo1i1.8939 (18)
C22—H220.9300O4—Mo31.9571 (19)
C23—C241.374 (5)O5—Mo31.9086 (19)
C23—H230.9300O5—Mo11.9574 (18)
C24—C251.363 (5)O6—Mo21.9238 (18)
C24—H240.9300O6—Mo1i1.9293 (18)
C25—C261.391 (4)O7—Mo11.6849 (19)
C25—H250.9300O8—Mo31.6811 (19)
C26—H260.9300O10—Mo21.9174 (19)
C27—C321.384 (4)O10—Mo3i1.9238 (18)
C27—C281.392 (4)Mo1—O4i1.8939 (18)
C27—P11.830 (3)Mo1—O6i1.9293 (18)
C28—C291.381 (4)Mo1—O92.3248 (11)
C28—H280.9300Mo2—O92.3096 (5)
C33—C381.378 (4)Mo3—O10i1.9238 (18)
C33—C341.385 (4)Mo3—O92.3165 (7)
C33—P21.827 (2)Cu1—P22.2327 (9)
C29—C301.359 (5)Cu1—P12.2866 (10)
C29—H290.9300O9—Mo2i2.3096 (5)
C34—C351.388 (4)O9—Mo3i2.3165 (7)
C34—H340.9300O9—Mo1i2.3248 (11)
C2—N1—C6117.6 (2)C41—C40—C39120.9 (3)
C2—N1—Cu1130.46 (18)C41—C40—H40119.5
C6—N1—Cu1111.25 (16)C39—C40—H40119.5
N1—C2—C3123.5 (3)C42—C41—C40120.6 (3)
N1—C2—H2118.3C42—C41—H41119.7
C3—C2—H2118.3C40—C41—H41119.7
C4—C3—C2119.1 (3)C43—C42—C41119.3 (3)
C4—C3—H3120.4C43—C42—H42120.4
C2—C3—H3120.4C41—C42—H42120.4
C3—C4—C5119.7 (3)C42—C43—C44120.8 (3)
C3—C4—H4120.1C42—C43—H43119.6
C5—C4—H4120.1C44—C43—H43119.6
C4—C5—C6118.0 (3)C43—C44—C39120.5 (3)
C4—C5—C7123.6 (3)C43—C44—H44119.8
C6—C5—C7118.3 (3)C39—C44—H44119.8
N1—C6—C5122.0 (2)C50—C45—C46118.3 (2)
N1—C6—C10117.5 (2)C50—C45—P2119.1 (2)
C5—C6—C10120.5 (2)C46—C45—P2122.5 (2)
C8—C7—C5121.4 (3)C47—C46—C45120.5 (3)
C8—C7—H7119.3C47—C46—H46119.8
C5—C7—H7119.3C45—C46—H46119.8
C7—C8—C9121.8 (3)C48—C47—C46120.2 (3)
C7—C8—H8119.1C48—C47—H47119.9
C9—C8—H8119.1C46—C47—H47119.9
C14—C9—C10117.5 (2)C49—C48—C47119.9 (3)
C14—C9—C8124.0 (3)C49—C48—H48120.1
C10—C9—C8118.5 (3)C47—C48—H48120.1
N2—C10—C9122.4 (2)C48—C49—C50120.2 (3)
N2—C10—C6118.1 (2)C48—C49—H49119.9
C9—C10—C6119.5 (2)C50—C49—H49119.9
C12—N2—C10118.2 (2)C45—C50—C49121.0 (3)
C12—N2—Cu1129.71 (17)C45—C50—H50119.5
C10—N2—Cu1111.05 (16)C49—C50—H50119.5
N2—C12—C13122.8 (3)Mo3—O1—Mo2116.14 (9)
N2—C12—H12118.6Mo1—O3—Mo2116.61 (8)
C13—C12—H12118.6Mo1i—O4—Mo3116.64 (9)
C14—C13—C12119.3 (3)Mo3—O5—Mo1116.44 (8)
C14—C13—H13120.3Mo2—O6—Mo1i116.49 (9)
C12—C13—H13120.3Mo2—O10—Mo3i116.62 (9)
C13—C14—C9119.8 (3)O7—Mo1—O4i103.95 (9)
C13—C14—H14120.1O7—Mo1—O3103.37 (9)
C9—C14—H14120.1O4i—Mo1—O388.49 (8)
C16—C15—C20118.8 (2)O7—Mo1—O6i103.46 (9)
C16—C15—P1121.08 (19)O4i—Mo1—O6i87.56 (8)
C20—C15—P1119.35 (19)O3—Mo1—O6i153.05 (7)
C17—C16—C15120.0 (2)O7—Mo1—O5102.67 (9)
C17—C16—H16120.0O4i—Mo1—O5153.37 (7)
C15—C16—H16120.0O3—Mo1—O586.14 (8)
C18—C17—C16120.4 (3)O6i—Mo1—O585.56 (8)
C18—C17—H17119.8O7—Mo1—O9178.81 (7)
C16—C17—H17119.8O4i—Mo1—O977.24 (6)
C19—C18—C17119.9 (2)O3—Mo1—O976.61 (6)
C19—C18—H18120.1O6i—Mo1—O976.52 (6)
C17—C18—H18120.1O5—Mo1—O976.15 (5)
C18—C19—C20120.0 (3)O2—Mo2—O10103.27 (9)
C18—C19—H19120.0O2—Mo2—O6102.58 (9)
C20—C19—H19120.0O10—Mo2—O687.67 (8)
C19—C20—C15120.9 (2)O2—Mo2—O3103.70 (9)
C19—C20—H20119.6O10—Mo2—O386.88 (8)
C15—C20—H20119.6O6—Mo2—O3153.71 (7)
C26—C21—C22118.5 (3)O2—Mo2—O1103.00 (9)
C26—C21—P1118.4 (2)O10—Mo2—O1153.73 (7)
C22—C21—P1123.0 (2)O6—Mo2—O186.97 (8)
C23—C22—C21120.7 (3)O3—Mo2—O186.63 (8)
C23—C22—H22119.7O2—Mo2—O9179.56 (8)
C21—C22—H22119.7O10—Mo2—O976.86 (6)
C24—C23—C22120.1 (3)O6—Mo2—O977.00 (6)
C24—C23—H23119.9O3—Mo2—O976.72 (6)
C22—C23—H23119.9O1—Mo2—O976.87 (6)
C25—C24—C23120.0 (3)O8—Mo3—O5104.52 (9)
C25—C24—H24120.0O8—Mo3—O1103.60 (9)
C23—C24—H24120.0O5—Mo3—O188.27 (8)
C24—C25—C26120.4 (3)O8—Mo3—O10i102.87 (9)
C24—C25—H25119.8O5—Mo3—O10i87.76 (8)
C26—C25—H25119.8O1—Mo3—O10i153.39 (7)
C21—C26—C25120.3 (3)O8—Mo3—O4101.95 (9)
C21—C26—H26119.8O5—Mo3—O4153.53 (7)
C25—C26—H26119.8O1—Mo3—O485.93 (8)
C32—C27—C28118.7 (3)O10i—Mo3—O485.99 (8)
C32—C27—P1118.3 (2)O8—Mo3—O9178.16 (7)
C28—C27—P1123.0 (2)O5—Mo3—O977.25 (5)
C29—C28—C27120.2 (3)O1—Mo3—O976.88 (6)
C29—C28—H28119.9O10i—Mo3—O976.57 (6)
C27—C28—H28119.9O4—Mo3—O976.28 (6)
C38—C33—C34118.7 (2)N1—Cu1—N280.24 (8)
C38—C33—P2123.6 (2)N1—Cu1—P2112.06 (6)
C34—C33—P2117.71 (19)N2—Cu1—P2123.26 (6)
C30—C29—C28120.8 (3)N1—Cu1—P1101.36 (7)
C30—C29—H29119.6N2—Cu1—P199.82 (6)
C28—C29—H29119.6P2—Cu1—P1128.31 (3)
C33—C34—C35120.3 (3)C15—P1—C27104.56 (12)
C33—C34—H34119.8C15—P1—C21103.74 (11)
C35—C34—H34119.8C27—P1—C21103.67 (12)
C36—C35—C34120.1 (3)C15—P1—Cu1106.58 (8)
C36—C35—H35120.0C27—P1—Cu1115.18 (9)
C34—C35—H35120.0C21—P1—Cu1121.40 (9)
C29—C30—C31120.1 (3)C45—P2—C33105.64 (12)
C29—C30—H30A120.0C45—P2—C39102.26 (11)
C31—C30—H30A120.0C33—P2—C39103.70 (11)
C37—C36—C35120.0 (3)C45—P2—Cu1114.30 (9)
C37—C36—H36120.0C33—P2—Cu1115.88 (8)
C35—C36—H36120.0C39—P2—Cu1113.58 (8)
C30—C31—C32120.0 (3)Mo2—O9—Mo2i180.0
C30—C31—H31A120.0Mo2—O9—Mo3i89.91 (3)
C32—C31—H31A120.0Mo2i—O9—Mo3i90.09 (3)
C27—C32—C31120.2 (3)Mo2—O9—Mo390.09 (3)
C27—C32—H32119.9Mo2i—O9—Mo389.91 (3)
C31—C32—H32119.9Mo3i—O9—Mo3180.0
C36—C37—C38120.4 (3)Mo2—O9—Mo1i89.98 (3)
C36—C37—H37119.8Mo2i—O9—Mo1i90.02 (3)
C38—C37—H37119.8Mo3i—O9—Mo1i90.16 (2)
C33—C38—C37120.6 (3)Mo3—O9—Mo1i89.84 (2)
C33—C38—H38119.7Mo2—O9—Mo190.02 (3)
C37—C38—H38119.7Mo2i—O9—Mo189.98 (3)
C40—C39—C44118.0 (2)Mo3i—O9—Mo189.84 (2)
C40—C39—P2123.7 (2)Mo3—O9—Mo190.16 (2)
C44—C39—P2118.2 (2)Mo1i—O9—Mo1180.0
C6—N1—C2—C30.3 (4)C12—N2—Cu1—N1179.2 (2)
Cu1—N1—C2—C3169.11 (19)C10—N2—Cu1—N111.55 (15)
N1—C2—C3—C40.9 (4)C12—N2—Cu1—P270.7 (2)
C2—C3—C4—C50.1 (4)C10—N2—Cu1—P2121.60 (14)
C3—C4—C5—C61.8 (4)C12—N2—Cu1—P179.3 (2)
C3—C4—C5—C7178.2 (3)C10—N2—Cu1—P188.41 (15)
C2—N1—C6—C52.3 (3)C16—C15—P1—C2732.1 (2)
Cu1—N1—C6—C5169.06 (18)C20—C15—P1—C27158.2 (2)
C2—N1—C6—C10178.9 (2)C16—C15—P1—C21140.5 (2)
Cu1—N1—C6—C109.7 (3)C20—C15—P1—C2149.9 (2)
C4—C5—C6—N13.1 (4)C16—C15—P1—Cu190.3 (2)
C7—C5—C6—N1176.9 (2)C20—C15—P1—Cu179.3 (2)
C4—C5—C6—C10178.2 (2)C32—C27—P1—C15104.8 (2)
C7—C5—C6—C101.8 (4)C28—C27—P1—C1576.0 (2)
C4—C5—C7—C8178.3 (3)C32—C27—P1—C21146.8 (2)
C6—C5—C7—C81.7 (4)C28—C27—P1—C2132.4 (2)
C5—C7—C8—C90.2 (4)C32—C27—P1—Cu111.8 (2)
C7—C8—C9—C14179.5 (3)C28—C27—P1—Cu1167.43 (19)
C7—C8—C9—C101.2 (4)C26—C21—P1—C15152.6 (2)
C14—C9—C10—N20.8 (3)C22—C21—P1—C1531.3 (3)
C8—C9—C10—N2177.6 (2)C26—C21—P1—C2798.4 (2)
C14—C9—C10—C6179.4 (2)C22—C21—P1—C2777.7 (3)
C8—C9—C10—C61.0 (3)C26—C21—P1—Cu133.1 (3)
N1—C6—C10—N20.3 (3)C22—C21—P1—Cu1150.9 (2)
C5—C6—C10—N2179.1 (2)N1—Cu1—P1—C1527.33 (11)
N1—C6—C10—C9178.3 (2)N2—Cu1—P1—C1554.57 (10)
C5—C6—C10—C90.5 (3)P2—Cu1—P1—C15157.64 (9)
C9—C10—N2—C120.8 (3)N1—Cu1—P1—C2788.12 (11)
C6—C10—N2—C12179.4 (2)N2—Cu1—P1—C27170.03 (10)
C9—C10—N2—Cu1168.51 (18)P2—Cu1—P1—C2742.18 (9)
C6—C10—N2—Cu110.1 (2)N1—Cu1—P1—C21145.51 (11)
C10—N2—C12—C130.2 (4)N2—Cu1—P1—C2163.60 (12)
Cu1—N2—C12—C13166.7 (2)P2—Cu1—P1—C2184.19 (11)
N2—C12—C13—C140.2 (4)C50—C45—P2—C33110.7 (2)
C12—C13—C14—C90.2 (4)C46—C45—P2—C3372.0 (2)
C10—C9—C14—C130.4 (4)C50—C45—P2—C39141.0 (2)
C8—C9—C14—C13177.9 (3)C46—C45—P2—C3936.2 (2)
C20—C15—C16—C170.5 (4)C50—C45—P2—Cu117.9 (3)
P1—C15—C16—C17169.2 (2)C46—C45—P2—Cu1159.4 (2)
C15—C16—C17—C180.4 (4)C38—C33—P2—C457.8 (3)
C16—C17—C18—C190.3 (5)C34—C33—P2—C45171.1 (2)
C17—C18—C19—C201.1 (4)C38—C33—P2—C3999.3 (3)
C18—C19—C20—C151.0 (4)C34—C33—P2—C3981.7 (2)
C16—C15—C20—C190.2 (4)C38—C33—P2—Cu1135.5 (2)
P1—C15—C20—C19170.1 (2)C34—C33—P2—Cu143.4 (2)
C26—C21—C22—C231.8 (5)C40—C39—P2—C45133.6 (2)
P1—C21—C22—C23174.2 (3)C44—C39—P2—C4550.0 (2)
C21—C22—C23—C240.2 (5)C40—C39—P2—C3323.9 (2)
C22—C23—C24—C250.4 (6)C44—C39—P2—C33159.7 (2)
C23—C24—C25—C260.7 (6)C40—C39—P2—Cu1102.7 (2)
C22—C21—C26—C252.9 (5)C44—C39—P2—Cu173.7 (2)
P1—C21—C26—C25173.3 (3)N1—Cu1—P2—C4560.99 (11)
C24—C25—C26—C212.4 (5)N2—Cu1—P2—C4531.70 (12)
C32—C27—C28—C290.1 (4)P1—Cu1—P2—C45172.79 (9)
P1—C27—C28—C29179.1 (2)N1—Cu1—P2—C33175.78 (11)
C27—C28—C29—C300.5 (5)N2—Cu1—P2—C3391.53 (12)
C38—C33—C34—C350.1 (5)P1—Cu1—P2—C3349.56 (10)
P2—C33—C34—C35179.0 (3)N1—Cu1—P2—C3955.85 (11)
C33—C34—C35—C360.7 (5)N2—Cu1—P2—C39148.54 (11)
C28—C29—C30—C310.1 (5)P1—Cu1—P2—C3970.38 (9)
C34—C35—C36—C371.1 (6)O2—Mo2—O9—Mo2i7 (100)
C29—C30—C31—C321.0 (5)O10—Mo2—O9—Mo2i100 (100)
C28—C27—C32—C310.8 (4)O6—Mo2—O9—Mo2i9 (100)
P1—C27—C32—C31179.9 (2)O3—Mo2—O9—Mo2i170 (100)
C30—C31—C32—C271.4 (4)O1—Mo2—O9—Mo2i81 (100)
C35—C36—C37—C380.7 (6)O2—Mo2—O9—Mo3i106 (10)
C34—C33—C38—C370.5 (5)O10—Mo2—O9—Mo3i1.23 (5)
P2—C33—C38—C37178.5 (3)O6—Mo2—O9—Mo3i89.40 (6)
C36—C37—C38—C330.1 (6)O3—Mo2—O9—Mo3i91.10 (6)
C44—C39—C40—C410.4 (4)O1—Mo2—O9—Mo3i179.29 (5)
P2—C39—C40—C41176.0 (2)O2—Mo2—O9—Mo374 (10)
C39—C40—C41—C420.9 (5)O10—Mo2—O9—Mo3178.77 (5)
C40—C41—C42—C431.1 (5)O6—Mo2—O9—Mo390.60 (6)
C41—C42—C43—C441.0 (5)O3—Mo2—O9—Mo388.90 (6)
C42—C43—C44—C390.6 (5)O1—Mo2—O9—Mo30.71 (5)
C40—C39—C44—C430.3 (4)O2—Mo2—O9—Mo1i16 (10)
P2—C39—C44—C43176.3 (2)O10—Mo2—O9—Mo1i91.39 (6)
C50—C45—C46—C470.7 (4)O6—Mo2—O9—Mo1i0.76 (6)
P2—C45—C46—C47176.6 (2)O3—Mo2—O9—Mo1i178.74 (6)
C45—C46—C47—C480.0 (5)O1—Mo2—O9—Mo1i89.13 (6)
C46—C47—C48—C490.8 (5)O2—Mo2—O9—Mo1164 (32)
C47—C48—C49—C500.8 (6)O10—Mo2—O9—Mo188.61 (6)
C46—C45—C50—C490.6 (5)O6—Mo2—O9—Mo1179.24 (6)
P2—C45—C50—C49176.8 (3)O3—Mo2—O9—Mo11.26 (6)
C48—C49—C50—C450.1 (6)O1—Mo2—O9—Mo190.87 (6)
Mo2—O3—Mo1—O7179.51 (10)O8—Mo3—O9—Mo2106 (2)
Mo2—O3—Mo1—O4i75.53 (10)O5—Mo3—O9—Mo290.49 (6)
Mo2—O3—Mo1—O6i6.1 (2)O1—Mo3—O9—Mo20.71 (5)
Mo2—O3—Mo1—O578.37 (10)O10i—Mo3—O9—Mo2178.77 (5)
Mo2—O3—Mo1—O91.70 (8)O4—Mo3—O9—Mo289.67 (6)
Mo3—O5—Mo1—O7179.37 (10)O8—Mo3—O9—Mo2i74 (2)
Mo3—O5—Mo1—O4i2.3 (2)O5—Mo3—O9—Mo2i89.51 (6)
Mo3—O5—Mo1—O376.52 (10)O1—Mo3—O9—Mo2i179.29 (5)
Mo3—O5—Mo1—O6i77.82 (10)O10i—Mo3—O9—Mo2i1.23 (5)
Mo3—O5—Mo1—O90.62 (7)O4—Mo3—O9—Mo2i90.33 (6)
Mo3i—O10—Mo2—O2177.90 (10)O8—Mo3—O9—Mo3i61 (100)
Mo3i—O10—Mo2—O675.53 (10)O5—Mo3—O9—Mo3i102 (100)
Mo3i—O10—Mo2—O378.75 (10)O1—Mo3—O9—Mo3i167 (100)
Mo3i—O10—Mo2—O12.8 (2)O10i—Mo3—O9—Mo3i11 (100)
Mo3i—O10—Mo2—O91.66 (7)O4—Mo3—O9—Mo3i78 (100)
Mo1i—O6—Mo2—O2178.84 (10)O8—Mo3—O9—Mo1i16 (2)
Mo1i—O6—Mo2—O1078.08 (10)O5—Mo3—O9—Mo1i179.53 (6)
Mo1i—O6—Mo2—O30.1 (2)O1—Mo3—O9—Mo1i89.27 (6)
Mo1i—O6—Mo2—O176.19 (10)O10i—Mo3—O9—Mo1i88.79 (6)
Mo1i—O6—Mo2—O91.03 (7)O4—Mo3—O9—Mo1i0.30 (6)
Mo1—O3—Mo2—O2178.42 (10)O8—Mo3—O9—Mo1164 (2)
Mo1—O3—Mo2—O1075.52 (10)O5—Mo3—O9—Mo10.47 (6)
Mo1—O3—Mo2—O62.8 (2)O1—Mo3—O9—Mo190.73 (6)
Mo1—O3—Mo2—O179.01 (10)O10i—Mo3—O9—Mo191.21 (6)
Mo1—O3—Mo2—O91.71 (8)O4—Mo3—O9—Mo1179.70 (6)
Mo3—O1—Mo2—O2179.49 (10)O7—Mo1—O9—Mo290 (4)
Mo3—O1—Mo2—O100.2 (2)O4i—Mo1—O9—Mo290.22 (6)
Mo3—O1—Mo2—O678.30 (10)O3—Mo1—O9—Mo21.27 (6)
Mo3—O1—Mo2—O376.19 (10)O6i—Mo1—O9—Mo2179.24 (5)
Mo3—O1—Mo2—O90.95 (7)O5—Mo1—O9—Mo290.55 (6)
Mo1—O5—Mo3—O8179.93 (10)O7—Mo1—O9—Mo2i90 (4)
Mo1—O5—Mo3—O176.32 (10)O4i—Mo1—O9—Mo2i89.78 (6)
Mo1—O5—Mo3—O10i77.36 (10)O3—Mo1—O9—Mo2i178.73 (6)
Mo1—O5—Mo3—O41.0 (2)O6i—Mo1—O9—Mo2i0.76 (5)
Mo1—O5—Mo3—O90.62 (7)O5—Mo1—O9—Mo2i89.45 (6)
Mo2—O1—Mo3—O8179.12 (10)O7—Mo1—O9—Mo3i180 (100)
Mo2—O1—Mo3—O576.36 (10)O4i—Mo1—O9—Mo3i0.31 (6)
Mo2—O1—Mo3—O10i5.2 (2)O3—Mo1—O9—Mo3i91.18 (6)
Mo2—O1—Mo3—O477.79 (10)O6i—Mo1—O9—Mo3i90.85 (6)
Mo2—O1—Mo3—O90.95 (7)O5—Mo1—O9—Mo3i179.54 (5)
Mo1i—O4—Mo3—O8179.05 (11)O7—Mo1—O9—Mo30 (4)
Mo1i—O4—Mo3—O50.1 (2)O4i—Mo1—O9—Mo3179.69 (6)
Mo1i—O4—Mo3—O177.89 (11)O3—Mo1—O9—Mo388.82 (6)
Mo1i—O4—Mo3—O10i76.73 (11)O6i—Mo1—O9—Mo389.15 (6)
Mo1i—O4—Mo3—O90.42 (8)O5—Mo1—O9—Mo30.46 (5)
C2—N1—Cu1—N2178.7 (2)O7—Mo1—O9—Mo1i86 (100)
C6—N1—Cu1—N211.37 (15)O4i—Mo1—O9—Mo1i93 (100)
C2—N1—Cu1—P256.6 (2)O3—Mo1—O9—Mo1i175 (100)
C6—N1—Cu1—P2133.43 (14)O6i—Mo1—O9—Mo1i3 (100)
C2—N1—Cu1—P183.2 (2)O5—Mo1—O9—Mo1i86 (100)
C6—N1—Cu1—P186.79 (16)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg8 is the centroid of the C33–C38 ring.
D—H···AD—HH···AD···AD—H···A
C19—H19···O3ii0.932.603.446 (3)152
C29—H29···O7iii0.932.553.443 (4)161
C30—H30A···O8iv0.932.413.257 (5)152
C44—H44···O20.932.513.206 (4)132
C49—H49···Cg8v0.932.973.782 (5)147
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x+1, y+2, z+1; (v) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg8 is the centroid of the C33–C38 ring.
D—H···AD—HH···AD···AD—H···A
C19—H19···O3i0.932.603.446 (3)152
C29—H29···O7ii0.932.553.443 (4)161
C30—H30A···O8iii0.932.413.257 (5)152
C44—H44···O20.932.513.206 (4)132
C49—H49···Cg8iv0.932.973.782 (5)147
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x+1, y+2, z+1; (iv) x+1, y+1, z.
Acknowledgements top

FG thanks the Swiss National Science Foundation for generous support.

references
References top

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Gruber, F. & Jansen, M. (2011). Z. Anorg. Allg. Chem. 637, 1676–1679.

Hou, G., Bi, L., Li, B., Wang, B. & Wu, L. (2011). CrystEngComm, 13, 3526–3535.

Jaypal, M. R., Prasad, K. S. & Sreddhar, N. Y. (2010). Glob. J. Sci. Front. Res. 30, 28–31.

Kemperer, W. G. & Silavwe, N. (2007). Inorg. Synth. 27, 74–85.

McMillin, D. R., Kirchhoff, J. R., Robinson, W. R., Powell, D. R., McKenzie, A. T. & Chen, S. (1985). Inorg. Chem. 24, 3929–3933.

Rheingold, A. L., White, C. B., Haggerty, B. S. & Maatta, E. A. (1993). Acta Cryst. C49, 756–758.

Sha, J., Huang, L., Peng, J., Pang, H., Tian, A., Zhang, P., Chen, Y. & Zhu, M. (2009). Solid State Sci. 11, 417–421.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Shivaiah, V., Chatterjee, T., Srinivasu, K. & Das, S. K. (2007). Eur. J. Inorg. Chem. pp. 231–234.

Stoe & Cie (2009). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie GmBh, Damstadt, Germany.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.