supplementary materials


hg5236 scheme

Acta Cryst. (2012). E68, m1218-m1219    [ doi:10.1107/S1600536812036264 ]

Bis[(cyanido-[kappa]C)bis(1,10-phenanthroline-[kappa]2N,N')copper(II)] pentakis(cyanido-[kappa]C)nitrosoferrate(II) dimethylformamide monosolvate

O. V. Kozachuk, V. N. Kokozay, O. Y. Vassilyeva and B. W. Skelton

Abstract top

The title compound, [Cu(CN)(C12H8N2)2]2[Fe(CN)5(NO)]·C3H7NO, is formed of discrete [Cu(phen)2CN]+ cations (phen is 1,10-phenanthroline), nitroprusside [Fe(CN)5(NO)]2- anions and dimethylformamide (DMF) molecules of crystallization. The metal atom has a distorted trigonal-bipyramidal coordination environment, defined by four N atoms of two phen molecules and a C atom of the cyanide group (in the equatorial position). The [Fe(CN)5(NO)]2- anion was found to be disordered about (but not on) a crystallographic twofold rotation axis. Geometries were restrained to ideal values. The dimethylformamide solvent molecule was found to be disordered about a crystallographic inversion centre.

Comment top

Recently, we have shown that sodium nitroprusside could be used as a source of metalloligand or could supply the second metal upon its destruction in direct synthesis of heterometallic Cu/Fe complexes (Vreshch et al., 2009a,b). Within this study we prepared a new cation-anion Cu/Fe complex based on the self-assembly of nitroprusside anion and Cu cation containing a bidentate amine.The title compound was isolated from the solution obtained by reacting copper powder and sodium nitroprusside with (NH4)2C2O4 and 1,10-phenanthroline in DMF. Obviously, the nitroprusside partially decomposed to supply a cyanide group to the cation while sodium oxalate did not participate. To the best of our knowledge the title compound has not been structurally characterized.

The title compound, [Cu(C12H8N2)2CN]2[Fe(CN)5(NO)].DMF, is formed of discrete [Cu(phen)2CN]+ cations (phen is 1,10-phenanthroline), nitroprusside [Fe(CN)5(NO)]2- anions and DMF molecules of crystallization. The [Cu(phen)2CN]+ cation has no crystallographically imposed symmetry (Fig. 1). The metal atom has a distorted trigonal-bipyramidal geometry, coordinating four nitrogen atoms of two phen molecules and a carbon atom of the cyanide group. One nitrogen from each phen ligand coordinates to the copper centre in an equatorial position, with Cu–N distances of 2.090 (3) and 2.164 (3) Å, while the other nitrogen atoms occur at axial positions, with Cu–N distances of 2.011 (3) and 2.024 (3) Å. The cyanide group occupies the remaining equatorial position with the Cu–C bond of 1.964 (4) Å. A similar coordination geometry was observed in other complexes containing [Cu(phen)2CN]]+ cations (Dunaj-Jurčo et al., 1993; Potočňák et al., 1996a,b).

The [Fe(CN)5(NO)]2- anion was found to be disordered about (but not on) the crystallographic 2-fold axis. Geometries were restrained to ideal values (Soria et al., 2002): a usual distorted octahedral pagoda-like conformation of the nitroprusside anion, with Fe–C bond distances in the range 1.933 (7)–1.959 (6) Å and a Fe–N bond distance of 1.630 (6) Å. There was no indication from the refinement of any disorder between the nitrosyl and cyanide groups.

The structure is completed by dimethylformamide solvent molecules that were found to be disordered about the crystallographic inversion centre.

Related literature top

For direct synthesis using sodium nitroprusside, see: Vreshch et al. (2009a,b). For structures containing [Cu(phen)2CN]]+ cations, see: Dunaj-Jurčo et al. (1993); Potočňák et al. (1996a,b). For a review of structures containing nitroprusside anions, see: Soria et al. (2002).

Experimental top

Copper powder (0.08 g, 1.25 mmol), (NH4)2C2O4.H2O (0.18 g, 1.25 mmol), Na2[Fe(CN)5(NO)].2H2O (0.37 g, 1.25 mmol), phen.H2O (0.75 g, 3.77 mmol), and 20 ml DMF were heated to 323–333 K and magnetically stirred until total dissolution of the copper was observed (50 min). The resulting blue solution was filtered and allowed to stand at room temperature. Blue-green plate-like microcrystals of the title compound were formed after one day. They were collected by filter-suction, washed with dry PriOH and finally dried in vacuo (yield: 20%).

Refinement top

The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed at idealized positions (C–H = 0.95 Å, Uiso(H) = 1.2Ueq C for CH and 1.5Ueq C for CH3) and refined as part of riding models.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the cation with the numbering scheme (the non-hydrogen atoms ellipsoids are shown at the 50% probability level).
[Figure 2] Fig. 2. Unit-cell contents of (I). Only one set of each of the disordered atoms is shown for clarity.
Bis[(Cyanido-κC)bis(1,10-phenanthroline-κ2N,N') copper(II)] pentakis(cyanido-κC)nitrosoferrate(II) dimethylformamide monosolvate top
Crystal data top
[Cu(CN)(C12H8N2)2]2[Fe(CN)5(NO)]·C3H7NOF(000) = 1212
Mr = 1188.99Dx = 1.563 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ycCell parameters from 4070 reflections
a = 11.9235 (16) Åθ = 2.5–27.6°
b = 10.7836 (16) ŵ = 1.18 mm1
c = 19.805 (3) ÅT = 150 K
β = 97.252 (3)°Plate, green
V = 2526.1 (6) Å30.26 × 0.21 × 0.07 mm
Z = 2
Data collection top
Siemens SMART CCD
diffractometer
3739 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ω scansθmax = 27.6°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.86, Tmax = 1k = 1414
26129 measured reflectionsl = 2525
5844 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0315P)2 + 6.0554P]
where P = (Fo2 + 2Fc2)/3
5844 reflections(Δ/σ)max = 0.034
430 parametersΔρmax = 0.56 e Å3
44 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Cu(CN)(C12H8N2)2]2[Fe(CN)5(NO)]·C3H7NOV = 2526.1 (6) Å3
Mr = 1188.99Z = 2
Monoclinic, P2/cMo Kα radiation
a = 11.9235 (16) ŵ = 1.18 mm1
b = 10.7836 (16) ÅT = 150 K
c = 19.805 (3) Å0.26 × 0.21 × 0.07 mm
β = 97.252 (3)°
Data collection top
Siemens SMART CCD
diffractometer
5844 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3739 reflections with I > 2σ(I)
Tmin = 0.86, Tmax = 1Rint = 0.066
26129 measured reflectionsθmax = 27.6°
Refinement top
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.135Δρmax = 0.56 e Å3
S = 1.04Δρmin = 0.59 e Å3
5844 reflectionsAbsolute structure: ?
430 parametersFlack parameter: ?
44 restraintsRogers parameter: ?
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The Fe(CN)5(NO) anion was found to be disordered about (but not on) the crystallographic 2-fold axis. Geometries were restrained to ideal values. There was no indication from the refinement of any disorder between the nitrosyl and cyanide groups. The dimethylformamide solvent molecule was found to be disordered about the crystallographic inversion centre.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.24634 (4)0.51817 (4)0.41187 (2)0.02860 (12)
Fe10.48386 (19)1.06768 (8)0.25085 (16)0.0258 (5)0.5
O10.4694 (8)1.3257 (5)0.2553 (5)0.064 (4)0.5
O20.0132 (6)0.0540 (6)0.3713 (3)0.0567 (18)0.5
N10.2124 (3)0.6513 (3)0.34018 (13)0.0286 (7)
N100.0187 (9)0.0109 (9)0.4835 (4)0.046 (3)0.5
N20.1909 (3)0.4049 (3)0.32377 (14)0.0314 (7)
N30.2866 (3)0.3710 (3)0.47243 (14)0.0281 (7)
N40.4172 (2)0.5023 (3)0.39952 (13)0.0258 (6)
N50.0827 (3)0.6436 (3)0.50242 (15)0.0407 (8)
N60.3618 (10)1.0421 (12)0.3797 (5)0.034 (3)0.5
N70.2577 (7)1.0334 (7)0.1589 (4)0.0325 (15)0.5
N6'0.6170 (11)1.0517 (13)0.1269 (6)0.038 (3)0.5
N7'0.7084 (7)1.0498 (7)0.3477 (4)0.0325 (15)0.5
N80.50.7807 (4)0.250.0437 (13)
N90.4757 (8)1.2186 (5)0.2510 (7)0.039 (3)0.5
C10.1684 (3)0.6090 (3)0.27799 (16)0.0276 (8)
C20.1320 (3)0.6898 (4)0.22391 (17)0.0321 (9)
C30.1418 (3)0.8171 (4)0.23649 (19)0.0399 (10)
H30.11760.87470.20140.048*
C40.1865 (4)0.8588 (4)0.29959 (19)0.0406 (10)
H40.19390.94510.30860.049*
C50.2207 (3)0.7723 (4)0.35009 (18)0.0358 (9)
H50.25150.80160.39380.043*
C60.0857 (3)0.6375 (4)0.16002 (17)0.0355 (9)
H60.05870.69140.12360.043*
C70.1600 (3)0.4779 (4)0.26856 (16)0.0279 (8)
C80.1175 (3)0.4299 (4)0.20479 (17)0.0334 (9)
C90.1135 (3)0.3004 (4)0.19781 (19)0.0414 (10)
H90.08730.26370.15510.05*
C100.1477 (4)0.2278 (4)0.2532 (2)0.0462 (11)
H100.14580.140.24930.055*
C110.1856 (4)0.2834 (4)0.3154 (2)0.0404 (10)
H110.20850.23170.35350.048*
C120.0793 (3)0.5150 (4)0.15008 (17)0.0366 (9)
H120.04940.48340.10670.044*
C130.3944 (3)0.3303 (3)0.47224 (15)0.0251 (8)
C140.4385 (3)0.2252 (3)0.50800 (16)0.0283 (8)
C150.3657 (4)0.1628 (3)0.54723 (17)0.0353 (9)
H150.39160.09220.57340.042*
C160.2570 (3)0.2047 (4)0.54740 (18)0.0360 (9)
H160.20710.16250.57330.043*
C170.2198 (3)0.3097 (3)0.50953 (17)0.0323 (8)
H170.14450.33780.51040.039*
C180.5514 (3)0.1872 (3)0.50234 (17)0.0329 (9)
H180.58130.11550.52610.039*
C190.4645 (3)0.3996 (3)0.43208 (15)0.0248 (7)
C200.5760 (3)0.3616 (3)0.42840 (16)0.0280 (8)
C210.6399 (3)0.4355 (4)0.38890 (17)0.0329 (9)
H210.71610.4140.38480.039*
C220.5925 (3)0.5385 (4)0.35627 (17)0.0344 (9)
H220.63540.58860.32950.041*
C230.4811 (3)0.5690 (3)0.36269 (16)0.0290 (8)
H230.44910.64050.33980.035*
C240.6164 (3)0.2517 (3)0.46361 (17)0.0327 (9)
H240.69070.22330.45970.039*
C250.1439 (3)0.5939 (4)0.47038 (17)0.0321 (9)
C260.4078 (9)1.0528 (11)0.3314 (4)0.024 (2)0.5
C270.3411 (6)1.0476 (9)0.1938 (4)0.021 (2)0.5
C280.50.8869 (5)0.250.0358 (13)
C26'0.5654 (10)1.0548 (15)0.1727 (5)0.036 (3)0.5
C27'0.6237 (6)1.0557 (10)0.3120 (4)0.025 (2)0.5
C290.1247 (8)0.0542 (8)0.4854 (5)0.052 (3)0.5
H29A0.11010.1410.47250.078*0.5
H29B0.16550.05040.53150.078*0.5
H29C0.17040.01550.45340.078*0.5
C300.0397 (12)0.0140 (12)0.5423 (6)0.057 (4)0.5
H30A0.09720.07940.53690.086*0.5
H30B0.01430.0310.58280.086*0.5
H30C0.07620.06630.54750.086*0.5
C310.0278 (8)0.0603 (8)0.4248 (4)0.041 (2)0.5
H310.09750.10320.42450.049*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0344 (2)0.0324 (2)0.01888 (19)0.0065 (2)0.00289 (16)0.00409 (18)
Fe10.0389 (13)0.0173 (4)0.0198 (4)0.0003 (5)0.0017 (8)0.0003 (7)
O10.126 (11)0.023 (3)0.042 (4)0.005 (4)0.004 (6)0.001 (3)
O20.058 (4)0.066 (4)0.046 (3)0.011 (3)0.002 (3)0.012 (3)
N10.0343 (16)0.0327 (17)0.0184 (13)0.0077 (13)0.0020 (12)0.0013 (12)
N100.058 (6)0.026 (4)0.051 (8)0.004 (4)0.005 (5)0.007 (5)
N20.0377 (18)0.0337 (18)0.0225 (14)0.0085 (14)0.0029 (13)0.0008 (12)
N30.0329 (16)0.0299 (16)0.0219 (13)0.0018 (13)0.0045 (12)0.0005 (12)
N40.0327 (15)0.0280 (16)0.0170 (12)0.0004 (13)0.0038 (11)0.0025 (11)
N50.047 (2)0.048 (2)0.0287 (16)0.0075 (17)0.0081 (15)0.0032 (15)
N60.042 (5)0.041 (6)0.018 (4)0.003 (4)0.003 (3)0.003 (3)
N70.046 (4)0.034 (2)0.0199 (19)0.000 (2)0.013 (2)0.002 (2)
N6'0.051 (6)0.030 (5)0.034 (5)0.003 (4)0.009 (4)0.008 (4)
N7'0.046 (4)0.034 (2)0.0199 (19)0.000 (2)0.013 (2)0.002 (2)
N80.077 (4)0.026 (3)0.030 (2)00.013 (2)0
N90.059 (9)0.030 (3)0.024 (2)0.002 (3)0.011 (6)0.003 (4)
C10.0256 (18)0.040 (2)0.0178 (15)0.0086 (16)0.0039 (13)0.0015 (14)
C20.0289 (19)0.047 (2)0.0215 (16)0.0100 (17)0.0068 (14)0.0053 (15)
C30.040 (2)0.047 (2)0.0320 (19)0.0116 (19)0.0015 (17)0.0159 (17)
C40.050 (3)0.033 (2)0.037 (2)0.0067 (19)0.0013 (19)0.0092 (17)
C50.046 (2)0.036 (2)0.0258 (18)0.0053 (18)0.0026 (16)0.0016 (15)
C60.030 (2)0.059 (3)0.0176 (16)0.0094 (18)0.0041 (14)0.0062 (16)
C70.0246 (17)0.040 (2)0.0202 (15)0.0106 (16)0.0047 (13)0.0003 (15)
C80.036 (2)0.044 (2)0.0221 (16)0.0108 (17)0.0086 (15)0.0037 (15)
C90.041 (2)0.053 (3)0.0297 (19)0.008 (2)0.0016 (17)0.0131 (18)
C100.059 (3)0.039 (2)0.041 (2)0.010 (2)0.003 (2)0.0064 (19)
C110.054 (3)0.032 (2)0.033 (2)0.0095 (19)0.0014 (18)0.0014 (16)
C120.0321 (19)0.061 (3)0.0177 (15)0.0105 (19)0.0051 (14)0.0018 (17)
C130.0331 (19)0.0252 (18)0.0164 (14)0.0010 (15)0.0008 (13)0.0005 (13)
C140.039 (2)0.0250 (18)0.0190 (15)0.0028 (16)0.0022 (15)0.0023 (13)
C150.055 (3)0.026 (2)0.0234 (17)0.0027 (18)0.0004 (17)0.0010 (14)
C160.048 (2)0.035 (2)0.0256 (18)0.0057 (18)0.0058 (17)0.0033 (15)
C170.038 (2)0.035 (2)0.0246 (17)0.0030 (17)0.0047 (15)0.0024 (15)
C180.045 (2)0.0261 (19)0.0246 (17)0.0094 (17)0.0070 (16)0.0033 (14)
C190.0320 (19)0.0264 (18)0.0150 (14)0.0034 (15)0.0013 (13)0.0016 (13)
C200.0333 (19)0.032 (2)0.0185 (15)0.0021 (16)0.0003 (14)0.0050 (14)
C210.0302 (19)0.046 (2)0.0229 (17)0.0018 (17)0.0046 (15)0.0065 (15)
C220.037 (2)0.042 (2)0.0244 (17)0.0032 (18)0.0071 (15)0.0006 (16)
C230.034 (2)0.033 (2)0.0197 (16)0.0007 (16)0.0023 (14)0.0022 (14)
C240.033 (2)0.037 (2)0.0257 (17)0.0119 (17)0.0040 (15)0.0038 (15)
C250.034 (2)0.039 (2)0.0228 (17)0.0005 (17)0.0019 (15)0.0036 (15)
C260.034 (5)0.015 (4)0.022 (4)0.009 (4)0.000 (4)0.003 (3)
C270.030 (4)0.025 (4)0.011 (3)0.005 (4)0.013 (3)0.002 (3)
C280.059 (4)0.034 (3)0.014 (2)00.002 (2)0
C26'0.040 (6)0.039 (6)0.026 (5)0.007 (5)0.008 (4)0.007 (4)
C27'0.033 (5)0.026 (4)0.020 (4)0.003 (4)0.018 (4)0.002 (3)
C290.061 (6)0.032 (5)0.058 (6)0.014 (4)0.015 (5)0.004 (4)
C300.072 (8)0.048 (7)0.047 (7)0.015 (6)0.007 (6)0.008 (5)
C310.048 (5)0.040 (5)0.034 (4)0.010 (4)0.002 (4)0.014 (3)
Geometric parameters (Å, º) top
Cu1—C251.964 (4)C6—C121.336 (6)
Cu1—N32.011 (3)C6—H60.95
Cu1—N12.024 (3)C7—C81.399 (5)
Cu1—N42.090 (3)C8—C91.403 (6)
Cu1—N22.164 (3)C8—C121.449 (5)
Fe1—N91.630 (6)C9—C101.367 (6)
Fe1—C271.933 (7)C9—H90.95
Fe1—C26'1.934 (8)C10—C111.394 (5)
Fe1—C27'1.937 (7)C10—H100.95
Fe1—C261.938 (7)C11—H110.95
Fe1—C281.959 (6)C12—H120.95
O1—N91.161 (7)C13—C141.403 (5)
O2—C311.224 (10)C13—C191.434 (5)
N1—C51.322 (5)C14—C151.407 (5)
N1—C11.355 (4)C14—C181.425 (5)
N10—C311.334 (12)C15—C161.373 (6)
N10—C301.430 (15)C15—H150.95
N10—C291.442 (13)C16—C171.399 (5)
N2—C111.321 (5)C16—H160.95
N2—C71.360 (4)C17—H170.95
N3—C171.326 (5)C18—C241.350 (5)
N3—C131.358 (4)C18—H180.95
N4—C231.330 (4)C19—C201.402 (5)
N4—C191.367 (4)C20—C211.407 (5)
N5—C251.158 (5)C20—C241.427 (5)
N6—C261.167 (11)C21—C221.371 (5)
N7—C271.147 (9)C21—H210.95
N6'—C26'1.159 (12)C22—C231.390 (5)
N7'—C27'1.160 (10)C22—H220.95
N8—C281.145 (7)C23—H230.95
C1—C21.406 (5)C24—H240.95
C1—C71.428 (5)C29—H29A0.98
C2—C31.397 (6)C29—H29B0.98
C2—C61.431 (5)C29—H29C0.98
C3—C41.371 (6)C30—H30A0.98
C3—H30.95C30—H30B0.98
C4—C51.390 (5)C30—H30C0.98
C4—H40.95C31—H310.95
C5—H50.95
C25—Cu1—N395.49 (13)C8—C7—C1119.7 (3)
C25—Cu1—N192.01 (13)C7—C8—C9117.5 (3)
N3—Cu1—N1171.89 (11)C7—C8—C12119.0 (4)
C25—Cu1—N4142.30 (13)C9—C8—C12123.6 (3)
N3—Cu1—N480.91 (11)C10—C9—C8119.2 (4)
N1—Cu1—N495.03 (11)C10—C9—H9120.4
C25—Cu1—N2124.13 (14)C8—C9—H9120.4
N3—Cu1—N293.50 (11)C9—C10—C11119.6 (4)
N1—Cu1—N279.68 (12)C9—C10—H10120.2
N4—Cu1—N293.58 (11)C11—C10—H10120.2
N9—Fe1—C2793.7 (5)N2—C11—C10122.9 (4)
N9—Fe1—C26'96.3 (7)N2—C11—H11118.6
C27—Fe1—C26'91.1 (5)C10—C11—H11118.6
N9—Fe1—C27'96.4 (5)C6—C12—C8120.6 (3)
C27—Fe1—C27'169.4 (3)C6—C12—H12119.7
C26'—Fe1—C27'90.9 (5)C8—C12—H12119.7
N9—Fe1—C2692.7 (6)N3—C13—C14123.7 (3)
C27—Fe1—C2690.1 (4)N3—C13—C19116.8 (3)
C26'—Fe1—C26170.9 (3)C14—C13—C19119.5 (3)
C27'—Fe1—C2686.3 (4)C13—C14—C15116.5 (3)
N9—Fe1—C28177.7 (4)C13—C14—C18119.4 (3)
C27—Fe1—C2887.9 (3)C15—C14—C18124.1 (3)
C26'—Fe1—C2882.1 (5)C16—C15—C14119.5 (3)
C27'—Fe1—C2882.0 (3)C16—C15—H15120.3
C26—Fe1—C2888.9 (4)C14—C15—H15120.3
C5—N1—C1118.7 (3)C15—C16—C17120.1 (4)
C5—N1—Cu1126.3 (2)C15—C16—H16120
C1—N1—Cu1114.8 (2)C17—C16—H16120
C31—N10—C30120.6 (9)N3—C17—C16121.9 (4)
C31—N10—C29118.9 (8)N3—C17—H17119
C30—N10—C29120.4 (8)C16—C17—H17119
C11—N2—C7118.0 (3)C24—C18—C14120.8 (3)
C11—N2—Cu1131.7 (3)C24—C18—H18119.6
C7—N2—Cu1110.2 (2)C14—C18—H18119.6
C17—N3—C13118.3 (3)N4—C19—C20123.3 (3)
C17—N3—Cu1127.5 (3)N4—C19—C13116.7 (3)
C13—N3—Cu1114.1 (2)C20—C19—C13120.0 (3)
C23—N4—C19117.8 (3)C19—C20—C21116.6 (3)
C23—N4—Cu1130.8 (2)C19—C20—C24118.8 (3)
C19—N4—Cu1111.2 (2)C21—C20—C24124.6 (3)
O1—N9—Fe1175.9 (13)C22—C21—C20120.1 (4)
N1—C1—C2122.1 (3)C22—C21—H21120
N1—C1—C7117.7 (3)C20—C21—H21120
C2—C1—C7120.3 (3)C21—C22—C23119.4 (3)
C3—C2—C1117.5 (3)C21—C22—H22120.3
C3—C2—C6124.0 (3)C23—C22—H22120.3
C1—C2—C6118.5 (4)N4—C23—C22122.8 (3)
C4—C3—C2119.9 (4)N4—C23—H23118.6
C4—C3—H3120C22—C23—H23118.6
C2—C3—H3120C18—C24—C20121.5 (3)
C3—C4—C5118.7 (4)C18—C24—H24119.2
C3—C4—H4120.6C20—C24—H24119.2
C5—C4—H4120.6N5—C25—Cu1176.4 (3)
N1—C5—C4123.1 (3)N7—C27—Fe1178.2 (9)
N1—C5—H5118.5N8—C28—Fe1174.28 (7)
C4—C5—H5118.5N6'—C26'—Fe1176.9 (14)
C12—C6—C2121.9 (3)N7'—C27'—Fe1178.7 (9)
C12—C6—H6119O2—C31—N10124.4 (9)
C2—C6—H6119O2—C31—H31117.8
N2—C7—C8122.8 (4)N10—C31—H31117.8
N2—C7—C1117.4 (3)
Selected bond lengths (Å) top
Cu1—C251.964 (4)Fe1—C271.933 (7)
Cu1—N32.011 (3)Fe1—C26'1.934 (8)
Cu1—N12.024 (3)Fe1—C27'1.937 (7)
Cu1—N42.090 (3)Fe1—C261.938 (7)
Cu1—N22.164 (3)Fe1—C281.959 (6)
Fe1—N91.630 (6)
Acknowledgements top

The State Fund for Fundamental Researches of Ukraine (Project 28.3/017) is acknowledged for financial support.

references
References top

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Dunaj-Jurčo, M., Potočňák, I., Cíbik, J., Kabešová, M., Kettmann, V. & Mikloš, D. (1993). Acta Cryst. C49, 1479–1482.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Potočňák, I., Dunaj-Jurčo, M. & Mikloš, D. (1996a). Acta Cryst. C52, 2406–2409.

Potočňák, I., Dunaj-Jurčo, M., Mikloš, D. & Jäger, L. (1996b). Acta Cryst. C52, 48–50.

Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Soria, D. B., Villalba, M. E. C., Piro, O. E. & Aymonino, P. J. (2002). Polyhedron, 21, 1767–1774.

Vreshch, O. V., Nesterova, O. V., Kokozay, V. N., Dyakonenko, V. V., Shishkin, O. V., Cormary, B., Malfant, I. & Jezierska, J. (2009a). Z. Anorg. Allg. Chem. 635, 2316–2323.

Vreshch, O. V., Nesterova, O. V., Kokozay, V. N., Skelton, B. W., Garcia, C. J. G. & Jezierska, J. (2009b). Inorg. Chem. Commun. 12, 890–894.