supplementary materials


hy2567 scheme

Acta Cryst. (2012). E68, m1146-m1147    [ doi:10.1107/S1600536812032916 ]

Poly[[diaquabis([mu]-oxalato-[kappa]4O1,O2:O1',O2')bis([mu]3-5-oxidopyridin-1-ium-3-carboxylato-[kappa]3O3:O3':O5)diholmium(III)] dihydrate]

J.-L. Mi, J. Huang and H.-J. Chen

Abstract top

In the title compound, {[Ho2(C6H4NO3)2(C2O4)2(H2O)2]·2H2O}n, the HoIII atom is coordinated by three O atoms from three 5-hydroxynicotinate ligands, four O atoms from two oxalate ligands, each lying on an inversion center, and one water molecule in a distorted square-antiprismatic geometry. The 5-hydroxynicotinate ligand is protonated at the N atom and deprotonated at the hydroxy group. The HoIII atoms are bridged by the carboxylate and phenolate O atoms, forming a three-dimensional framework. N-H...O and O-H...O hydrogen bonds, as well as [pi]-[pi] interactions between the pyridine rings [centroid-centroid distance = 3.794 (2) Å], are observed.

Comment top

Metal-organic frameworks (MOFs) remain nowadays one of the most studied topics in synthetic chemistry due to MOFs hold interesting structural features and properties. For example, they can be employed as effective heterogeneous catalysts (Dang et al., 2010; Lazare et al., 2010; Thallapally et al., 2010), selective adsorption of gases (Choi et al., 2008; Shimomura et al., 2010), photoluminescent (Allendorf et al., 2009) and magnetic properties (Ishikawa et al., 2005).

The title compound is isostructural with its Dy(III) and Er(III) analogues (Zhang et al., 2012). As shown in Fig. 1, the asymmetric unit is composed of one HoIII atom, one phenoxonicotinate ligand, two halfs of oxalate ligands, one coordinated and one solvent water molecules. The HoIII atom is coordinated by eight O atoms, exhibiting a distorted square-antiprismatic geometry. One basal square face of the antiprism is defined by two carboxylate O atoms, one oxalate O atom and one aqua O atom; the other base is completed by the other three oxalate O atoms and one phenolate O atom. Adjacent HoIII atoms are bonded to the carboxylate and phenolate O atoms of the phenoxonicotinate ligand, forming dinuclear subunits, which are further extented at a syn-anti conformation into infinite ladder-like chains. The metal atoms are also bridged by oxalate ligands in a side-by-side manner, forming one-dimensional zigzag chains. Both the ladder-like and zigzag chains are finally linked together through the metal atoms into a three-dimensional framework with one-dimensional microchannels (Fig. 2). The three-dimensional framework shows a topology of 3,5-connected {42.65.83}.{42.6} (Fig. 3). N—H···O and O—H···O hydrogen bonds, as well as ππ interactions between the pyridine rings [centroid–centroid distance = 3.794 (2)Å] are found in the crystal.

Related literature top

For background to the applications of compounds with metal-organic framework structures, see: Allendorf et al. (2009); Choi et al. (2008); Dang et al. (2010); Ishikawa et al. (2005); Lazare et al. (2010); Shimomura et al. (2010); Thallapally et al. (2010). For related structures, see: Zhang et al. (2012).

Experimental top

A mixture of holmium nitrate (0.4 mmol, 0.181 g), 5-hydroxynicotinic acid (0.8 mmol, 0.111 g), ammonium oxalate (0.8 mmol, 0.099 g) and 10 ml water was sealed in a 15 ml Teflon-lined autoclave. Colorless crystals suitable for X-ray crystallography analysis were obtained by heating the mixture at 453 K for 72 h and then cooled down to room temperature at a rate of 5 K h-1 (yield: 41%). Analysis, calculated for C16H16Ho2N2O18: C 22.50, H 1.89, N 3.28%; found: C 22.65, H 1.91, N 3.13%. IR (cm-1, KBr): 3398 s, 3083 s, 2957 m, 2768 w, 2089 w, 1900 w, 1646 m, 1565 m, 1447 w, 1427 w, 1359 s, 1319 s, 1302 s, 1140 s, 1051 s, 1013 s, 963 s, 942 m, 894 w, 865 w, 823 w, 788 w, 672 m, 591 s, 545 s, 497 m, 450 w, 413 w.

Refinement top

H atoms bonded to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). H atoms bonded to N and O atoms were located from a difference Fourier map and refined isotropically, with distance restraints of N—H = 0.90 (1) and O—H = 0.85 (1) Å.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing displacement ellipsoids at the 50% probability level. [Symmetry codes: (i) 1-x, 2-y, 1-z; (ii) 2-x, 2-y, 2-z; (iii) 1-x, 1-y, 1-z; (iv) x, -1+y, -1+z.]
[Figure 2] Fig. 2. The three-dimensional framework of the title compound. H atoms and solvent water molecules are omitted for clarity.
[Figure 3] Fig. 3. A schematic view of the three-dimensional framework for the title compound.
Poly[[diaquabis(µ-oxalato- κ4O1,O2:O1',O2')bis(µ3-5- oxidopyridin-1-ium-3-carboxylato- κ3O3:O3':O5)diholmium(III)] dihydrate] top
Crystal data top
[Ho2(C6H4NO3)2(C2O4)2(H2O)2]·2H2OZ = 1
Mr = 854.16F(000) = 404
Triclinic, P1Dx = 2.599 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7786 (16) ÅCell parameters from 4550 reflections
b = 8.0562 (17) Åθ = 2.3–27.0°
c = 9.505 (2) ŵ = 7.30 mm1
α = 110.912 (3)°T = 173 K
β = 96.862 (3)°Block, colorless
γ = 95.770 (3)°0.18 × 0.16 × 0.06 mm
V = 545.8 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2295 independent reflections
Radiation source: fine-focus sealed tube2160 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
φ and ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.354, Tmax = 0.669k = 1010
4550 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.038H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.016P)2 + 0.6363P]
where P = (Fo2 + 2Fc2)/3
2295 reflections(Δ/σ)max = 0.001
192 parametersΔρmax = 0.57 e Å3
5 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Ho2(C6H4NO3)2(C2O4)2(H2O)2]·2H2Oγ = 95.770 (3)°
Mr = 854.16V = 545.8 (2) Å3
Triclinic, P1Z = 1
a = 7.7786 (16) ÅMo Kα radiation
b = 8.0562 (17) ŵ = 7.30 mm1
c = 9.505 (2) ÅT = 173 K
α = 110.912 (3)°0.18 × 0.16 × 0.06 mm
β = 96.862 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2295 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2160 reflections with I > 2σ(I)
Tmin = 0.354, Tmax = 0.669Rint = 0.017
4550 measured reflectionsθmax = 27.0°
Refinement top
R[F2 > 2σ(F2)] = 0.016H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.038Δρmax = 0.57 e Å3
S = 1.05Δρmin = 0.49 e Å3
2295 reflectionsAbsolute structure: ?
192 parametersFlack parameter: ?
5 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6934 (4)1.2898 (4)1.1270 (3)0.0109 (5)
C20.7746 (4)0.4547 (4)0.2648 (3)0.0123 (6)
C30.7041 (4)0.5062 (4)0.3987 (3)0.0117 (6)
H30.59890.43870.40320.014*
C40.7864 (4)0.6576 (4)0.5285 (3)0.0124 (6)
C50.9393 (4)0.7518 (4)0.5123 (3)0.0158 (6)
H50.99990.85430.59620.019*
C60.9258 (4)0.5562 (4)0.2565 (4)0.0162 (6)
H60.97430.52450.16510.019*
C70.9532 (4)0.9560 (4)1.0490 (3)0.0106 (6)
C80.4187 (4)0.9302 (4)0.4887 (3)0.0116 (6)
Ho10.647369 (16)0.971506 (16)0.803507 (14)0.00854 (5)
N11.0014 (3)0.6993 (4)0.3802 (3)0.0168 (5)
O10.7614 (3)1.2593 (3)1.0082 (2)0.0162 (5)
O20.4346 (3)0.8128 (3)0.8643 (2)0.0136 (4)
O30.7231 (3)0.7072 (3)0.6565 (2)0.0150 (4)
O40.7922 (3)0.8943 (3)1.0004 (2)0.0133 (4)
O50.9595 (3)1.0464 (3)0.8342 (2)0.0123 (4)
O60.4182 (3)0.8477 (3)0.5761 (2)0.0161 (4)
O70.7033 (3)1.0868 (3)0.6190 (2)0.0135 (4)
O80.4335 (3)1.1739 (3)0.8101 (3)0.0197 (5)
O90.3549 (5)0.5133 (4)0.1651 (4)0.0462 (8)
H11.102 (3)0.760 (4)0.373 (4)0.011 (8)*
H70.489 (6)1.275 (4)0.822 (6)0.061 (17)*
H80.363 (6)1.155 (7)0.866 (5)0.065 (17)*
H90.331 (8)0.448 (7)0.216 (6)0.08 (2)*
H100.269 (6)0.501 (9)0.096 (5)0.09 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0095 (13)0.0105 (13)0.0124 (14)0.0018 (10)0.0013 (10)0.0039 (11)
C20.0128 (14)0.0109 (14)0.0113 (14)0.0000 (11)0.0015 (11)0.0027 (11)
C30.0087 (14)0.0118 (14)0.0147 (14)0.0008 (10)0.0034 (11)0.0046 (11)
C40.0136 (14)0.0110 (14)0.0126 (14)0.0038 (11)0.0029 (11)0.0037 (11)
C50.0135 (15)0.0159 (15)0.0141 (15)0.0008 (11)0.0017 (11)0.0020 (12)
C60.0149 (15)0.0161 (15)0.0143 (15)0.0008 (12)0.0039 (11)0.0020 (12)
C70.0123 (14)0.0095 (13)0.0088 (13)0.0042 (11)0.0022 (10)0.0012 (11)
C80.0096 (14)0.0128 (14)0.0115 (14)0.0002 (11)0.0017 (10)0.0038 (11)
Ho10.00804 (7)0.00981 (7)0.00735 (7)0.00004 (5)0.00004 (4)0.00353 (5)
N10.0126 (13)0.0181 (13)0.0151 (13)0.0051 (10)0.0041 (10)0.0022 (11)
O10.0163 (11)0.0151 (11)0.0127 (10)0.0024 (8)0.0061 (8)0.0002 (9)
O20.0108 (10)0.0137 (10)0.0141 (10)0.0019 (8)0.0005 (8)0.0045 (8)
O30.0173 (11)0.0149 (10)0.0106 (10)0.0019 (8)0.0050 (8)0.0015 (8)
O40.0108 (10)0.0185 (11)0.0109 (10)0.0007 (8)0.0001 (8)0.0069 (8)
O50.0105 (10)0.0159 (10)0.0101 (10)0.0012 (8)0.0004 (8)0.0052 (8)
O60.0170 (11)0.0165 (11)0.0148 (11)0.0054 (8)0.0047 (8)0.0103 (9)
O70.0108 (10)0.0189 (11)0.0115 (10)0.0019 (8)0.0010 (8)0.0086 (8)
O80.0220 (13)0.0232 (13)0.0201 (12)0.0096 (10)0.0087 (9)0.0122 (10)
O90.056 (2)0.0259 (15)0.055 (2)0.0023 (14)0.0118 (17)0.0206 (15)
Geometric parameters (Å, º) top
C1—O2i1.259 (4)C8—O61.235 (4)
C1—O11.260 (4)C8—O7v1.269 (3)
C1—C2ii1.507 (4)C8—C8v1.545 (6)
C2—C31.388 (4)Ho1—O22.245 (2)
C2—C61.390 (4)Ho1—O32.271 (2)
C2—C1iii1.507 (4)Ho1—O72.322 (2)
C3—C41.414 (4)Ho1—O42.372 (2)
C3—H30.9500Ho1—O52.399 (2)
C4—O31.311 (4)Ho1—O12.429 (2)
C4—C51.400 (4)Ho1—O82.435 (2)
C5—N11.340 (4)Ho1—O62.455 (2)
C5—H50.9500N1—H10.90 (1)
C6—N11.337 (4)O8—H70.85 (1)
C6—H60.9500O8—H80.85 (1)
C7—O5iv1.237 (3)O9—H90.85 (1)
C7—O41.266 (4)O9—H100.85 (1)
C7—C7iv1.559 (6)
O2i—C1—O1123.0 (3)O4—Ho1—O568.67 (7)
O2i—C1—C2ii119.6 (3)O2—Ho1—O1112.36 (7)
O1—C1—C2ii117.4 (3)O3—Ho1—O1143.48 (8)
C3—C2—C6119.6 (3)O7—Ho1—O191.68 (7)
C3—C2—C1iii122.1 (3)O4—Ho1—O175.80 (7)
C6—C2—C1iii118.3 (3)O5—Ho1—O167.35 (7)
C2—C3—C4121.0 (3)O2—Ho1—O883.88 (8)
C2—C3—H3119.5O3—Ho1—O8142.95 (8)
C4—C3—H3119.5O7—Ho1—O875.53 (8)
O3—C4—C5121.8 (3)O4—Ho1—O8130.78 (7)
O3—C4—C3122.0 (3)O5—Ho1—O8126.55 (8)
C5—C4—C3116.2 (3)O1—Ho1—O871.62 (8)
N1—C5—C4120.9 (3)O2—Ho1—O674.25 (7)
N1—C5—H5119.5O3—Ho1—O674.55 (8)
C4—C5—H5119.5O7—Ho1—O668.06 (7)
N1—C6—C2118.5 (3)O4—Ho1—O6141.48 (7)
N1—C6—H6120.7O5—Ho1—O6132.12 (7)
C2—C6—H6120.7O1—Ho1—O6138.53 (7)
O5iv—C7—O4126.2 (3)O8—Ho1—O668.47 (8)
O5iv—C7—C7iv118.1 (3)C6—N1—C5123.8 (3)
O4—C7—C7iv115.7 (3)C6—N1—H1117 (2)
O6—C8—O7v126.3 (3)C5—N1—H1119 (2)
O6—C8—C8v118.0 (3)C1—O1—Ho1115.09 (18)
O7v—C8—C8v115.6 (3)C1i—O2—Ho1169.7 (2)
O2—Ho1—O388.38 (8)C4—O3—Ho1132.61 (19)
O2—Ho1—O7141.51 (7)C7—O4—Ho1118.19 (18)
O3—Ho1—O788.96 (8)C7iv—O5—Ho1116.85 (18)
O2—Ho1—O475.56 (7)C8—O6—Ho1115.09 (18)
O3—Ho1—O481.26 (8)C8v—O7—Ho1119.68 (18)
O7—Ho1—O4141.63 (7)Ho1—O8—H7108 (4)
O2—Ho1—O5143.17 (7)Ho1—O8—H8106 (4)
O3—Ho1—O578.02 (7)H7—O8—H8126 (5)
O7—Ho1—O573.02 (7)H9—O9—H10111 (6)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+1, z+1; (iii) x, y1, z1; (iv) x+2, y+2, z+2; (v) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O7vi0.90 (1)1.83 (1)2.727 (3)171 (3)
O8—H7···O9v0.85 (1)1.95 (1)2.787 (4)171 (5)
O8—H8···O4i0.85 (1)1.96 (1)2.811 (3)177 (6)
O9—H9···O3vii0.85 (1)2.08 (1)2.929 (4)178 (6)
O9—H10···O1v0.85 (1)2.48 (6)3.003 (4)120 (5)
Symmetry codes: (i) x+1, y+2, z+2; (v) x+1, y+2, z+1; (vi) x+2, y+2, z+1; (vii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O7i0.90 (1)1.83 (1)2.727 (3)171 (3)
O8—H7···O9ii0.85 (1)1.95 (1)2.787 (4)171 (5)
O8—H8···O4iii0.85 (1)1.96 (1)2.811 (3)177 (6)
O9—H9···O3iv0.85 (1)2.08 (1)2.929 (4)178 (6)
O9—H10···O1ii0.85 (1)2.48 (6)3.003 (4)120 (5)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+2, z+1; (iii) x+1, y+2, z+2; (iv) x+1, y+1, z+1.
references
References top

Allendorf, M. D., Bauer, C. A., Bhakta, R. K. & Houk, R. J. T. (2009). Chem. Soc. Rev. 38, 1330–1352.

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Choi, H. J., Dinca, M. & Long, J. R. (2008). J. Am. Chem. Soc. 130, 7848–7850.

Dang, D. B., Wu, P. Y., He, C., Xie, Z. & Duan, C. Y. (2010). J. Am. Chem. Soc. 132, 14321–14323.

Ishikawa, N., Sugita, M. & Wernsdorfer, W. (2005). Angew. Chem. Int. Ed. 44, 2931–2935.

Lazare, S., Bazer-Bachi, D., Bonnier, F., Lecocq, V., Soyer, E., Quoineaud, A. A. & Bats, N. (2010). J. Am. Chem. Soc. 132, 12365–12377.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Shimomura, S., Higuchi, M., Matsuda, R., Yoneda, K., Hijikata, Y., Kubota, Y., Mita, Y., Kim, J., Takata, M. & Kitagawa, S. (2010). Nat. Chem. 2, 633–637.

Thallapally, P. K., Fernandez, C. A., Motkuri, R. K., Nune, S. K., Liu, J. & Peden, C. H. F. (2010). Dalton Trans. 39, 1692–1694.

Zhang, J., Huang, J., Yang, J. & Chen, H.-J. (2012). Inorg. Chem. Commun. 17, 163–168.