supplementary materials


hy2578 scheme

Acta Cryst. (2012). E68, m1189-m1190    [ doi:10.1107/S1600536812035490 ]

Trichlorido(4,4'-dimethyl-2,2'-bipyridine-[kappa]2N,N')(methanol-[kappa]O)indium(III) methanol monosolvate

S. A. Shirvan and S. Haydari Dezfuli

Abstract top

In the title compound, [InCl3(C12H12N2)(CH3OH)]·CH3OH, the InIII atom is six-coordinated in a distorted octahedral geometry by two N atoms from a chelating 4,4'-dimethyl-2,2'-bipyridine ligand, one O atom from a methanol molecule and three Cl atoms. In the crystal, intermolecular O-H...O and O-H...Cl hydrogen bonds link the complex and solvent methanol molecules. Intramolecular C-H...Cl hydrogen bonds are also present in the complex.

Comment top

Several In(III) complexes with a formula [In(L1)Cl3(L2)] (L1 = an N,N'-chelating ligand, L2 = DMSO, H2O, MeOH and EtOH), such as [In(bipy)Cl3(H2O)], (II), [In(bipy)Cl3(EtOH)], (III), [In(bipy)Cl3(H2O)].H2O, (IV) (Malyarick et al., 1992), [In(phen)Cl3(DMSO)], (V) (Dong et al., 1987), [In(phen)Cl3(H2O)], (VI), [In(phen)Cl3(EtOH)].EtOH, (VII) (Ilyuhin & Malyarick, 1994), [In(4,4'-dmbipy)Cl3(DMSO)], (IIX) (Ahmadi et al., 2008), [In(5,5'-dmbipy)Cl3(MeOH)], (IX) (Kalateh, Ahmadi et al., 2008), [In(4bt)Cl3(MeOH)], (X), and [In(4bt)Cl3(DMSO)], (XI) (Abedi et al., 2012) (bipy = 2,2'-bipyridine, phen = 1,10-phenanthroline, DMSO = dimethyl sulfoxide, 4,4'-dmbipy = 4,4'-dimethyl-2,2'-bipyridine, 5,5'-dmbipy = 5,5'-dimethyl-2,2'-bipyridine, 4bt = 4,4'-bithiazole), have been synthesized and characterized by single-crystal X-ray diffraction methods. 4,4'-Dmbipy is a good bidentate ligand, and numerous complexes with 4,4'-dmbipy have been prepared, such as that of [Hg(4,4'-dmbipy)I2], (XII) (Yousefi et al., 2008), [Hg(4,4'-dmbipy)Br2], (XIII) (Kalateh, Ebadi et al., 2008), [Fe(4,4'-dmbipy)Cl3(DMSO)], (XIV) (Amani et al., 2009), [Pt(4,4'-dmbipy)Cl4], (XV) (Hojjat Kashani et al., 2008), [Cd(4,4'-dmbipy)I2(DMSO)], (XVI) (Kalateh et al., 2010), [Zn(4,4'-dmbipy)Br2], (XVII) (Alizadeh et al., 2010), [Zn(4,4'-dmbipy)(H2O)(NO3)2], (XVIII) (Shirvan & Haydari Dezfuli, 2011), and [Cd(4,4'-dmbipy)Br2(DMSO)], (XIX) (Shirvan & Haydari Dezfuli, 2012). We report herein the synthesis and crystal structure of the title compound, (I).

In the title compound (Fig. 1), the InIII atom is six-coordinated in a distorted octahedral geometry by two N atoms from a chelating 4,4'-dmbipy ligand, one O atom from a methanol molecule and three Cl atoms. There is also one solvent methanol molecule in the asymmetric unit. The In—Cl, In—N and In—O bond lengths and angles are within normal range. In the crystal, intermolecular O—H···O and O—H···Cl hydrogen bonds link the complex and solvent methanol molecules (Fig. 2, Table 1). Intramolecular C—H···Cl hydrogen bonds are present in the complex.

Related literature top

For related structures, see: Abedi et al. (2012); Ahmadi et al. (2008); Alizadeh et al. (2010); Amani et al. (2009); Dong et al. (1987); Hojjat Kashani et al. (2008); Ilyuhin & Malyarick (1994); Kalateh, Ahmadi et al. (2008); Kalateh, Ebadi et al. (2008); Kalateh et al. (2010); Malyarick et al. (1992); Shirvan & Haydari Dezfuli (2011, 2012); Yousefi et al. (2008).

Experimental top

For the preparation of the title compound, a solution of 4,4'-dmbipy (0.30 g, 1.65 mmol) in methanol (20 ml) was added to a solution of InCl3.4H2O (0.48 g, 1.65 mmol) in methanol (20 ml). The resulting colorless solution was stirred for 10 min at room temperature and then it was left to evaporate slowly at room temperature. After six days, colorless block crystals of the title compound were isolated (yield: 0.62 g, 80.0%).

Refinement top

H atoms bonded to C atoms and O2 atom were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (CH3) and O—H = 0.82 Å and with Uiso(H) = 1.2(1.5 for hydroxyl)Ueq(C, O). H atom bonded to O1 atom was located from a difference Fourier map and refined isotropically. The highest residual electron density was found at 0.86 Å from In1 atom and the deepest hole at 0.91 Å from In1 atom.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Trichlorido(4,4'-dimethyl-2,2'-bipyridine-κ2N,N')(methanol- κO)indium(III) methanol monosolvate top
Crystal data top
[InCl3(C12H12N2)(CH4O)]·CH4OF(000) = 936
Mr = 469.49Dx = 1.638 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11231 reflections
a = 12.0318 (6) Åθ = 1.7–26.0°
b = 10.3751 (4) ŵ = 1.67 mm1
c = 15.2626 (7) ÅT = 298 K
β = 91.981 (4)°Block, colorless
V = 1904.11 (15) Å30.30 × 0.25 × 0.23 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3747 independent reflections
Radiation source: fine-focus sealed tube3200 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
φ and ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1414
Tmin = 0.621, Tmax = 0.699k = 1212
11231 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0645P)2 + 0.029P]
where P = (Fo2 + 2Fc2)/3
3747 reflections(Δ/σ)max = 0.009
205 parametersΔρmax = 1.43 e Å3
0 restraintsΔρmin = 0.76 e Å3
Crystal data top
[InCl3(C12H12N2)(CH4O)]·CH4OV = 1904.11 (15) Å3
Mr = 469.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0318 (6) ŵ = 1.67 mm1
b = 10.3751 (4) ÅT = 298 K
c = 15.2626 (7) Å0.30 × 0.25 × 0.23 mm
β = 91.981 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
3747 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3200 reflections with I > 2σ(I)
Tmin = 0.621, Tmax = 0.699Rint = 0.064
11231 measured reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102Δρmax = 1.43 e Å3
S = 1.05Δρmin = 0.76 e Å3
3747 reflectionsAbsolute structure: ?
205 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
In10.760984 (19)0.07129 (2)0.223229 (16)0.03869 (11)
C10.5479 (3)0.0469 (4)0.3156 (3)0.0454 (9)
H10.57270.12220.28970.054*
C20.4532 (3)0.0517 (4)0.3638 (3)0.0484 (9)
H20.41580.12930.37050.058*
C30.4143 (3)0.0591 (4)0.4021 (3)0.0459 (9)
C40.3089 (4)0.0606 (5)0.4526 (3)0.0641 (12)
H4A0.25640.11850.42480.077*
H4B0.32530.08890.51150.077*
H4C0.27790.02460.45370.077*
C50.4753 (3)0.1719 (4)0.3912 (2)0.0440 (8)
H50.45170.24850.41620.053*
C60.5711 (3)0.1703 (3)0.3433 (2)0.0350 (7)
C70.6408 (3)0.2864 (3)0.3311 (2)0.0344 (7)
C80.6183 (3)0.4038 (3)0.3701 (2)0.0407 (8)
H80.55640.41250.40440.049*
C90.6881 (3)0.5084 (3)0.3578 (2)0.0456 (8)
C100.6694 (4)0.6323 (4)0.4057 (3)0.0684 (13)
H10A0.67410.61690.46780.082*
H10B0.59710.66560.38970.082*
H10C0.72520.69380.39040.082*
C110.7760 (3)0.4922 (4)0.3035 (3)0.0518 (9)
H110.82330.56080.29250.062*
C120.7935 (3)0.3735 (4)0.2654 (3)0.0494 (9)
H120.85250.36420.22810.059*
C130.9285 (5)0.0471 (6)0.3806 (5)0.094 (2)
H13A0.99160.02960.34570.113*
H13B0.90180.13270.36840.113*
H13C0.95000.04040.44160.113*
C140.9904 (6)0.3073 (8)0.4407 (5)0.121 (3)
H14A0.97290.39650.43120.182*
H14B1.01820.27090.38800.182*
H14C1.04590.29980.48710.182*
N10.6052 (2)0.0611 (3)0.3047 (2)0.0380 (6)
N20.7290 (2)0.2717 (3)0.28000 (18)0.0381 (6)
O10.8436 (3)0.0429 (3)0.3603 (2)0.0572 (8)
H1B0.844 (5)0.109 (6)0.393 (4)0.083 (18)*
O20.8937 (4)0.2405 (5)0.4641 (3)0.1071 (15)
H2B0.87160.26940.51040.161*
Cl10.65354 (13)0.12400 (14)0.08916 (7)0.0776 (4)
Cl20.76643 (9)0.15957 (10)0.20171 (9)0.0639 (3)
Cl30.94145 (10)0.13256 (13)0.17180 (10)0.0777 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
In10.04584 (16)0.03230 (16)0.03823 (16)0.00351 (10)0.00593 (10)0.00244 (10)
C10.055 (2)0.0314 (18)0.050 (2)0.0074 (15)0.0027 (17)0.0017 (15)
C20.053 (2)0.043 (2)0.049 (2)0.0145 (16)0.0001 (17)0.0010 (17)
C30.0499 (19)0.050 (2)0.0383 (19)0.0082 (16)0.0037 (15)0.0011 (16)
C40.065 (3)0.066 (3)0.063 (3)0.015 (2)0.019 (2)0.001 (2)
C50.0528 (19)0.0374 (19)0.0423 (19)0.0021 (15)0.0097 (15)0.0041 (16)
C60.0446 (16)0.0293 (16)0.0310 (16)0.0010 (13)0.0014 (13)0.0003 (13)
C70.0441 (16)0.0294 (16)0.0296 (15)0.0001 (13)0.0005 (12)0.0001 (13)
C80.0510 (18)0.0347 (18)0.0368 (18)0.0004 (15)0.0062 (15)0.0010 (15)
C90.062 (2)0.0288 (18)0.046 (2)0.0016 (16)0.0024 (17)0.0004 (16)
C100.094 (3)0.034 (2)0.079 (3)0.007 (2)0.010 (3)0.010 (2)
C110.055 (2)0.033 (2)0.068 (3)0.0083 (17)0.0037 (19)0.0033 (19)
C120.0480 (19)0.040 (2)0.061 (2)0.0027 (16)0.0139 (18)0.0007 (18)
C130.095 (4)0.090 (4)0.095 (4)0.046 (3)0.033 (3)0.009 (3)
C140.106 (5)0.128 (7)0.128 (6)0.039 (5)0.015 (4)0.048 (5)
N10.0435 (14)0.0322 (15)0.0381 (15)0.0012 (11)0.0018 (12)0.0026 (12)
N20.0452 (15)0.0282 (15)0.0411 (15)0.0007 (11)0.0057 (12)0.0019 (12)
O10.0683 (18)0.0521 (17)0.0504 (17)0.0180 (14)0.0104 (14)0.0038 (14)
O20.144 (4)0.099 (3)0.078 (3)0.015 (3)0.008 (3)0.027 (3)
Cl10.1109 (9)0.0774 (8)0.0431 (6)0.0324 (7)0.0173 (6)0.0093 (6)
Cl20.0772 (7)0.0346 (5)0.0808 (7)0.0035 (4)0.0164 (6)0.0134 (5)
Cl30.0636 (6)0.0626 (7)0.1095 (10)0.0022 (5)0.0415 (7)0.0084 (7)
Geometric parameters (Å, º) top
In1—Cl12.4443 (13)C9—C101.500 (5)
In1—Cl22.4188 (11)C9—C111.376 (5)
In1—Cl32.4192 (13)C11—C121.381 (6)
In1—O12.304 (3)C1—H10.9300
In1—N12.287 (3)C2—H20.9300
In1—N22.290 (3)C4—H4B0.9600
O1—C131.411 (7)C4—H4C0.9600
O1—H1B0.85 (6)C4—H4A0.9600
O2—C141.411 (9)C5—H50.9300
O2—H2B0.8200C8—H80.9300
N1—C11.329 (5)C10—H10A0.9600
N1—C61.348 (4)C10—H10C0.9600
N2—C71.347 (4)C10—H10B0.9600
N2—C121.334 (5)C11—H110.9300
C1—C21.378 (6)C12—H120.9300
C2—C31.379 (6)C13—H13C0.9600
C3—C41.507 (6)C13—H13A0.9600
C3—C51.394 (6)C13—H13B0.9600
C5—C61.386 (5)C14—H14A0.9600
C6—C71.483 (5)C14—H14B0.9600
C7—C81.387 (4)C14—H14C0.9600
C8—C91.389 (5)
Cl1···Cl23.6456 (18)N2···H1B2.75 (6)
Cl1···Cl33.646 (2)C1···C7ii3.579 (5)
Cl1···N13.423 (3)C1···C8ii3.450 (5)
Cl1···N23.387 (3)C2···C7ii3.566 (5)
Cl1···C8i3.368 (3)C2···C12ii3.591 (6)
Cl2···O13.313 (3)C5···Cl2iii3.639 (4)
Cl2···N13.419 (3)C7···C1iii3.579 (5)
Cl2···C133.500 (7)C7···C2iii3.566 (5)
Cl2···C5ii3.639 (4)C8···C1iii3.450 (5)
Cl2···Cl13.6456 (18)C8···Cl1v3.368 (3)
Cl2···C13.408 (4)C12···C2iii3.591 (6)
Cl3···Cl13.646 (2)C12···C143.578 (9)
Cl3···C123.411 (4)C13···O23.277 (8)
Cl3···O13.281 (3)C14···Cl3v3.650 (8)
Cl3···N23.411 (3)C14···C123.578 (9)
Cl3···C14i3.650 (8)C1···H4Bvi3.0300
Cl3···O2i3.462 (5)C5···H82.6900
Cl1···H10Ai3.1300C8···H52.6800
Cl1···H2Bi3.1300C14···H1B2.79 (6)
Cl1···H8i3.0400H1···Cl22.7600
Cl1···H2iii2.7700H1B···O21.83 (6)
Cl1···H10Bii3.0700H1B···C142.79 (6)
Cl2···H14Biv3.0600H1B···H2B2.4600
Cl2···H13B2.9900H2···H4C2.3900
Cl2···H4Aii3.0100H2···Cl1ii2.7700
Cl2···H12.7600H2B···H1B2.4600
Cl3···H14Aiv3.1100H2B···Cl1v3.1300
Cl3···H122.7800H2B···Cl3v2.7700
Cl3···H11iv2.9600H4A···Cl2iii3.0100
Cl3···H2Bi2.7700H4B···C1vi3.0300
O1···Cl23.313 (3)H4C···H22.3900
O1···Cl33.281 (3)H5···H82.1300
O1···O22.648 (6)H5···C82.6800
O1···N12.969 (4)H8···H52.1300
O1···N22.987 (4)H8···C52.6900
O2···Cl3v3.462 (5)H8···Cl1v3.0400
O2···O12.648 (6)H10A···Cl1v3.1300
O2···C133.277 (8)H10B···Cl1iii3.0700
O2···H1B1.83 (6)H10C···H112.3800
N1···Cl23.419 (3)H11···Cl3vii2.9600
N1···O12.969 (4)H11···H10C2.3800
N1···N22.678 (4)H12···H13Avii2.4800
N1···Cl13.423 (3)H12···Cl32.7800
N1···C72.408 (4)H13A···H12iv2.4800
N2···N12.678 (4)H13B···Cl22.9900
N2···Cl13.387 (3)H13C···H13Cviii2.2800
N2···Cl33.411 (3)H14A···Cl3vii3.1100
N2···C62.403 (4)H14B···Cl2vii3.0600
N2···O12.987 (4)
Cl1—In1—Cl297.12 (5)C10—C9—C11122.0 (3)
Cl1—In1—Cl397.14 (5)C9—C11—C12119.6 (4)
Cl1—In1—O1171.08 (9)N2—C12—C11122.5 (4)
Cl1—In1—N192.63 (8)C2—C1—H1119.00
Cl1—In1—N291.30 (8)N1—C1—H1119.00
Cl2—In1—Cl3100.80 (4)C3—C2—H2120.00
Cl2—In1—O189.07 (8)C1—C2—H2120.00
Cl2—In1—N193.13 (8)C3—C4—H4A109.00
Cl2—In1—N2162.96 (8)C3—C4—H4C110.00
Cl3—In1—O187.96 (9)H4A—C4—H4B109.00
Cl3—In1—N1161.82 (8)C3—C4—H4B109.00
Cl3—In1—N292.79 (7)H4B—C4—H4C109.00
O1—In1—N180.58 (11)H4A—C4—H4C110.00
O1—In1—N281.11 (10)C3—C5—H5120.00
N1—In1—N271.62 (10)C6—C5—H5120.00
In1—O1—C13124.8 (4)C9—C8—H8120.00
C13—O1—H1B115 (4)C7—C8—H8120.00
In1—O1—H1B115 (4)C9—C10—H10A109.00
C14—O2—H2B109.00C9—C10—H10C109.00
In1—N1—C1123.1 (3)H10A—C10—H10B109.00
In1—N1—C6117.8 (2)H10A—C10—H10C109.00
C1—N1—C6119.2 (3)H10B—C10—H10C110.00
C7—N2—C12118.8 (3)C9—C10—H10B110.00
In1—N2—C7117.9 (2)C12—C11—H11120.00
In1—N2—C12123.3 (2)C9—C11—H11120.00
N1—C1—C2122.6 (4)N2—C12—H12119.00
C1—C2—C3119.7 (4)C11—C12—H12119.00
C2—C3—C4122.0 (4)O1—C13—H13B110.00
C4—C3—C5120.5 (4)O1—C13—H13C110.00
C2—C3—C5117.5 (4)O1—C13—H13A109.00
C3—C5—C6120.2 (4)H13A—C13—H13C109.00
N1—C6—C7116.5 (3)H13B—C13—H13C109.00
N1—C6—C5120.8 (3)H13A—C13—H13B109.00
C5—C6—C7122.7 (3)O2—C14—H14A109.00
N2—C7—C6116.2 (3)O2—C14—H14B109.00
N2—C7—C8121.2 (3)O2—C14—H14C109.00
C6—C7—C8122.7 (3)H14A—C14—H14B110.00
C7—C8—C9120.0 (3)H14A—C14—H14C109.00
C8—C9—C11117.8 (3)H14B—C14—H14C109.00
C8—C9—C10120.2 (3)
Cl2—In1—O1—C1338.9 (4)C1—N1—C6—C7178.0 (3)
Cl3—In1—O1—C1362.0 (4)In1—N2—C12—C11176.9 (3)
N1—In1—O1—C13132.2 (4)C7—N2—C12—C112.7 (6)
N2—In1—O1—C13155.1 (4)In1—N2—C7—C8177.9 (2)
Cl1—In1—N1—C190.5 (3)In1—N2—C7—C61.6 (4)
Cl1—In1—N1—C689.8 (2)C12—N2—C7—C6178.8 (3)
Cl2—In1—N1—C16.8 (3)C12—N2—C7—C81.7 (5)
Cl2—In1—N1—C6173.0 (2)N1—C1—C2—C30.6 (7)
O1—In1—N1—C195.4 (3)C1—C2—C3—C51.2 (6)
O1—In1—N1—C684.4 (2)C1—C2—C3—C4177.6 (4)
N2—In1—N1—C1179.0 (3)C2—C3—C5—C60.1 (6)
N2—In1—N1—C60.7 (2)C4—C3—C5—C6178.8 (4)
Cl1—In1—N2—C792.9 (2)C3—C5—C6—C7178.6 (3)
Cl1—In1—N2—C1287.6 (3)C3—C5—C6—N11.8 (5)
Cl3—In1—N2—C7169.9 (2)C5—C6—C7—N2177.4 (3)
Cl3—In1—N2—C129.7 (3)C5—C6—C7—C83.1 (5)
O1—In1—N2—C782.4 (2)N1—C6—C7—N22.3 (4)
O1—In1—N2—C1297.1 (3)N1—C6—C7—C8177.2 (3)
N1—In1—N2—C70.5 (2)C6—C7—C8—C9178.6 (3)
N1—In1—N2—C12179.9 (3)N2—C7—C8—C90.9 (5)
In1—N1—C1—C2179.1 (3)C7—C8—C9—C112.6 (5)
C6—N1—C1—C21.2 (6)C7—C8—C9—C10175.0 (3)
In1—N1—C6—C5177.9 (2)C8—C9—C11—C121.7 (6)
C1—N1—C6—C52.4 (5)C10—C9—C11—C12175.9 (4)
In1—N1—C6—C71.8 (4)C9—C11—C12—N21.0 (6)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x+2, y1/2, z+1/2; (v) x, y+1/2, z+1/2; (vi) x+1, y, z+1; (vii) x+2, y+1/2, z+1/2; (viii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O20.85 (6)1.83 (6)2.648 (6)161 (6)
O2—H2B···Cl3v0.822.773.462 (5)143
C1—H1···Cl20.932.763.408 (4)128
C2—H2···Cl1ii0.932.773.681 (4)167
C12—H12···Cl30.932.783.411 (4)126
Symmetry codes: (ii) x+1, y1/2, z+1/2; (v) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O20.85 (6)1.83 (6)2.648 (6)161 (6)
O2—H2B···Cl3i0.822.773.462 (5)143
C1—H1···Cl20.932.763.408 (4)128
C2—H2···Cl1ii0.932.773.681 (4)167
C12—H12···Cl30.932.783.411 (4)126
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
Acknowledgements top

We are grateful to the Islamic Azad University, Omidieh Branch, for financial support.

references
References top

Abedi, A., Safari, N., Amani, V. & Khavasi, H. R. (2012). J. Coord. Chem. 65, 325–338.

Ahmadi, R., Kalateh, K., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1306–m1307.

Alizadeh, R., Mohammadi Eshlaghi, P. & Amani, V. (2010). Acta Cryst. E66, m996.

Amani, V., Safari, N., Notash, B. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 1939–1950.

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Dong, N., Hang, N.-D., Dong, Z.-C. & Hu, S.-Z. (1987). Jiegou Huaxue (Chin. J. Struct. Chem.), 6, 145–149.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Hojjat Kashani, L., Amani, V., Yousefi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m905–m906.

Ilyuhin, A. B. & Malyarick, M. A. (1994). Kristallografiya, 39, 439–443.

Kalateh, K., Ahmadi, R. & Amani, V. (2010). Acta Cryst. E66, m512.

Kalateh, K., Ahmadi, R., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1353–m1354.

Kalateh, K., Ebadi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1397–m1398.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.

Malyarick, M. A., Petrosyants, S. P. & Ilyuhin, A. B. (1992). Polyhedron, 11, 1067–1073.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Shirvan, S. A. & Haydari Dezfuli, S. (2011). Acta Cryst. E67, m1866–m1867.

Shirvan, S. A. & Haydari Dezfuli, S. (2012). Acta Cryst. E68, m1006–m1007.

Yousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259.