supplementary materials


hy2580 scheme

Acta Cryst. (2012). E68, m1222-m1223    [ doi:10.1107/S1600536812036318 ]

catena-Poly[[[diaqua(1,10-phenanthroline-[kappa]2N,N')zinc]-[mu]-4,4'-bipyridine-[kappa]2N:N'] dinitrate 4,4'-bipyridine hemisolvate monohydrate]

S. Xu, Y.-C. Dai, Q.-M. Qiu, Q.-H. Jin and C.-L. Zhang

Abstract top

In the title compound, [Zn(C10H8N2)(C12H8N2)(H2O)2](NO3)2·0.5C10H8N2·H2O, the ZnII atom is coordinated in a distorted octahedral geometry by two N atoms from two 4,4'-bipyridine (4,4'-bipy) ligands, two N atoms from a chelating 1,10-phenanthroline ligand and two O atoms from two mutually cis water molecules. The 4,4'-bipy ligands bridge the ZnII atoms into a chain structure along [100]. The uncoordinated 4,4'-bipy molecule lies on an inversion center. O-H...O and O-H...N hydrogen bonds connect the cationic chains, the nitrate anions, the uncoordinated 4,4'-bipy molecules and the water molecules into tow-dimensional networks.

Comment top

1,10-Phenanthroline (phen) is a versatile ligand capable of forming highly stable complexes with transition metal ions (Bai et al., 2009; Blake et al., 1998; Chen et al., 2006; Du & Li, 2007; Ma et al., 2006; Zhang et al., 2009; Zhang & Janiak, 2001). Metal complexes of 1,10-phenanthroline and its derivatives are interesting because they play an important role in biological systems, for example, some can recognize DNA and some can induce apoptosis in human cancer cells (Rama Krishna et al., 2000; Sastri et al., 2003). 4,4'-Bipyridine (4,4'-bipy) can act as a Lewis base. It can also be cocrystallized with hydrogen donors such as alcohols or transition metal complexes to form macromolecular arrays as bidentate ligands (Blake et al., 1998; Boag et al., 1999; Carlucci et al., 1997; Du & Li, 2007; Xiong et al., 1999). Here we report the structure of the title compound, a new zinc(II) complex with phen and 4,4'-bipy ligands.

In the title complex (Fig. 1), the ZnII atom adopts a six-coordinated distorted octahedral geometry, where the donor atoms are two N atoms from a chelating phen ligand, two N atoms from two 4,4'-bipy ligands and two O atoms from two water molecules. The 4,4'-bipy ligands bridge the ZnII atoms into a chain structure along [100] (Fig. 2). Two nitrate anions, half of a 4,4'-bipy molecule and a water molecule in the asymmetric unit are involved in the formation of O—H···O and O—H···N hydrogen bonds (Table 1). Compared with the similar comlpexes reported in literature (Bai et al., 2009; Blake et al., 1998; Du & Li, 2007), the Zn—N distances are longer, the Zn—O distances are shorter, and the N—Zn—N bite angles are smaller. The O—Zn—O bite angle is smaller than those in the reported zinc complexes (Bai et al., 2009).

Related literature top

For background to metal complexes of 1,10-phenanthroline and its derivatives in biological systems, see: Rama Krishna et al. (2000); Sastri et al. (2003). For related structures, see: Bai et al. (2009); Blake et al. (1998); Boag et al. (1999); Carlucci et al. (1997); Chen et al. (2006); Du & Li (2007); Ma et al. (2006); Xiong et al. (1999); Zhang et al. (2009); Zhang & Janiak (2001).

Experimental top

Zn(NO3)2 (0.2 mmol) was dissolved in 5 ml water and a hot methanolic solution (5 ml) of 4,4'-bipyridine (0.2 mmol) was added to the solution. After the mixture was stirred for 10 min, 1,10-phenanthroline (0.4 mmol) was added. The resulting solution was refluxed for 30 min and then allowed to cool to ambient temperature. The filtrate was evaporated slowly at room temperature for several weeks to yield yellow crystalline products.

Refinement top

C-bound H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). H atoms of water molecules were located from a difference Fourier map and refined as riding, with O—H = 0.85 Å and with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) 1+x, y, z; (ii) 1-x, 2-y, -z.]
[Figure 2] Fig. 2. A view of the chain structure and hydrogen bonding interactions (dashed lines).
catena-Poly[[[diaqua(1,10-phenanthroline-κ2N,N')zinc]- µ-4,4'-bipyridine-κ2N:N'] dinitrate 4,4'-bipyridine hemisolvate monohydrate] top
Crystal data top
[Zn(C10H8N2)(C12H8N2)(H2O)2](NO3)2·0.5C10H8N2·H2OF(000) = 1356
Mr = 657.94Dx = 1.522 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3365 reflections
a = 11.3910 (11) Åθ = 2.4–22.8°
b = 13.0561 (13) ŵ = 0.92 mm1
c = 19.8509 (18) ÅT = 298 K
β = 103.487 (1)°Block, yellow
V = 2870.9 (5) Å30.35 × 0.31 × 0.18 mm
Z = 4
Data collection top
Bruker APEX CCD
diffractometer
5072 independent reflections
Radiation source: fine-focus sealed tube3309 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
φ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1313
Tmin = 0.739, Tmax = 0.852k = 1510
14110 measured reflectionsl = 2223
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0523P)2 + 3.4384P]
where P = (Fo2 + 2Fc2)/3
5072 reflections(Δ/σ)max = 0.001
397 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Zn(C10H8N2)(C12H8N2)(H2O)2](NO3)2·0.5C10H8N2·H2OV = 2870.9 (5) Å3
Mr = 657.94Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.3910 (11) ŵ = 0.92 mm1
b = 13.0561 (13) ÅT = 298 K
c = 19.8509 (18) Å0.35 × 0.31 × 0.18 mm
β = 103.487 (1)°
Data collection top
Bruker APEX CCD
diffractometer
5072 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3309 reflections with I > 2σ(I)
Tmin = 0.739, Tmax = 0.852Rint = 0.045
14110 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.132Δρmax = 0.81 e Å3
S = 1.03Δρmin = 0.42 e Å3
5072 reflectionsAbsolute structure: ?
397 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.79800 (4)0.79895 (4)0.38707 (2)0.03238 (17)
N10.8386 (3)0.7200 (3)0.48637 (17)0.0397 (9)
N20.7735 (3)0.6396 (3)0.35719 (18)0.0373 (8)
N30.0104 (3)0.7983 (3)0.38878 (17)0.0363 (8)
N40.6095 (3)0.8140 (3)0.38381 (17)0.0337 (8)
N50.6004 (4)0.9079 (4)0.1717 (2)0.0576 (11)
N61.0006 (4)0.0462 (4)0.3071 (3)0.0659 (13)
N70.3949 (6)0.6227 (5)0.1489 (3)0.0878 (16)
O10.9895 (4)0.0465 (3)0.3673 (2)0.0837 (13)
O21.0852 (4)0.0946 (4)0.2944 (3)0.1126 (17)
O30.9290 (5)0.0019 (4)0.2633 (2)0.120 (2)
O40.4873 (5)0.6379 (5)0.1878 (3)0.147 (3)
O50.2995 (7)0.6575 (6)0.1641 (4)0.183 (3)
O60.3835 (4)0.5724 (3)0.0954 (2)0.0823 (13)
O70.8234 (2)0.9520 (2)0.42605 (15)0.0448 (8)
H7C0.87470.98160.40780.054*
H7D0.76030.98900.41940.054*
O80.7743 (2)0.8506 (2)0.28439 (14)0.0476 (8)
H8C0.71440.86180.25070.057*
H8D0.82870.89440.28260.057*
O90.3302 (5)0.0820 (4)0.4013 (2)0.1229 (18)
H9C0.26110.08470.37360.148*
H9D0.38300.09680.37890.148*
C10.8733 (4)0.7593 (4)0.5490 (2)0.0553 (13)
H10.87770.83010.55410.066*
C20.9036 (5)0.6974 (6)0.6082 (3)0.0771 (18)
H20.92850.72710.65180.093*
C30.8967 (5)0.5944 (6)0.6017 (3)0.0782 (18)
H30.91660.55300.64090.094*
C40.8602 (4)0.5505 (5)0.5369 (3)0.0611 (14)
C50.8325 (4)0.6162 (4)0.4794 (2)0.0423 (11)
C60.7960 (4)0.5739 (4)0.4114 (2)0.0424 (11)
C70.7839 (4)0.4668 (4)0.4024 (3)0.0593 (14)
C80.7443 (6)0.4308 (5)0.3349 (3)0.0785 (18)
H80.73460.36080.32660.094*
C90.7204 (6)0.4973 (5)0.2817 (3)0.0773 (17)
H90.69250.47370.23660.093*
C100.7374 (4)0.6014 (4)0.2944 (3)0.0510 (12)
H100.72260.64610.25690.061*
C110.8484 (5)0.4422 (5)0.5253 (4)0.0796 (18)
H110.86740.39810.56300.096*
C120.8109 (6)0.4029 (5)0.4618 (4)0.0801 (18)
H120.80230.33230.45640.096*
C130.0304 (4)0.7574 (4)0.3374 (2)0.0434 (11)
H130.02470.72480.30190.052*
C140.1494 (4)0.7604 (4)0.3336 (2)0.0442 (11)
H140.17290.73000.29650.053*
C150.2337 (3)0.8084 (3)0.3850 (2)0.0315 (9)
C160.1911 (3)0.8501 (4)0.4388 (2)0.0426 (11)
H160.24410.88320.47500.051*
C170.0713 (4)0.8429 (4)0.4390 (2)0.0428 (11)
H170.04570.87080.47620.051*
C180.5701 (3)0.8456 (3)0.4383 (2)0.0366 (10)
H180.62700.86800.47700.044*
C190.4508 (3)0.8473 (3)0.4409 (2)0.0350 (10)
H190.42840.87050.48040.042*
C200.3639 (3)0.8139 (3)0.3839 (2)0.0308 (9)
C210.4049 (3)0.7837 (3)0.3263 (2)0.0360 (10)
H210.35010.76230.28640.043*
C220.5252 (3)0.7853 (3)0.3281 (2)0.0358 (10)
H220.54990.76550.28860.043*
C230.5748 (6)1.0034 (5)0.1576 (3)0.087 (2)
H230.58411.04870.19460.105*
C240.5350 (6)1.0426 (4)0.0921 (3)0.082 (2)
H240.51821.11220.08600.098*
C250.5200 (4)0.9801 (3)0.0361 (2)0.0395 (10)
C260.5451 (6)0.8796 (4)0.0508 (3)0.0810 (19)
H260.53530.83200.01510.097*
C270.5849 (6)0.8484 (5)0.1182 (3)0.086 (2)
H270.60200.77920.12610.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0222 (2)0.0411 (3)0.0338 (3)0.0005 (2)0.00634 (18)0.0014 (2)
N10.0302 (18)0.053 (3)0.035 (2)0.0011 (17)0.0064 (15)0.0012 (18)
N20.0286 (18)0.039 (2)0.044 (2)0.0014 (16)0.0082 (15)0.0020 (19)
N30.0218 (16)0.050 (2)0.0361 (19)0.0012 (16)0.0058 (15)0.0011 (18)
N40.0244 (17)0.042 (2)0.0363 (19)0.0003 (15)0.0103 (15)0.0024 (16)
N50.059 (3)0.061 (3)0.046 (3)0.001 (2)0.001 (2)0.009 (2)
N60.067 (3)0.067 (3)0.068 (3)0.014 (3)0.024 (3)0.014 (3)
N70.095 (5)0.088 (4)0.081 (4)0.027 (4)0.022 (4)0.007 (4)
O10.085 (3)0.093 (3)0.078 (3)0.041 (2)0.027 (2)0.001 (2)
O20.106 (4)0.127 (4)0.118 (4)0.047 (3)0.052 (3)0.014 (3)
O30.137 (4)0.156 (5)0.063 (3)0.090 (4)0.015 (3)0.010 (3)
O40.119 (4)0.205 (7)0.092 (4)0.058 (4)0.026 (3)0.014 (4)
O50.163 (7)0.150 (6)0.252 (9)0.036 (5)0.081 (6)0.076 (6)
O60.100 (3)0.084 (3)0.068 (3)0.027 (2)0.031 (2)0.027 (2)
O70.0361 (16)0.0462 (19)0.0530 (19)0.0017 (14)0.0124 (14)0.0019 (16)
O80.0310 (16)0.071 (2)0.0373 (17)0.0045 (15)0.0010 (13)0.0162 (16)
O90.142 (5)0.132 (5)0.089 (4)0.002 (4)0.014 (3)0.008 (3)
C10.053 (3)0.070 (4)0.041 (3)0.004 (3)0.007 (2)0.005 (3)
C20.084 (4)0.112 (6)0.030 (3)0.008 (4)0.002 (3)0.005 (3)
C30.088 (5)0.093 (5)0.051 (4)0.012 (4)0.010 (3)0.030 (4)
C40.056 (3)0.073 (4)0.054 (3)0.011 (3)0.012 (3)0.023 (3)
C50.032 (2)0.048 (3)0.047 (3)0.006 (2)0.010 (2)0.011 (2)
C60.029 (2)0.046 (3)0.052 (3)0.005 (2)0.009 (2)0.000 (2)
C70.056 (3)0.044 (3)0.079 (4)0.003 (2)0.018 (3)0.008 (3)
C80.103 (5)0.042 (4)0.086 (5)0.008 (3)0.014 (4)0.015 (3)
C90.106 (5)0.054 (4)0.067 (4)0.010 (3)0.010 (3)0.013 (3)
C100.053 (3)0.049 (3)0.049 (3)0.002 (2)0.007 (2)0.004 (3)
C110.085 (4)0.067 (4)0.087 (5)0.022 (3)0.019 (4)0.044 (4)
C120.099 (5)0.049 (4)0.091 (5)0.008 (3)0.020 (4)0.023 (4)
C130.028 (2)0.061 (3)0.039 (2)0.005 (2)0.0034 (19)0.009 (2)
C140.029 (2)0.065 (3)0.041 (3)0.002 (2)0.0120 (19)0.010 (2)
C150.0221 (19)0.035 (2)0.037 (2)0.0014 (18)0.0067 (17)0.004 (2)
C160.024 (2)0.059 (3)0.043 (3)0.000 (2)0.0042 (19)0.012 (2)
C170.030 (2)0.063 (3)0.037 (2)0.003 (2)0.0095 (19)0.009 (2)
C180.027 (2)0.047 (3)0.034 (2)0.0030 (19)0.0032 (18)0.002 (2)
C190.030 (2)0.041 (3)0.036 (2)0.0031 (19)0.0113 (18)0.002 (2)
C200.024 (2)0.034 (2)0.033 (2)0.0018 (17)0.0050 (17)0.0063 (19)
C210.030 (2)0.045 (3)0.031 (2)0.0014 (19)0.0024 (17)0.004 (2)
C220.028 (2)0.046 (3)0.034 (2)0.0023 (19)0.0073 (18)0.004 (2)
C230.149 (6)0.063 (4)0.038 (3)0.002 (4)0.002 (3)0.007 (3)
C240.156 (6)0.038 (3)0.040 (3)0.006 (3)0.000 (3)0.002 (3)
C250.040 (2)0.037 (3)0.037 (2)0.0005 (19)0.0012 (19)0.006 (2)
C260.142 (6)0.040 (3)0.047 (3)0.010 (3)0.006 (3)0.009 (3)
C270.132 (6)0.048 (4)0.063 (4)0.013 (4)0.007 (4)0.015 (3)
Geometric parameters (Å, º) top
Zn1—O82.104 (3)C6—C71.412 (7)
Zn1—O72.138 (3)C7—C81.393 (7)
Zn1—N42.142 (3)C7—C121.418 (7)
Zn1—N22.163 (4)C8—C91.344 (8)
Zn1—N3i2.175 (3)C8—H80.9300
Zn1—N12.176 (3)C9—C101.387 (7)
N1—C11.317 (5)C9—H90.9300
N1—C51.362 (6)C10—H100.9300
N2—C101.316 (5)C11—C121.335 (8)
N2—C61.354 (5)C11—H110.9300
N3—C131.328 (5)C12—H120.9300
N3—C171.329 (5)C13—C141.375 (5)
N4—C181.329 (5)C13—H130.9300
N4—C221.338 (5)C14—C151.378 (6)
N5—C271.295 (7)C14—H140.9300
N5—C231.296 (7)C15—C161.383 (5)
N6—O31.194 (6)C15—C201.490 (5)
N6—O21.227 (5)C16—C171.369 (5)
N6—O11.230 (5)C16—H160.9300
N7—O41.167 (6)C17—H170.9300
N7—O61.229 (6)C18—C191.373 (5)
N7—O51.278 (8)C18—H180.9300
O7—H7C0.8500C19—C201.389 (5)
O7—H7D0.8500C19—H190.9300
O8—H8C0.8500C20—C211.388 (5)
O8—H8D0.8500C21—C221.363 (5)
O9—H9C0.8500C21—H210.9300
O9—H9D0.8500C22—H220.9300
C1—C21.401 (7)C23—C241.373 (7)
C1—H10.9300C23—H230.9300
C2—C31.352 (8)C24—C251.357 (6)
C2—H20.9300C24—H240.9300
C3—C41.381 (8)C25—C261.361 (7)
C3—H30.9300C25—C25ii1.492 (8)
C4—C51.403 (6)C26—C271.370 (7)
C4—C111.434 (8)C26—H260.9300
C5—C61.427 (6)C27—H270.9300
O8—Zn1—O791.55 (12)C6—C7—C12118.8 (5)
O8—Zn1—N492.31 (11)C9—C8—C7119.8 (5)
O7—Zn1—N488.58 (12)C9—C8—H8120.1
O8—Zn1—N293.64 (13)C7—C8—H8120.1
O7—Zn1—N2174.80 (12)C8—C9—C10119.8 (5)
N4—Zn1—N290.88 (12)C8—C9—H9120.1
O8—Zn1—N3i85.28 (11)C10—C9—H9120.1
O7—Zn1—N3i86.98 (12)N2—C10—C9122.9 (5)
N4—Zn1—N3i174.89 (13)N2—C10—H10118.5
N2—Zn1—N3i93.77 (13)C9—C10—H10118.5
O8—Zn1—N1168.97 (13)C12—C11—C4121.9 (5)
O7—Zn1—N197.62 (13)C12—C11—H11119.0
N4—Zn1—N194.05 (12)C4—C11—H11119.0
N2—Zn1—N177.27 (14)C11—C12—C7121.2 (6)
N3i—Zn1—N189.06 (12)C11—C12—H12119.4
C1—N1—C5118.6 (4)C7—C12—H12119.4
C1—N1—Zn1128.6 (3)N3—C13—C14123.8 (4)
C5—N1—Zn1112.6 (3)N3—C13—H13118.1
C10—N2—C6118.2 (4)C14—C13—H13118.1
C10—N2—Zn1128.1 (3)C13—C14—C15119.9 (4)
C6—N2—Zn1113.7 (3)C13—C14—H14120.0
C13—N3—C17116.3 (3)C15—C14—H14120.0
C13—N3—Zn1iii121.3 (3)C14—C15—C16116.1 (4)
C17—N3—Zn1iii122.3 (3)C14—C15—C20122.4 (4)
C18—N4—C22116.5 (3)C16—C15—C20121.5 (4)
C18—N4—Zn1122.0 (3)C17—C16—C15120.3 (4)
C22—N4—Zn1121.4 (3)C17—C16—H16119.9
C27—N5—C23114.8 (5)C15—C16—H16119.9
O3—N6—O2122.4 (5)N3—C17—C16123.5 (4)
O3—N6—O1120.1 (5)N3—C17—H17118.2
O2—N6—O1117.5 (5)C16—C17—H17118.2
O4—N7—O6124.0 (7)N4—C18—C19124.2 (4)
O4—N7—O5118.0 (7)N4—C18—H18117.9
O6—N7—O5118.0 (7)C19—C18—H18117.9
Zn1—O7—H7C108.6C18—C19—C20119.1 (4)
Zn1—O7—H7D115.9C18—C19—H19120.4
H7C—O7—H7D108.4C20—C19—H19120.4
Zn1—O8—H8C135.8C21—C20—C19116.6 (3)
Zn1—O8—H8D109.0C21—C20—C15121.7 (3)
H8C—O8—H8D108.1C19—C20—C15121.7 (3)
H9C—O9—H9D108.3C22—C21—C20120.3 (4)
N1—C1—C2121.9 (5)C22—C21—H21119.9
N1—C1—H1119.1C20—C21—H21119.9
C2—C1—H1119.1N4—C22—C21123.3 (4)
C3—C2—C1119.8 (5)N4—C22—H22118.3
C3—C2—H2120.1C21—C22—H22118.3
C1—C2—H2120.1N5—C23—C24124.8 (5)
C2—C3—C4120.0 (5)N5—C23—H23117.6
C2—C3—H3120.0C24—C23—H23117.6
C4—C3—H3120.0C25—C24—C23120.2 (5)
C3—C4—C5117.7 (6)C25—C24—H24119.9
C3—C4—C11123.7 (6)C23—C24—H24119.9
C5—C4—C11118.5 (5)C24—C25—C26115.1 (4)
N1—C5—C4122.0 (5)C24—C25—C25ii121.9 (5)
N1—C5—C6118.5 (4)C26—C25—C25ii122.9 (5)
C4—C5—C6119.5 (5)C25—C26—C27120.1 (5)
N2—C6—C7122.1 (4)C25—C26—H26120.0
N2—C6—C5117.8 (4)C27—C26—H26120.0
C7—C6—C5120.1 (5)N5—C27—C26125.0 (6)
C8—C7—C6117.2 (5)N5—C27—H27117.5
C8—C7—C12124.0 (6)C26—C27—H27117.5
O8—Zn1—N1—C1143.1 (6)N2—C6—C7—C81.6 (7)
O7—Zn1—N1—C12.8 (4)C5—C6—C7—C8178.1 (4)
N4—Zn1—N1—C191.9 (4)N2—C6—C7—C12179.0 (4)
N2—Zn1—N1—C1178.1 (4)C5—C6—C7—C121.3 (7)
N3i—Zn1—N1—C184.0 (4)C6—C7—C8—C90.4 (8)
O8—Zn1—N1—C532.9 (8)C12—C7—C8—C9179.7 (6)
O7—Zn1—N1—C5178.8 (3)C7—C8—C9—C101.2 (10)
N4—Zn1—N1—C592.1 (3)C6—N2—C10—C90.7 (7)
N2—Zn1—N1—C52.1 (3)Zn1—N2—C10—C9177.4 (4)
N3i—Zn1—N1—C592.0 (3)C8—C9—C10—N21.9 (9)
O8—Zn1—N2—C109.1 (4)C3—C4—C11—C12178.9 (6)
N4—Zn1—N2—C1083.2 (4)C5—C4—C11—C120.7 (9)
N3i—Zn1—N2—C1094.6 (4)C4—C11—C12—C71.7 (10)
N1—Zn1—N2—C10177.2 (4)C8—C7—C12—C11180.0 (6)
O8—Zn1—N2—C6172.7 (3)C6—C7—C12—C110.7 (9)
N4—Zn1—N2—C694.9 (3)C17—N3—C13—C140.9 (7)
N3i—Zn1—N2—C687.2 (3)Zn1iii—N3—C13—C14175.9 (4)
N1—Zn1—N2—C61.0 (3)N3—C13—C14—C150.4 (7)
O8—Zn1—N4—C18142.9 (3)C13—C14—C15—C161.0 (7)
O7—Zn1—N4—C1851.4 (3)C13—C14—C15—C20179.8 (4)
N2—Zn1—N4—C18123.4 (3)C14—C15—C16—C170.3 (7)
N1—Zn1—N4—C1846.1 (3)C20—C15—C16—C17179.2 (4)
O8—Zn1—N4—C2241.6 (3)C13—N3—C17—C161.6 (7)
O7—Zn1—N4—C22133.1 (3)Zn1iii—N3—C17—C16175.1 (4)
N2—Zn1—N4—C2252.0 (3)C15—C16—C17—N31.0 (7)
N1—Zn1—N4—C22129.3 (3)C22—N4—C18—C192.1 (6)
C5—N1—C1—C20.1 (7)Zn1—N4—C18—C19173.6 (3)
Zn1—N1—C1—C2175.8 (4)N4—C18—C19—C200.3 (7)
N1—C1—C2—C30.5 (8)C18—C19—C20—C212.1 (6)
C1—C2—C3—C40.2 (9)C18—C19—C20—C15176.6 (4)
C2—C3—C4—C50.7 (8)C14—C15—C20—C219.3 (6)
C2—C3—C4—C11179.0 (6)C16—C15—C20—C21171.9 (4)
C1—N1—C5—C41.0 (6)C14—C15—C20—C19169.3 (4)
Zn1—N1—C5—C4177.4 (3)C16—C15—C20—C199.5 (6)
C1—N1—C5—C6179.4 (4)C19—C20—C21—C221.6 (6)
Zn1—N1—C5—C63.0 (5)C15—C20—C21—C22177.1 (4)
C3—C4—C5—N11.3 (7)C18—N4—C22—C212.6 (6)
C11—C4—C5—N1178.4 (4)Zn1—N4—C22—C21173.1 (3)
C3—C4—C5—C6179.1 (4)C20—C21—C22—N40.8 (6)
C11—C4—C5—C61.2 (7)C27—N5—C23—C240.5 (10)
C10—N2—C6—C71.1 (6)N5—C23—C24—C250.2 (11)
Zn1—N2—C6—C7179.4 (3)C23—C24—C25—C261.1 (9)
C10—N2—C6—C5178.6 (4)C23—C24—C25—C25ii178.4 (6)
Zn1—N2—C6—C50.3 (4)C24—C25—C26—C271.3 (9)
N1—C5—C6—N22.3 (6)C25ii—C25—C26—C27178.1 (6)
C4—C5—C6—N2178.1 (4)C23—N5—C27—C260.2 (10)
N1—C5—C6—C7177.4 (4)C25—C26—C27—N50.8 (11)
C4—C5—C6—C72.2 (6)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+2, z; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7C···O1iv0.851.892.737 (5)180
O7—H7D···O6v0.851.932.782 (5)180
O8—H8C···N50.851.892.724 (5)169
O8—H8D···O3iv0.851.902.744 (6)169
O9—H9C···O2iii0.852.243.091 (7)176
O9—H9D···O4vi0.852.273.114 (8)176
Symmetry codes: (iii) x1, y, z; (iv) x, y+1, z; (v) x+1, y+1/2, z+1/2; (vi) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7C···O1i0.851.892.737 (5)180
O7—H7D···O6ii0.851.932.782 (5)180
O8—H8C···N50.851.892.724 (5)169
O8—H8D···O3i0.851.902.744 (6)169
O9—H9C···O2iii0.852.243.091 (7)176
O9—H9D···O4iv0.852.273.114 (8)176
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2; (iii) x1, y, z; (iv) x+1, y1/2, z+1/2.
Acknowledgements top

This work was supported by the National Natural Science Foundation of China (grant No. 21171119), the National Keystone Basic Research Program (973 Program) under grant Nos. 2007CB310408 and 2006CB302901, and the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality.

references
References top

Bai, Z.-S., Chen, M.-S., Chen, S.-S., Su, Z. & Sun, W.-Y. (2009). Chin. J. Inorg. Chem. 25, 402–406.

Blake, A. J., Hill, S. J., Hubberstey, P. & Li, W.-S. (1998). J. Chem. Soc. Dalton Trans. pp. 909–916.

Boag, N. M., Coward, K. M., Jones, A. C., Pemble, M. E. & Thompson, J. R. (1999). Acta Cryst. C55, 672–674.

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.

Carlucci, L., Ciani, G., Proserpio, D. M. & Sironi, A. (1997). J. Chem. Soc. Dalton Trans. pp. 1801–1804.

Chen, H., Xu, X.-Y., Gao, J., Yang, X.-J., Lu, L.-D. & Wang, X. (2006). Huaxue Shiji, 28, 478–480.

Du, Z.-X. & Li, J.-X. (2007). Acta Cryst. E63, m2282.

Ma, A.-Q., Jia, Z.-B. & Wang, G.-P. (2006). Acta Cryst. E62, m21–m23.

Rama Krishna, N., Yanhong, D., Osmond, J., D'Cruz, C. N. & Fatih, M. U. (2000). Clin. Cancer Res. 6, 1546–1556.

Sastri, C. V., Eswaramoorthy, D., Giridabu, L. & Maiya, B. G. (2003). J. Inorg. Biochem. 94, 138–145.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Xiong, R. G., Lewandowski, B. J. & Huang, S. D. (1999). Z. Kristallogr. New Cryst. Struct. 214, 461–462.

Zhang, C. G. & Janiak, C. (2001). J. Chem. Crystallogr. 31, 29–35.

Zhang, K.-L., Yang, B. & Ng, S. W. (2009). Acta Cryst. E65, m239–m240.