organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-3-[4-(Benz­yl­oxy)phen­yl]-1-(pyridin-3-yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 31 July 2012; accepted 7 August 2012; online 15 August 2012)

The title compound, C21H17NO2, exists in an E conformation with respect to the C=C bond. The pyridine ring forms dihedral angles of 5.57 (7) and 82.30 (9)°, respectively, with the central benzene ring and the terminal phenyl ring. The dihedral angle between the benzene and phenyl rings is 87.69 (8)°. No significant inter­molecular inter­actions are observed.

Related literature

For the pharmacological activity of chalcones, see: Matsuda et al. (2003[Matsuda, H., Morikawa, T., Ando, S., Iwao, T. & Masayuki, Y. (2003). Bioorg. Med. Chem. 11, 1995-2000.]); Lopez et al. (2001[Lopez, S. N., Castelli, M. V., Zacchino, S. A., Dominguez, J. N., Lobo, G., Jaime, C. C., Cortes, J. C. G., Ribas, J. C., Devia, C., Ana, M. R. & Ricardo, D. E. (2001). Bioorg. Med. Chem. 9, 1999-2013.]); Agarwal et al. (2005[Agarwal, A., Srivastava, K., Puri, S. K. & Chauhan, P. M. S. (2005). Bioorg. Med. Chem.. 13, 4645-4650.]). For related structures, see: Bibila Mayaya Bisseyou et al. (2007[Bibila Mayaya Bisseyou, Y., Soro, A. P., Sissouma, D., Giorgi, M. & Ebby, N. (2007). Acta Cryst. E63, o4758-o4759.]); Liu et al. (2005[Liu, J.-B., Dai, H., Tao, W.-F., Jin, Z. & Fang, J.-X. (2005). Acta Cryst. E61, o3599-o3601.]); Jasinski et al. (2011[Jasinski, J. P., Butcher, R. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o352-o353.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C21H17NO2

  • Mr = 315.36

  • Monoclinic, P 21 /c

  • a = 5.9845 (6) Å

  • b = 38.187 (4) Å

  • c = 8.5412 (7) Å

  • β = 123.372 (5)°

  • V = 1630.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.40 × 0.33 × 0.17 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.986

  • 18812 measured reflections

  • 4751 independent reflections

  • 3171 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.141

  • S = 1.02

  • 4751 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones constitute an important family of substances belonging to flavonoids and isoflavonoids and are abundant in edible plants. Chalcones exhibit many pharmacological activities, including anti-leishmanial, anti-inflammatory (Matsuda et al., 2003), anti-mitotic, anti-invasive, anti-tuberculosis, anti-fungal (Lopez et al., 2001) and anti-malarial (Agarwal et al., 2005). Nitrogen moiety containing heterocyclic chalcones plays important roles as anti-ulcer, herbicidal, anti-bacterial, analgesic, sedative, anti-phlogistic and virucidal agents. The crystal structures of some chalcones derived from acetyl pyridine viz., (Z)-3-(2,6-dichlorophenyl)-1-(pyridin-3-yl)-2- (1H-1,2,4-triazol-1-yl)prop-2-en-1-one (Liu et al., 2005), 3-(3-chlorophenyl)-1-(2-methylimidazo[1,2-a]pyridin-3-yl)prop-2-en-1-one (Bibila Mayaya Bisseyou et al., 2007) and (2E)-3-(3-bromo-4-methoxyphenyl)-1-(pyridin-2-yl)prop-2-en-1-one (Jasinski et al., 2011) have been reported. In continuation of our studies on chalcones and their derivatives, the title compound (I) was prepared and its crystal structure is reported.

The title compound (Fig. 1) exists in an E configuration with respect to the C14C15 bond [1.3217 (19) Å]. The pyridin-3-yl ring (N1/C17–C21) forms dihedral angles of 5.57 (7) and 82.30 (9)° with the benzene (C8–C13) and phenyl (C1–C6) rings, respectively. The dihedral angle between the benzene and phenyl rings is 87.69 (8)°. Bond lengths and angles are within normal ranges and are comparable to related structures (Bibila Mayaya Bisseyou et al., 2007; Liu et al., 2005; Jasinski et al., 2011). No significant intermolecular hydrogen bonds are observed.

Related literature top

For the pharmacological activity of chalcones, see: Matsuda et al. (2003); Lopez et al. (2001); Agarwal et al. (2005). For related structures, see: Bibila Mayaya Bisseyou et al. (2007); Liu et al. (2005); Jasinski et al. (2011). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

To a mixture of 3-acetylpyridine (1.1 mL, 0.01 mol) and 4-benzyloxybenzaldehyde (2.12 g, 0.01 mol) in ethanol (100 mL), 15 mL of 10% sodium hydroxide solution was added and stirred at 0–5 °C for 3 h. The precipitate formed was collected by filtration and purified by recrystallization from ethanol. Single crystals were grown from acetone and toluene (1:1) mixture by slow evaporation method (m.p. 403–407 K).

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 or 0.99 Å and Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms.
(2E)-3-[4-(Benzyloxy)phenyl]-1-(pyridin-3-yl)prop-2-en-1-one top
Crystal data top
C21H17NO2F(000) = 664
Mr = 315.36Dx = 1.285 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4372 reflections
a = 5.9845 (6) Åθ = 2.9–26.5°
b = 38.187 (4) ŵ = 0.08 mm1
c = 8.5412 (7) ÅT = 100 K
β = 123.372 (5)°Block, yellow
V = 1630.1 (3) Å30.40 × 0.33 × 0.17 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
4751 independent reflections
Radiation source: fine-focus sealed tube3171 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 30.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 88
Tmin = 0.968, Tmax = 0.986k = 5347
18812 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.059P)2 + 0.2532P]
where P = (Fo2 + 2Fc2)/3
4751 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C21H17NO2V = 1630.1 (3) Å3
Mr = 315.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.9845 (6) ŵ = 0.08 mm1
b = 38.187 (4) ÅT = 100 K
c = 8.5412 (7) Å0.40 × 0.33 × 0.17 mm
β = 123.372 (5)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
4751 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3171 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.986Rint = 0.028
18812 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.02Δρmax = 0.17 e Å3
4751 reflectionsΔρmin = 0.15 e Å3
217 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1642 (2)0.12817 (2)0.76557 (15)0.0534 (3)
O20.6625 (3)0.04322 (3)0.69065 (19)0.0690 (3)
N10.5921 (3)0.14650 (3)0.7813 (2)0.0668 (4)
C10.2000 (4)0.20724 (4)0.8950 (3)0.0637 (4)
H1A0.01780.20480.99490.076*
C20.3631 (4)0.23073 (4)0.9115 (3)0.0725 (5)
H2A0.29240.24421.02250.087*
C30.6271 (4)0.23442 (4)0.7671 (3)0.0700 (5)
H3A0.73820.25060.77780.084*
C40.7299 (4)0.21464 (4)0.6074 (3)0.0673 (4)
H4A0.91280.21690.50850.081*
C50.5668 (3)0.19132 (4)0.5905 (2)0.0583 (4)
H5A0.63810.17790.47920.070*
C60.3010 (3)0.18749 (3)0.7344 (2)0.0496 (3)
C70.1254 (3)0.16226 (3)0.7147 (2)0.0524 (3)
H7A0.06450.16930.79780.063*
H7B0.17340.16210.58380.063*
C80.0323 (3)0.10096 (3)0.74586 (18)0.0425 (3)
C90.0638 (3)0.06836 (3)0.8049 (2)0.0480 (3)
H9A0.16860.06640.85690.058*
C100.0551 (3)0.03911 (3)0.7886 (2)0.0467 (3)
H10A0.03000.01700.82820.056*
C110.2133 (2)0.04140 (3)0.71422 (18)0.0427 (3)
C120.2424 (3)0.07406 (3)0.65656 (19)0.0485 (3)
H12A0.34720.07610.60450.058*
C130.1238 (3)0.10387 (4)0.6723 (2)0.0484 (3)
H13A0.14900.12600.63320.058*
C140.3499 (3)0.01114 (3)0.69900 (19)0.0467 (3)
H14A0.45070.01530.64540.056*
C150.3490 (3)0.02140 (4)0.7514 (2)0.0507 (3)
H15A0.24620.02690.80210.061*
C160.5021 (3)0.04934 (4)0.73355 (19)0.0470 (3)
C170.4655 (3)0.08627 (3)0.77386 (18)0.0433 (3)
C180.6038 (3)0.11266 (4)0.7499 (2)0.0562 (4)
H18A0.71540.10600.70790.067*
C190.4329 (4)0.15510 (4)0.8397 (2)0.0652 (4)
H19A0.41990.17910.86290.078*
C200.2878 (4)0.13133 (4)0.8679 (3)0.0687 (5)
H20A0.17830.13880.91030.082*
C210.3026 (3)0.09635 (4)0.8339 (2)0.0579 (4)
H21A0.20220.07940.85160.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0640 (6)0.0392 (5)0.0748 (7)0.0061 (4)0.0494 (6)0.0041 (4)
O20.0864 (8)0.0557 (6)0.1028 (9)0.0082 (5)0.0761 (8)0.0071 (6)
N10.0781 (10)0.0477 (7)0.0865 (10)0.0058 (6)0.0528 (9)0.0013 (6)
C10.0684 (10)0.0500 (8)0.0743 (10)0.0020 (7)0.0402 (9)0.0058 (7)
C20.0935 (14)0.0524 (9)0.0850 (12)0.0029 (9)0.0576 (12)0.0134 (8)
C30.0904 (13)0.0484 (8)0.0985 (13)0.0127 (8)0.0693 (12)0.0046 (8)
C40.0667 (10)0.0617 (9)0.0824 (12)0.0148 (8)0.0466 (9)0.0097 (8)
C50.0647 (10)0.0507 (8)0.0662 (9)0.0047 (7)0.0403 (8)0.0012 (7)
C60.0615 (9)0.0347 (6)0.0651 (9)0.0013 (6)0.0427 (8)0.0047 (6)
C70.0595 (9)0.0414 (7)0.0660 (9)0.0045 (6)0.0407 (8)0.0062 (6)
C80.0407 (7)0.0410 (6)0.0458 (7)0.0022 (5)0.0237 (6)0.0015 (5)
C90.0504 (8)0.0456 (7)0.0593 (8)0.0005 (6)0.0372 (7)0.0008 (6)
C100.0479 (7)0.0395 (6)0.0576 (8)0.0009 (5)0.0321 (7)0.0009 (5)
C110.0384 (6)0.0453 (7)0.0424 (6)0.0012 (5)0.0209 (6)0.0035 (5)
C120.0489 (8)0.0525 (7)0.0535 (8)0.0048 (6)0.0342 (7)0.0043 (6)
C130.0510 (8)0.0446 (7)0.0555 (8)0.0037 (6)0.0330 (7)0.0067 (6)
C140.0465 (7)0.0492 (7)0.0482 (7)0.0024 (6)0.0284 (6)0.0036 (6)
C150.0560 (8)0.0477 (7)0.0596 (8)0.0048 (6)0.0390 (7)0.0015 (6)
C160.0510 (8)0.0485 (7)0.0486 (7)0.0030 (6)0.0320 (6)0.0021 (6)
C170.0433 (7)0.0467 (7)0.0409 (6)0.0022 (5)0.0238 (6)0.0033 (5)
C180.0607 (9)0.0508 (8)0.0707 (10)0.0041 (6)0.0447 (8)0.0024 (7)
C190.0721 (11)0.0509 (8)0.0724 (11)0.0003 (7)0.0397 (9)0.0062 (7)
C200.0771 (11)0.0644 (10)0.0856 (12)0.0041 (8)0.0582 (10)0.0135 (8)
C210.0640 (9)0.0580 (8)0.0682 (9)0.0079 (7)0.0469 (8)0.0041 (7)
Geometric parameters (Å, º) top
O1—C81.3700 (15)C9—H9A0.9500
O1—C71.4313 (15)C10—C111.4037 (18)
O2—C161.2235 (16)C10—H10A0.9500
N1—C181.3297 (19)C11—C121.3869 (18)
N1—C191.337 (2)C11—C141.4620 (17)
C1—C61.380 (2)C12—C131.3866 (18)
C1—C21.388 (2)C12—H12A0.9500
C1—H1A0.9500C13—H13A0.9500
C2—C31.376 (3)C14—C151.3217 (19)
C2—H2A0.9500C14—H14A0.9500
C3—C41.373 (3)C15—C161.4682 (18)
C3—H3A0.9500C15—H15A0.9500
C4—C51.386 (2)C16—C171.4963 (18)
C4—H4A0.9500C17—C211.3826 (19)
C5—C61.383 (2)C17—C181.3889 (18)
C5—H5A0.9500C18—H18A0.9500
C6—C71.5019 (18)C19—C201.366 (2)
C7—H7A0.9900C19—H19A0.9500
C7—H7B0.9900C20—C211.380 (2)
C8—C131.3877 (18)C20—H20A0.9500
C8—C91.3943 (18)C21—H21A0.9500
C9—C101.3718 (18)
C8—O1—C7116.85 (10)C11—C10—H10A119.6
C18—N1—C19116.22 (13)C12—C11—C10117.68 (11)
C6—C1—C2120.41 (17)C12—C11—C14119.58 (12)
C6—C1—H1A119.8C10—C11—C14122.73 (12)
C2—C1—H1A119.8C13—C12—C11122.20 (12)
C3—C2—C1119.97 (16)C13—C12—H12A118.9
C3—C2—H2A120.0C11—C12—H12A118.9
C1—C2—H2A120.0C12—C13—C8119.10 (12)
C4—C3—C2120.02 (15)C12—C13—H13A120.4
C4—C3—H3A120.0C8—C13—H13A120.4
C2—C3—H3A120.0C15—C14—C11127.31 (12)
C3—C4—C5120.03 (17)C15—C14—H14A116.3
C3—C4—H4A120.0C11—C14—H14A116.3
C5—C4—H4A120.0C14—C15—C16121.93 (13)
C6—C5—C4120.44 (16)C14—C15—H15A119.0
C6—C5—H5A119.8C16—C15—H15A119.0
C4—C5—H5A119.8O2—C16—C15121.97 (13)
C1—C6—C5119.13 (14)O2—C16—C17119.18 (12)
C1—C6—C7120.75 (14)C15—C16—C17118.83 (11)
C5—C6—C7120.12 (13)C21—C17—C18116.88 (13)
O1—C7—C6108.00 (11)C21—C17—C16124.77 (12)
O1—C7—H7A110.1C18—C17—C16118.36 (11)
C6—C7—H7A110.1N1—C18—C17124.98 (14)
O1—C7—H7B110.1N1—C18—H18A117.5
C6—C7—H7B110.1C17—C18—H18A117.5
H7A—C7—H7B108.4N1—C19—C20123.70 (15)
O1—C8—C13124.89 (11)N1—C19—H19A118.2
O1—C8—C9115.53 (11)C20—C19—H19A118.2
C13—C8—C9119.58 (12)C19—C20—C21119.08 (15)
C10—C9—C8120.64 (12)C19—C20—H20A120.5
C10—C9—H9A119.7C21—C20—H20A120.5
C8—C9—H9A119.7C20—C21—C17119.14 (14)
C9—C10—C11120.79 (12)C20—C21—H21A120.4
C9—C10—H10A119.6C17—C21—H21A120.4
C6—C1—C2—C30.0 (3)C11—C12—C13—C80.9 (2)
C1—C2—C3—C40.6 (3)O1—C8—C13—C12178.71 (12)
C2—C3—C4—C50.9 (3)C9—C8—C13—C120.9 (2)
C3—C4—C5—C60.7 (2)C12—C11—C14—C15178.19 (14)
C2—C1—C6—C50.2 (2)C10—C11—C14—C150.7 (2)
C2—C1—C6—C7179.44 (14)C11—C14—C15—C16178.09 (13)
C4—C5—C6—C10.1 (2)C14—C15—C16—O28.9 (2)
C4—C5—C6—C7179.77 (13)C14—C15—C16—C17172.68 (13)
C8—O1—C7—C6176.20 (12)O2—C16—C17—C21176.13 (15)
C1—C6—C7—O196.55 (15)C15—C16—C17—C212.4 (2)
C5—C6—C7—O183.83 (16)O2—C16—C17—C183.9 (2)
C7—O1—C8—C133.3 (2)C15—C16—C17—C18177.67 (13)
C7—O1—C8—C9177.05 (12)C19—N1—C18—C170.2 (3)
O1—C8—C9—C10178.79 (12)C21—C17—C18—N10.4 (2)
C13—C8—C9—C100.9 (2)C16—C17—C18—N1179.58 (15)
C8—C9—C10—C110.7 (2)C18—N1—C19—C200.2 (3)
C9—C10—C11—C120.6 (2)N1—C19—C20—C210.4 (3)
C9—C10—C11—C14178.24 (13)C19—C20—C21—C170.5 (3)
C10—C11—C12—C130.7 (2)C18—C17—C21—C200.5 (2)
C14—C11—C12—C13178.21 (13)C16—C17—C21—C20179.44 (15)

Experimental details

Crystal data
Chemical formulaC21H17NO2
Mr315.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)5.9845 (6), 38.187 (4), 8.5412 (7)
β (°) 123.372 (5)
V3)1630.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.33 × 0.17
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.968, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
18812, 4751, 3171
Rint0.028
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.141, 1.02
No. of reflections4751
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.15

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

The authors would like to thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). BN also thanks the UGC, New Delhi, and the Government of India for the purchase of chemicals through the SAP–DRS-Phase 1 programme.

References

First citationAgarwal, A., Srivastava, K., Puri, S. K. & Chauhan, P. M. S. (2005). Bioorg. Med. Chem.. 13, 4645–4650.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBibila Mayaya Bisseyou, Y., Soro, A. P., Sissouma, D., Giorgi, M. & Ebby, N. (2007). Acta Cryst. E63, o4758–o4759.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o352–o353.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, J.-B., Dai, H., Tao, W.-F., Jin, Z. & Fang, J.-X. (2005). Acta Cryst. E61, o3599–o3601.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLopez, S. N., Castelli, M. V., Zacchino, S. A., Dominguez, J. N., Lobo, G., Jaime, C. C., Cortes, J. C. G., Ribas, J. C., Devia, C., Ana, M. R. & Ricardo, D. E. (2001). Bioorg. Med. Chem. 9, 1999–2013.  Web of Science PubMed CAS Google Scholar
First citationMatsuda, H., Morikawa, T., Ando, S., Iwao, T. & Masayuki, Y. (2003). Bioorg. Med. Chem. 11, 1995–2000.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds