organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2715-o2716

Ethyl 1-phenyl-2-[4-(tri­fluoro­meth­­oxy)phen­yl]-1H-benzimidazole-5-carboxyl­ate

aInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia, and bSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 31 July 2012; accepted 7 August 2012; online 15 August 2012)

In the title compound, C23H17F3N2O3, an intra­molecular C—H⋯F hydrogen bond generates an S(6) ring motif. The essentially planar 1H-benzimidazole ring system [maximum deviation = 0.021 (2) Å] forms dihedral angles of 25.00 (10) and 62.53 (11)° with the trifluoro­meth­oxy-substituted benzene and phenyl rings, respectively. The twist of the ethyl acetate group from the least-squares plane of the 1H-benzimidazole ring system is defined by a C(=O)—O—C—C torsion angle of 79.5 (3)°. In the crystal, mol­ecules are linked into a two-dimensional network parallel to the bc plane by weak C—H⋯N and C—H⋯O hydrogen bonds. Weak C—H⋯π inter­actions also observed.

Related literature

For the biological activity of benzimidazoles, see: Lemura et al. (1986[Lemura, R., Kawashima, T., Fukuda, T., Ito, K. & Tsukamoto, G. (1986). J. Med. Chem. 29, 1178-1183.]); Zhang et al. (2008[Zhang, G., Ren, P., Gray, N. S., Sim, T., Liu, Y., Wang, X., Che, J., Tian, S., Sandberg, M. L., Spalding, T. A., Romeo, R., Iskandar, M., Chow, D., Deidel, H. M., Karanewsky, D. S. & He, Y. (2008). Bioorg. Med. Chem. Lett. 18, 5618-5621.]). For related structures, see: Yoon et al. (2011[Yoon, Y. K., Ali, M. A., Wei, A. C., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o2405.], 2012a[Yoon, Y. K., Ali, M. A., Choon, T. S., Arshad, S. & Razak, I. A. (2012a). Acta Cryst. E68, o1683.],b[Yoon, Y. K., Ali, M. A., Choon, T. S., Arshad, S. & Razak, I. A. (2012b). Acta Cryst. E68, o1864-o1865.],c[Yoon, Y. K., Manogaran, E., Choon, T. S., Arshad, S. & Razak, I. A. (2012c). Acta Cryst. E68, o1863.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C23H17F3N2O3

  • Mr = 426.39

  • Triclinic, [P \overline 1]

  • a = 8.0204 (4) Å

  • b = 10.8943 (6) Å

  • c = 11.4329 (7) Å

  • α = 76.706 (4)°

  • β = 83.269 (4)°

  • γ = 81.227 (4)°

  • V = 957.31 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.37 × 0.27 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.977

  • 12437 measured reflections

  • 4388 independent reflections

  • 3028 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.206

  • S = 1.05

  • 4388 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C14–C19 and N1/N2/C1/C6/C7 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯F2 0.95 2.37 2.956 (3) 120
C15—H15A⋯N1i 0.95 2.56 3.490 (3) 167
C18—H18A⋯O2ii 0.95 2.40 3.307 (4) 160
C19—H19A⋯O2iii 0.95 2.50 3.412 (3) 160
C13—H13ACg1 0.95 2.79 3.592 (3) 142
C21—H21ACg2iii 0.99 2.95 3.634 (3) 127
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) x, y, z+1; (iii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzimidazole-based heterocycles are of wide interest because of their diverse biological activities and various clinical applications. Among various applications, they are known to exhibit antihistamine (Lemura et al., 1986) and immunosuppressive (Zhang et al., 2008) activities. As part of our ongoing structural studies of benzimidazole derivatives (Yoon et al., 2011), we report the structure of the title compound.

The molecular structure is shown in Fig. 1. Bond lengths and angles are within normal ranges and are comparable to related structures (Yoon et al., 2012a,b,c). An intramolecular C12—H12A···F2 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995). The essentially planar 1H-benzimidazole ring system [N1/N2/C1–C7, with a maximum deviation of 0.021 (2) Å at atoms C6 and C7] is inclined to the trifluoromethoxy-substituted benzene ring (C8–C13) and the pendant phenyl ring (C14–C19), making dihedral angles of 25.00 (10) and 62.53 (11)°, respectively. The ethyl acetate group (O1/O2/C20–C22) is twisted away from the least-square plane of the 1H-benzimidazole ring at the O1–C21 bond, as indicated by the torsion angle C20—O1—C21—C22 = 79.5 (3)°.

The crystal packing is shown in Fig. 2. Weak intermolecular C15—H15A···N1i, C18—H18A···O2ii and C19—H19A···O2iii (Table 1) hydrogen bonds link the molecules into a two-dimensional network parallel to the bc-plane. The crystal structure is further stabilized by weak intermolecular C13—H13A···Cg1 and C21—H21A···Cg2 (Table 1) interactions (Cg1 and Cg2 are the centroids of C14–C19 and N1/N2/C1/C6/C7 rings, respectively).

Related literature top

For the biological activity of benzimidazoles, see: Lemura et al. (1986); Zhang et al. (2008). For related structures, see: Yoon et al. (2011, 2012a,b,c). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Ethyl 3-amino-4-(phenyl amino) benzoate (0.84 mmol) and the sodium metabisulfite adduct of trifluoromethoxy benzaldehyde (1.68 mmol) were dissolved in DMF. The reaction mixture was refluxed at 403K for 2 h. After completion, the reaction mixture was diluted in ethyl acetate (20 ml) and washed with water (20 ml). The organic layer was collected, dried over Na2SO4 and the evaporated in vacuo to yield the product. Crystals were obtained from a solution of the title compound in ethyl acetate.

Refinement top

All H atoms were positioned geometrically [C–H = 0.95–0.99 Å] and refined using a riding model with Uiso(H) = 1.2 Ueq(C) or Uiso(H) = 1.5 Ueq(Cmethyl). A rotating group model was applied to the methyl group hydrogen atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids. The dashed line indicates a weak hydrogen bond.

Fig. 2. The crystal packing of the title compound viewed along the c-axis. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
Ethyl 1-phenyl-2-[4-(trifluoromethoxy)phenyl]-1H-benzimidazole-5-carboxylate top
Crystal data top
C23H17F3N2O3Z = 2
Mr = 426.39F(000) = 440
Triclinic, P1Dx = 1.479 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0204 (4) ÅCell parameters from 2463 reflections
b = 10.8943 (6) Åθ = 2.6–29.7°
c = 11.4329 (7) ŵ = 0.12 mm1
α = 76.706 (4)°T = 100 K
β = 83.269 (4)°Block, colourless
γ = 81.227 (4)°0.37 × 0.27 × 0.20 mm
V = 957.31 (9) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4388 independent reflections
Radiation source: fine-focus sealed tube3028 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ϕ and ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.957, Tmax = 0.977k = 1414
12437 measured reflectionsl = 1412
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.206H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.123P)2]
where P = (Fo2 + 2Fc2)/3
4388 reflections(Δ/σ)max < 0.001
281 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C23H17F3N2O3γ = 81.227 (4)°
Mr = 426.39V = 957.31 (9) Å3
Triclinic, P1Z = 2
a = 8.0204 (4) ÅMo Kα radiation
b = 10.8943 (6) ŵ = 0.12 mm1
c = 11.4329 (7) ÅT = 100 K
α = 76.706 (4)°0.37 × 0.27 × 0.20 mm
β = 83.269 (4)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4388 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3028 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.977Rint = 0.065
12437 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0750 restraints
wR(F2) = 0.206H-atom parameters constrained
S = 1.05Δρmax = 0.87 e Å3
4388 reflectionsΔρmin = 0.42 e Å3
281 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.2469 (2)1.38071 (15)0.84048 (15)0.0330 (4)
F20.3445 (2)1.20231 (16)0.94936 (15)0.0353 (5)
F30.5165 (2)1.32405 (16)0.84269 (18)0.0379 (5)
O11.3555 (2)0.41546 (17)0.33931 (16)0.0229 (4)
O21.1298 (2)0.50753 (18)0.23637 (17)0.0247 (4)
O30.3587 (2)1.23201 (19)0.74959 (18)0.0296 (5)
N10.8708 (3)0.8508 (2)0.4871 (2)0.0207 (5)
N21.0123 (3)0.8059 (2)0.65459 (19)0.0194 (5)
C11.0871 (3)0.7205 (2)0.5846 (2)0.0185 (5)
C21.2206 (3)0.6226 (2)0.6035 (2)0.0204 (6)
H2A1.28000.60480.67390.024*
C31.2633 (3)0.5524 (2)0.5155 (2)0.0202 (6)
H3A1.35360.48450.52540.024*
C41.1749 (3)0.5801 (2)0.4112 (2)0.0198 (6)
C51.0430 (3)0.6791 (2)0.3917 (2)0.0197 (5)
H5A0.98470.69770.32070.024*
C60.9991 (3)0.7504 (2)0.4805 (2)0.0192 (5)
C70.8817 (3)0.8802 (2)0.5908 (2)0.0189 (5)
C80.7550 (3)0.9748 (2)0.6377 (2)0.0191 (5)
C90.6588 (3)1.0655 (2)0.5555 (2)0.0215 (6)
H9A0.68231.06850.47160.026*
C100.5302 (3)1.1510 (3)0.5944 (2)0.0230 (6)
H10A0.46671.21290.53800.028*
C110.4958 (3)1.1445 (2)0.7171 (2)0.0217 (6)
C120.5862 (3)1.0553 (3)0.8008 (2)0.0246 (6)
H12A0.56011.05190.88460.029*
C130.7156 (3)0.9708 (3)0.7609 (2)0.0234 (6)
H13A0.77840.90930.81810.028*
C141.0648 (3)0.8116 (2)0.7687 (2)0.0192 (5)
C151.1250 (3)0.9200 (3)0.7822 (2)0.0231 (6)
H15A1.13840.98890.71510.028*
C161.1652 (4)0.9260 (3)0.8952 (3)0.0276 (6)
H16A1.20421.00030.90630.033*
C171.1488 (3)0.8242 (3)0.9922 (2)0.0273 (6)
H17A1.17550.82931.06950.033*
C181.0937 (3)0.7152 (3)0.9766 (3)0.0270 (6)
H18A1.08540.64491.04290.032*
C191.0505 (3)0.7082 (3)0.8650 (2)0.0216 (6)
H19A1.01160.63380.85420.026*
C201.2139 (3)0.5004 (2)0.3189 (2)0.0191 (5)
C211.3934 (4)0.3264 (3)0.2602 (3)0.0264 (6)
H21A1.28690.29670.24900.032*
H21B1.46910.25150.29940.032*
C221.4756 (4)0.3817 (3)0.1393 (3)0.0314 (7)
H22A1.50590.31530.09260.047*
H22B1.57810.41550.14960.047*
H22C1.39680.45040.09630.047*
C230.3683 (3)1.2831 (3)0.8431 (2)0.0243 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0296 (9)0.0283 (9)0.0357 (10)0.0098 (7)0.0045 (7)0.0080 (7)
F20.0390 (10)0.0321 (10)0.0271 (9)0.0045 (8)0.0087 (7)0.0028 (7)
F30.0253 (9)0.0341 (10)0.0577 (12)0.0051 (7)0.0036 (8)0.0194 (9)
O10.0208 (9)0.0244 (10)0.0220 (10)0.0033 (7)0.0008 (7)0.0077 (8)
O20.0235 (10)0.0285 (11)0.0222 (10)0.0004 (8)0.0027 (8)0.0071 (8)
O30.0225 (10)0.0368 (12)0.0281 (11)0.0106 (8)0.0037 (8)0.0125 (9)
N10.0180 (10)0.0213 (12)0.0201 (11)0.0009 (9)0.0020 (9)0.0022 (9)
N20.0175 (10)0.0197 (11)0.0190 (11)0.0012 (8)0.0008 (8)0.0035 (9)
C10.0163 (12)0.0209 (13)0.0185 (13)0.0044 (10)0.0022 (10)0.0054 (10)
C20.0190 (12)0.0238 (14)0.0175 (13)0.0027 (10)0.0020 (10)0.0026 (10)
C30.0162 (12)0.0216 (14)0.0208 (13)0.0012 (10)0.0025 (10)0.0033 (11)
C40.0191 (12)0.0185 (13)0.0204 (13)0.0054 (10)0.0057 (10)0.0034 (10)
C50.0184 (12)0.0231 (14)0.0165 (13)0.0027 (10)0.0011 (10)0.0022 (10)
C60.0147 (11)0.0202 (13)0.0206 (13)0.0012 (10)0.0032 (10)0.0034 (10)
C70.0165 (12)0.0202 (13)0.0183 (13)0.0034 (10)0.0013 (10)0.0003 (10)
C80.0172 (12)0.0185 (13)0.0213 (13)0.0033 (10)0.0003 (10)0.0042 (10)
C90.0214 (13)0.0257 (14)0.0159 (13)0.0037 (10)0.0016 (10)0.0030 (11)
C100.0196 (13)0.0245 (14)0.0228 (14)0.0003 (10)0.0038 (10)0.0016 (11)
C110.0163 (12)0.0238 (14)0.0243 (14)0.0020 (10)0.0016 (10)0.0086 (11)
C120.0211 (13)0.0319 (16)0.0185 (13)0.0013 (11)0.0008 (10)0.0054 (11)
C130.0213 (13)0.0242 (14)0.0211 (14)0.0010 (11)0.0018 (10)0.0004 (11)
C140.0143 (12)0.0242 (14)0.0172 (13)0.0028 (10)0.0005 (10)0.0050 (10)
C150.0196 (13)0.0245 (14)0.0235 (14)0.0021 (10)0.0030 (10)0.0046 (11)
C160.0237 (14)0.0324 (16)0.0289 (15)0.0056 (12)0.0002 (11)0.0112 (13)
C170.0203 (13)0.0425 (18)0.0198 (14)0.0028 (12)0.0029 (11)0.0121 (12)
C180.0198 (13)0.0331 (16)0.0230 (14)0.0011 (11)0.0012 (11)0.0001 (12)
C190.0161 (12)0.0214 (13)0.0249 (14)0.0021 (10)0.0009 (10)0.0047 (11)
C200.0174 (12)0.0199 (13)0.0178 (13)0.0028 (10)0.0034 (10)0.0015 (10)
C210.0267 (14)0.0229 (15)0.0302 (15)0.0027 (11)0.0028 (12)0.0109 (12)
C220.0265 (15)0.0397 (18)0.0287 (16)0.0009 (13)0.0022 (12)0.0132 (13)
C230.0212 (13)0.0245 (14)0.0249 (14)0.0000 (10)0.0001 (11)0.0035 (11)
Geometric parameters (Å, º) top
F1—C231.326 (3)C9—C101.385 (4)
F2—C231.339 (3)C9—H9A0.9500
F3—C231.331 (3)C10—C111.385 (4)
O1—C201.357 (3)C10—H10A0.9500
O1—C211.449 (3)C11—C121.380 (4)
O2—C201.205 (3)C12—C131.386 (4)
O3—C231.328 (3)C12—H12A0.9500
O3—C111.416 (3)C13—H13A0.9500
N1—C71.314 (3)C14—C151.388 (4)
N1—C61.392 (3)C14—C191.390 (4)
N2—C11.388 (3)C15—C161.386 (4)
N2—C71.390 (3)C15—H15A0.9500
N2—C141.434 (3)C16—C171.386 (4)
C1—C21.389 (4)C16—H16A0.9500
C1—C61.403 (4)C17—C181.383 (4)
C2—C31.381 (4)C17—H17A0.9500
C2—H2A0.9500C18—C191.383 (4)
C3—C41.408 (4)C18—H18A0.9500
C3—H3A0.9500C19—H19A0.9500
C4—C51.389 (4)C21—C221.494 (4)
C4—C201.491 (3)C21—H21A0.9900
C5—C61.398 (3)C21—H21B0.9900
C5—H5A0.9500C22—H22A0.9800
C7—C81.479 (3)C22—H22B0.9800
C8—C131.400 (4)C22—H22C0.9800
C8—C91.402 (4)
C20—O1—C21115.6 (2)C12—C13—C8121.0 (2)
C23—O3—C11118.9 (2)C12—C13—H13A119.5
C7—N1—C6105.1 (2)C8—C13—H13A119.5
C1—N2—C7105.7 (2)C15—C14—C19121.2 (2)
C1—N2—C14124.9 (2)C15—C14—N2120.0 (2)
C7—N2—C14129.3 (2)C19—C14—N2118.8 (2)
N2—C1—C2131.5 (2)C16—C15—C14118.8 (3)
N2—C1—C6105.9 (2)C16—C15—H15A120.6
C2—C1—C6122.6 (2)C14—C15—H15A120.6
C3—C2—C1117.1 (2)C17—C16—C15120.4 (3)
C3—C2—H2A121.4C17—C16—H16A119.8
C1—C2—H2A121.4C15—C16—H16A119.8
C2—C3—C4121.0 (2)C18—C17—C16120.2 (3)
C2—C3—H3A119.5C18—C17—H17A119.9
C4—C3—H3A119.5C16—C17—H17A119.9
C5—C4—C3121.8 (2)C19—C18—C17120.2 (3)
C5—C4—C20116.9 (2)C19—C18—H18A119.9
C3—C4—C20121.3 (2)C17—C18—H18A119.9
C4—C5—C6117.5 (2)C18—C19—C14119.1 (3)
C4—C5—H5A121.2C18—C19—H19A120.4
C6—C5—H5A121.2C14—C19—H19A120.4
N1—C6—C5130.0 (2)O2—C20—O1122.9 (2)
N1—C6—C1110.0 (2)O2—C20—C4124.9 (2)
C5—C6—C1120.0 (2)O1—C20—C4112.2 (2)
N1—C7—N2113.3 (2)O1—C21—C22113.5 (2)
N1—C7—C8121.9 (2)O1—C21—H21A108.9
N2—C7—C8124.5 (2)C22—C21—H21A108.9
C13—C8—C9118.2 (2)O1—C21—H21B108.9
C13—C8—C7123.1 (2)C22—C21—H21B108.9
C9—C8—C7118.4 (2)H21A—C21—H21B107.7
C10—C9—C8121.2 (2)C21—C22—H22A109.5
C10—C9—H9A119.4C21—C22—H22B109.5
C8—C9—H9A119.4H22A—C22—H22B109.5
C11—C10—C9118.8 (2)C21—C22—H22C109.5
C11—C10—H10A120.6H22A—C22—H22C109.5
C9—C10—H10A120.6H22B—C22—H22C109.5
C12—C11—C10121.7 (2)F1—C23—O3108.2 (2)
C12—C11—O3123.0 (2)F1—C23—F3108.7 (2)
C10—C11—O3115.2 (2)O3—C23—F3113.3 (2)
C11—C12—C13119.1 (2)F1—C23—F2107.1 (2)
C11—C12—H12A120.4O3—C23—F2113.0 (2)
C13—C12—H12A120.4F3—C23—F2106.4 (2)
C7—N2—C1—C2178.7 (3)C9—C10—C11—C120.1 (4)
C14—N2—C1—C21.3 (4)C9—C10—C11—O3177.8 (2)
C7—N2—C1—C61.3 (3)C23—O3—C11—C1238.5 (4)
C14—N2—C1—C6178.7 (2)C23—O3—C11—C10143.8 (3)
N2—C1—C2—C3178.9 (2)C10—C11—C12—C130.5 (4)
C6—C1—C2—C31.1 (4)O3—C11—C12—C13178.1 (2)
C1—C2—C3—C40.3 (4)C11—C12—C13—C80.1 (4)
C2—C3—C4—C50.6 (4)C9—C8—C13—C120.8 (4)
C2—C3—C4—C20176.7 (2)C7—C8—C13—C12174.7 (2)
C3—C4—C5—C60.7 (4)C1—N2—C14—C15117.3 (3)
C20—C4—C5—C6176.8 (2)C7—N2—C14—C1562.7 (4)
C7—N1—C6—C5177.8 (3)C1—N2—C14—C1964.2 (3)
C7—N1—C6—C10.2 (3)C7—N2—C14—C19115.8 (3)
C4—C5—C6—N1177.7 (3)C19—C14—C15—C162.4 (4)
C4—C5—C6—C10.2 (4)N2—C14—C15—C16176.1 (2)
N2—C1—C6—N11.0 (3)C14—C15—C16—C171.3 (4)
C2—C1—C6—N1179.1 (2)C15—C16—C17—C180.6 (4)
N2—C1—C6—C5178.9 (2)C16—C17—C18—C191.6 (4)
C2—C1—C6—C51.1 (4)C17—C18—C19—C140.6 (4)
C6—N1—C7—N20.8 (3)C15—C14—C19—C181.4 (4)
C6—N1—C7—C8173.6 (2)N2—C14—C19—C18177.1 (2)
C1—N2—C7—N11.4 (3)C21—O1—C20—O24.3 (4)
C14—N2—C7—N1178.6 (2)C21—O1—C20—C4174.5 (2)
C1—N2—C7—C8172.8 (2)C5—C4—C20—O27.8 (4)
C14—N2—C7—C87.2 (4)C3—C4—C20—O2169.6 (3)
N1—C7—C8—C13151.2 (3)C5—C4—C20—O1173.4 (2)
N2—C7—C8—C1322.5 (4)C3—C4—C20—O19.2 (3)
N1—C7—C8—C922.7 (4)C20—O1—C21—C2279.5 (3)
N2—C7—C8—C9163.6 (2)C11—O3—C23—F1166.4 (2)
C13—C8—C9—C101.3 (4)C11—O3—C23—F345.8 (3)
C7—C8—C9—C10175.5 (2)C11—O3—C23—F275.2 (3)
C8—C9—C10—C110.9 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C14–C19 and N1/N2/C1/C6/C7 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12A···F20.952.372.956 (3)120
C15—H15A···N1i0.952.563.490 (3)167
C18—H18A···O2ii0.952.403.307 (4)160
C19—H19A···O2iii0.952.503.412 (3)160
C13—H13A···Cg10.952.793.592 (3)142
C21—H21A···Cg2iii0.992.953.634 (3)127
Symmetry codes: (i) x+2, y+2, z+1; (ii) x, y, z+1; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC23H17F3N2O3
Mr426.39
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.0204 (4), 10.8943 (6), 11.4329 (7)
α, β, γ (°)76.706 (4), 83.269 (4), 81.227 (4)
V3)957.31 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.37 × 0.27 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.957, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
12437, 4388, 3028
Rint0.065
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.206, 1.05
No. of reflections4388
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 0.42

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C14–C19 and N1/N2/C1/C6/C7 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12A···F20.95002.372.956 (3)120
C15—H15A···N1i0.95002.563.490 (3)167
C18—H18A···O2ii0.95002.403.307 (4)160
C19—H19A···O2iii0.95002.503.412 (3)160
C13—H13A···Cg10.95002.793.592 (3)142
C21—H21A···Cg2iii0.99002.953.634 (3)127
Symmetry codes: (i) x+2, y+2, z+1; (ii) x, y, z+1; (iii) x+2, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research University grants Nos.1001/PFIZIK/811151 and 1001/PSK/8620012. The authors also wish to express their thanks to Pharmacogenetic and Novel Therapeutic Research, Institute for Research in Mol­ecular Medicine, Universiti Sains Malaysia. SA thanks the Malaysian Government and USM for an Academic Staff Training Scheme fellowship (ASTS).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLemura, R., Kawashima, T., Fukuda, T., Ito, K. & Tsukamoto, G. (1986). J. Med. Chem. 29, 1178–1183.  PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoon, Y. K., Ali, M. A., Choon, T. S., Arshad, S. & Razak, I. A. (2012a). Acta Cryst. E68, o1683.  CSD CrossRef IUCr Journals Google Scholar
First citationYoon, Y. K., Ali, M. A., Choon, T. S., Arshad, S. & Razak, I. A. (2012b). Acta Cryst. E68, o1864–o1865.  CSD CrossRef IUCr Journals Google Scholar
First citationYoon, Y. K., Ali, M. A., Wei, A. C., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o2405.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYoon, Y. K., Manogaran, E., Choon, T. S., Arshad, S. & Razak, I. A. (2012c). Acta Cryst. E68, o1863.  CSD CrossRef IUCr Journals Google Scholar
First citationZhang, G., Ren, P., Gray, N. S., Sim, T., Liu, Y., Wang, X., Che, J., Tian, S., Sandberg, M. L., Spalding, T. A., Romeo, R., Iskandar, M., Chow, D., Deidel, H. M., Karanewsky, D. S. & He, Y. (2008). Bioorg. Med. Chem. Lett. 18, 5618–5621.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2715-o2716
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds