organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[2-(2-Chloro­phen­yl)-2-oxoeth­yl]-2,3-di­hydro-1λ6,2-benzo­thia­zole-1,1,3-trione

aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, and bDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: naveedpak74@yahoo.com

(Received 12 August 2012; accepted 22 August 2012; online 31 August 2012)

The asymmetric unit of the title compound, C15H10ClNO4S, contains two independent conformers wherein the 2-chloro­phenyl group in one is rotated by approximately 180° compared to the other mol­ecule. This affects the S—N—C—C(=O) and N—C—C(=O)—C torsion angles giving vlaues of −87.0 (2) and 158.7 (2)° in one mol­ecule and −104.3 (2) and −173.4 (2)° in the other. The benzisothia­zole ring systems in the two mol­ecules are essentially planar (r.m.s. deviations = 0.017 and 0.010 Å) and form dihedral angles of 73.53 (7) and 73.26 (6)° with the benzene rings. In the crystal, there are weak ππ inter­actions between the benzene rings of the benzisothia­zole groups and symmetry-related chloro­benzene rings with centroid–centroid distances of 3.6178 (13) and 3.6267 (15) Å. In addition, pairs of weak inter­molecular C—H⋯O hydrogen bonds form inversion dimers which are connected by further C—H⋯O hydrogen bonds into a three-dimensional network.

Related literature

For the bromo-substituted analog of the title compound, see: Sattar et al. (2012[Sattar, N., Siddiqui, H. L., Siddiqui, W. A., Akram, M. & Parvez, M. (2012). Acta Cryst. E68, o1889-o1890.]). For related structures, see: Maliha et al. (2007[Maliha, B., Hussain, I., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007). Acta Cryst. E63, o4728.]); Siddiqui et al. (2007[Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007). Acta Cryst. E63, o4001.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10ClNO4S

  • Mr = 335.75

  • Triclinic, [P \overline 1]

  • a = 7.4933 (2) Å

  • b = 13.9702 (3) Å

  • c = 14.5844 (3) Å

  • α = 109.0462 (14)°

  • β = 96.5998 (14)°

  • γ = 93.4671 (11)°

  • V = 1425.77 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 123 K

  • 0.16 × 0.14 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.934, Tmax = 0.958

  • 12676 measured reflections

  • 6602 independent reflections

  • 5465 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.105

  • S = 1.03

  • 6602 reflections

  • 397 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O7i 0.95 2.53 3.234 (3) 131
C14—H14⋯O1ii 0.95 2.39 3.284 (3) 158
C17—H17⋯O5iii 0.95 2.43 3.213 (3) 139
C27—H27⋯O7iv 0.95 2.27 3.133 (3) 151
C30—H30⋯O2v 0.95 2.51 3.219 (3) 132
Symmetry codes: (i) -x+2, -y, -z; (ii) -x+2, -y+1, -z; (iii) -x+1, -y+1, -z+1; (iv) -x+2, -y, -z+1; (v) -x+1, -y, -z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The crystal structure of the bromoisomorph of the title molecule has been reported by our research group recently (Sattar et al., (2012). In this article we report the synthesis and crystal structure of the title compound.

The asymmetric unit of the title compound contains two conformers (Fig. 1). In both molecules, the benzisothiazol rings S1/N1/C1–C7 and S2/N2/C16–C22 are essentially planar with r.m.s. deviations of fitted atoms being 0.017 and 0.010 Å, respectively, while the mean-planes of the benzene rings C10–C15 and C25–C30 form dihedral angles 73.53 (7) and 73.26 (6)°, respectively, with the mean-planes of the benzisothiazole ring systems. The orientation of the Cl atoms in the two conformers exhibit the most pronounced difference, with opposing orientations in the two molecules. The crystal structure is stabilized by ππ interactions between benzene rings (C1–C6) of the benzisothiazole moities in one molecule and chlorobenzene rings (C25–C30) in a symmetry related molecule centroid to centroid distances of 3.6168 (13) and 3.62672 (15) Å. The crystal packing is further consolidated by weak intermolecular C—H···O hydrogen bonds. The molecule containing S1 forms centrosymmetric dimers via C14—H14···O1ii hydrogen bonding interactions. The other molecule also forms centrosymmetric dimers via C17—H17···O5iii hydrogen bonds. Futher hydrogen bonding interactions of the type C—H···O result in a 3-D network (Fig. 2 and Tab. 1).

The bond distances and angles in both molecules of the title compound agree very well with the corresponding bond distances and angles reported in closely related compounds (Sattar et al., (2012); Maliha et al., 2007; Siddiqui et al., 2007).

Related literature top

For the bromo-substituted analog of the title compound, see: Sattar et al. (2012). For related structures, see: Maliha et al. (2007); Siddiqui et al. (2007).

Experimental top

A mixture of 2-chloro-1-(2-chlorophenyl)ethanone (1.62 g, 8.56 mmol), sodium saccharine (2.1 g, 10.3 mmol) and dimethylformamide (15 mL) was stirred at 383 K for a period of 3 hours under anhydrous conditions. The reaction mixture was cooled to room temperature and transferred to ice cooled water. The pale yellow precipitate of the title compound formed, were filtered and washed with water and cold ethanol, respectively. The crystals suitable for diffraction were grown from a solution of the title compound EtOAc-CHCl3 (1:1) by slow evaporation. Yield = 2.19 g, 76%; 385–387 K.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 and 0.99 Å, for aryl and methylene H-atoms, respectively. The Uiso(H) were allowed at 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2. Part of the crystal structure with C—H···O hydrogen bonds shown as dashed lines. H atoms non-participating in hydrogen-bonding are omitted for clarity.
2-[2-(2-Chlorophenyl)-2-oxoethyl]-2,3-dihydro-1λ6,2-benzothiazole- 1,1,3-trione top
Crystal data top
C15H10ClNO4SZ = 4
Mr = 335.75F(000) = 688
Triclinic, P1Dx = 1.564 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4933 (2) ÅCell parameters from 6513 reflections
b = 13.9702 (3) Åθ = 1.0–27.5°
c = 14.5844 (3) ŵ = 0.43 mm1
α = 109.0462 (14)°T = 123 K
β = 96.5998 (14)°Block, colorless
γ = 93.4671 (11)°0.16 × 0.14 × 0.10 mm
V = 1425.77 (6) Å3
Data collection top
Nonius KappaCCD
diffractometer
6602 independent reflections
Radiation source: fine-focus sealed tube5465 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and ϕ scansθmax = 27.7°, θmin = 2.8°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 99
Tmin = 0.934, Tmax = 0.958k = 1818
12676 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0289P)2 + 1.9353P]
where P = (Fo2 + 2Fc2)/3
6602 reflections(Δ/σ)max < 0.001
397 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
C15H10ClNO4Sγ = 93.4671 (11)°
Mr = 335.75V = 1425.77 (6) Å3
Triclinic, P1Z = 4
a = 7.4933 (2) ÅMo Kα radiation
b = 13.9702 (3) ŵ = 0.43 mm1
c = 14.5844 (3) ÅT = 123 K
α = 109.0462 (14)°0.16 × 0.14 × 0.10 mm
β = 96.5998 (14)°
Data collection top
Nonius KappaCCD
diffractometer
6602 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
5465 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.958Rint = 0.031
12676 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.03Δρmax = 0.34 e Å3
6602 reflectionsΔρmin = 0.46 e Å3
397 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.37851 (8)0.45393 (5)0.14792 (5)0.03709 (15)
Cl20.91058 (10)0.08491 (6)0.65590 (4)0.04241 (17)
S10.67930 (8)0.13106 (4)0.09566 (4)0.02600 (13)
S20.60770 (7)0.34957 (4)0.38890 (4)0.02241 (12)
O10.8259 (3)0.18938 (14)0.11376 (13)0.0381 (4)
O20.5083 (2)0.12158 (13)0.15434 (12)0.0348 (4)
O30.6914 (2)0.13362 (13)0.16209 (11)0.0315 (4)
O40.9088 (2)0.33337 (13)0.11577 (13)0.0343 (4)
O50.5508 (2)0.37794 (13)0.48340 (12)0.0317 (4)
O60.4695 (2)0.31718 (13)0.30561 (12)0.0312 (4)
O71.0402 (2)0.23212 (13)0.35123 (12)0.0301 (4)
O80.8149 (3)0.21186 (13)0.54195 (13)0.0400 (5)
N10.6544 (3)0.17557 (14)0.02268 (13)0.0263 (4)
N20.7514 (3)0.26105 (14)0.37907 (14)0.0237 (4)
C10.7391 (3)0.01406 (17)0.08817 (16)0.0239 (4)
C20.7780 (3)0.06900 (18)0.16356 (17)0.0288 (5)
H20.77290.06840.22880.035*
C30.8247 (3)0.15304 (18)0.13889 (18)0.0306 (5)
H30.85070.21190.18860.037*
C40.8343 (3)0.15291 (18)0.04349 (18)0.0297 (5)
H40.86780.21140.02890.036*
C50.7956 (3)0.06863 (17)0.03141 (17)0.0266 (5)
H50.80290.06860.09690.032*
C60.7463 (3)0.01491 (16)0.00760 (15)0.0219 (4)
C70.6976 (3)0.11188 (16)0.07564 (16)0.0233 (4)
C80.5978 (3)0.27629 (16)0.06608 (16)0.0249 (5)
H8A0.53330.27710.12190.030*
H8B0.51280.29180.01690.030*
C90.7584 (3)0.35782 (17)0.10189 (15)0.0240 (4)
C100.7338 (3)0.46790 (17)0.11690 (15)0.0231 (4)
C110.5777 (3)0.51623 (18)0.13554 (16)0.0261 (5)
C120.5772 (4)0.61965 (19)0.15012 (18)0.0348 (6)
H120.47010.65160.16310.042*
C130.7312 (4)0.6758 (2)0.1458 (2)0.0410 (6)
H130.73030.74650.15610.049*
C140.8871 (4)0.6298 (2)0.1265 (2)0.0402 (6)
H140.99310.66840.12270.048*
C150.8875 (3)0.52734 (19)0.11265 (18)0.0321 (5)
H150.99550.49620.09990.038*
C160.7734 (3)0.43841 (16)0.37899 (15)0.0202 (4)
C170.7539 (3)0.53697 (17)0.38192 (16)0.0240 (4)
H170.64200.56490.39020.029*
C180.9051 (3)0.59344 (17)0.37227 (16)0.0259 (5)
H180.89700.66160.37410.031*
C191.0687 (3)0.55175 (17)0.35987 (16)0.0266 (5)
H191.17030.59210.35360.032*
C201.0857 (3)0.45252 (17)0.35657 (16)0.0244 (4)
H201.19720.42420.34780.029*
C210.9355 (3)0.39583 (16)0.36650 (15)0.0207 (4)
C220.9235 (3)0.28879 (17)0.36418 (15)0.0219 (4)
C230.6939 (3)0.15852 (16)0.37356 (16)0.0252 (5)
H23A0.74740.10960.32080.030*
H23B0.56090.14570.35670.030*
C240.7508 (3)0.14107 (17)0.47071 (16)0.0238 (4)
C250.7229 (3)0.03392 (17)0.46952 (16)0.0224 (4)
C260.7910 (3)0.00201 (19)0.54732 (17)0.0286 (5)
C270.7632 (4)0.0988 (2)0.5410 (2)0.0373 (6)
H270.81370.11970.59330.045*
C280.6623 (4)0.16928 (19)0.4590 (2)0.0395 (7)
H280.64170.23810.45580.047*
C290.5912 (4)0.14066 (18)0.3819 (2)0.0340 (6)
H290.52070.18910.32580.041*
C300.6236 (3)0.04047 (17)0.38706 (17)0.0257 (5)
H300.57710.02140.33290.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0276 (3)0.0352 (3)0.0512 (4)0.0092 (2)0.0128 (3)0.0148 (3)
Cl20.0452 (4)0.0587 (4)0.0250 (3)0.0151 (3)0.0001 (3)0.0163 (3)
S10.0341 (3)0.0239 (3)0.0193 (3)0.0003 (2)0.0034 (2)0.0071 (2)
S20.0216 (3)0.0217 (3)0.0266 (3)0.0037 (2)0.0076 (2)0.0101 (2)
O10.0518 (12)0.0333 (10)0.0296 (9)0.0081 (8)0.0095 (8)0.0120 (8)
O20.0414 (10)0.0362 (10)0.0255 (8)0.0069 (8)0.0013 (7)0.0102 (7)
O30.0454 (10)0.0299 (9)0.0207 (8)0.0082 (8)0.0094 (7)0.0083 (7)
O40.0266 (9)0.0289 (9)0.0423 (10)0.0077 (7)0.0005 (7)0.0059 (8)
O50.0330 (9)0.0327 (9)0.0346 (9)0.0068 (7)0.0168 (7)0.0138 (7)
O60.0233 (8)0.0318 (9)0.0373 (9)0.0018 (7)0.0012 (7)0.0113 (7)
O70.0281 (9)0.0317 (9)0.0375 (9)0.0125 (7)0.0092 (7)0.0182 (7)
O80.0580 (12)0.0272 (9)0.0288 (9)0.0103 (8)0.0076 (8)0.0084 (7)
N10.0367 (11)0.0217 (9)0.0204 (9)0.0044 (8)0.0059 (8)0.0062 (7)
N20.0260 (10)0.0205 (9)0.0287 (10)0.0042 (7)0.0076 (8)0.0124 (8)
C10.0216 (11)0.0230 (11)0.0245 (11)0.0026 (8)0.0027 (8)0.0057 (9)
C20.0274 (12)0.0285 (12)0.0238 (11)0.0042 (9)0.0042 (9)0.0008 (9)
C30.0235 (11)0.0243 (11)0.0355 (13)0.0009 (9)0.0077 (10)0.0019 (10)
C40.0242 (11)0.0235 (11)0.0397 (13)0.0003 (9)0.0070 (10)0.0081 (10)
C50.0257 (11)0.0253 (11)0.0299 (12)0.0016 (9)0.0078 (9)0.0095 (9)
C60.0206 (10)0.0204 (10)0.0233 (10)0.0012 (8)0.0062 (8)0.0051 (8)
C70.0233 (11)0.0213 (10)0.0252 (11)0.0002 (8)0.0047 (8)0.0078 (9)
C80.0280 (12)0.0216 (11)0.0247 (11)0.0036 (9)0.0037 (9)0.0072 (9)
C90.0269 (11)0.0248 (11)0.0196 (10)0.0048 (9)0.0033 (8)0.0060 (9)
C100.0261 (11)0.0243 (11)0.0187 (10)0.0036 (9)0.0024 (8)0.0070 (8)
C110.0270 (12)0.0285 (12)0.0225 (11)0.0057 (9)0.0018 (9)0.0084 (9)
C120.0416 (15)0.0287 (12)0.0343 (13)0.0128 (11)0.0015 (11)0.0107 (10)
C130.0545 (18)0.0247 (12)0.0429 (15)0.0028 (12)0.0007 (13)0.0125 (11)
C140.0447 (16)0.0324 (14)0.0445 (15)0.0070 (12)0.0035 (12)0.0169 (12)
C150.0320 (13)0.0318 (13)0.0328 (13)0.0007 (10)0.0050 (10)0.0117 (10)
C160.0205 (10)0.0233 (10)0.0191 (10)0.0022 (8)0.0049 (8)0.0098 (8)
C170.0258 (11)0.0237 (11)0.0247 (11)0.0060 (9)0.0072 (9)0.0091 (9)
C180.0341 (12)0.0189 (10)0.0241 (11)0.0020 (9)0.0051 (9)0.0064 (9)
C190.0282 (12)0.0257 (11)0.0263 (11)0.0035 (9)0.0047 (9)0.0100 (9)
C200.0186 (10)0.0296 (12)0.0263 (11)0.0035 (9)0.0036 (8)0.0108 (9)
C210.0219 (10)0.0235 (10)0.0177 (10)0.0040 (8)0.0032 (8)0.0077 (8)
C220.0227 (11)0.0259 (11)0.0201 (10)0.0053 (9)0.0040 (8)0.0109 (8)
C230.0317 (12)0.0206 (10)0.0249 (11)0.0020 (9)0.0049 (9)0.0096 (9)
C240.0246 (11)0.0246 (11)0.0235 (11)0.0003 (9)0.0047 (9)0.0098 (9)
C250.0218 (11)0.0257 (11)0.0244 (11)0.0055 (9)0.0088 (8)0.0122 (9)
C260.0290 (12)0.0369 (13)0.0273 (11)0.0141 (10)0.0126 (9)0.0161 (10)
C270.0433 (15)0.0456 (15)0.0419 (14)0.0260 (13)0.0238 (12)0.0306 (13)
C280.0507 (17)0.0251 (12)0.0568 (17)0.0160 (12)0.0338 (14)0.0217 (12)
C290.0364 (14)0.0215 (11)0.0448 (15)0.0034 (10)0.0185 (11)0.0078 (10)
C300.0288 (12)0.0232 (11)0.0267 (11)0.0034 (9)0.0071 (9)0.0092 (9)
Geometric parameters (Å, º) top
Cl1—C111.739 (2)C10—C151.398 (3)
Cl2—C261.733 (3)C11—C121.390 (3)
S1—O11.4277 (18)C12—C131.375 (4)
S1—O21.4300 (18)C12—H120.9500
S1—N11.6697 (19)C13—C141.380 (4)
S1—C11.754 (2)C13—H130.9500
S2—O51.4273 (17)C14—C151.379 (4)
S2—O61.4310 (17)C14—H140.9500
S2—N21.6700 (19)C15—H150.9500
S2—C161.754 (2)C16—C171.381 (3)
O3—C71.204 (3)C16—C211.389 (3)
O4—C91.211 (3)C17—C181.388 (3)
O7—C221.205 (3)C17—H170.9500
O8—C241.202 (3)C18—C191.394 (3)
N1—C71.385 (3)C18—H180.9500
N1—C81.454 (3)C19—C201.385 (3)
N2—C221.385 (3)C19—H190.9500
N2—C231.444 (3)C20—C211.386 (3)
C1—C21.386 (3)C20—H200.9500
C1—C61.388 (3)C21—C221.482 (3)
C2—C31.388 (4)C23—C241.532 (3)
C2—H20.9500C23—H23A0.9900
C3—C41.384 (4)C23—H23B0.9900
C3—H30.9500C24—C251.493 (3)
C4—C51.392 (3)C25—C301.402 (3)
C4—H40.9500C25—C261.404 (3)
C5—C61.381 (3)C26—C271.383 (4)
C5—H50.9500C27—C281.380 (4)
C6—C71.490 (3)C27—H270.9500
C8—C91.523 (3)C28—C291.374 (4)
C8—H8A0.9900C28—H280.9500
C8—H8B0.9900C29—C301.382 (3)
C9—C101.507 (3)C29—H290.9500
C10—C111.396 (3)C30—H300.9500
O1—S1—O2117.15 (11)C12—C13—C14120.2 (2)
O1—S1—N1109.99 (10)C12—C13—H13119.9
O2—S1—N1109.32 (10)C14—C13—H13119.9
O1—S1—C1112.33 (11)C15—C14—C13119.4 (3)
O2—S1—C1112.65 (11)C15—C14—H14120.3
N1—S1—C192.64 (10)C13—C14—H14120.3
O5—S2—O6117.21 (11)C14—C15—C10121.9 (2)
O5—S2—N2109.79 (10)C14—C15—H15119.0
O6—S2—N2109.74 (10)C10—C15—H15119.0
O5—S2—C16112.99 (10)C17—C16—C21122.5 (2)
O6—S2—C16111.84 (10)C17—C16—S2127.32 (17)
N2—S2—C1692.49 (10)C21—C16—S2110.21 (16)
C7—N1—C8123.36 (18)C16—C17—C18117.0 (2)
C7—N1—S1115.46 (15)C16—C17—H17121.5
C8—N1—S1121.14 (15)C18—C17—H17121.5
C22—N2—C23122.02 (18)C17—C18—C19121.1 (2)
C22—N2—S2115.33 (14)C17—C18—H18119.5
C23—N2—S2122.17 (16)C19—C18—H18119.5
C2—C1—C6122.6 (2)C20—C19—C18121.1 (2)
C2—C1—S1127.34 (18)C20—C19—H19119.4
C6—C1—S1110.04 (16)C18—C19—H19119.4
C1—C2—C3116.6 (2)C19—C20—C21118.1 (2)
C1—C2—H2121.7C19—C20—H20121.0
C3—C2—H2121.7C21—C20—H20121.0
C4—C3—C2121.4 (2)C20—C21—C16120.2 (2)
C4—C3—H3119.3C20—C21—C22126.94 (19)
C2—C3—H3119.3C16—C21—C22112.88 (19)
C3—C4—C5121.2 (2)O7—C22—N2123.5 (2)
C3—C4—H4119.4O7—C22—C21127.5 (2)
C5—C4—H4119.4N2—C22—C21109.01 (18)
C6—C5—C4117.9 (2)N2—C23—C24111.54 (18)
C6—C5—H5121.0N2—C23—H23A109.3
C4—C5—H5121.0C24—C23—H23A109.3
C5—C6—C1120.2 (2)N2—C23—H23B109.3
C5—C6—C7126.7 (2)C24—C23—H23B109.3
C1—C6—C7113.05 (19)H23A—C23—H23B108.0
O3—C7—N1123.8 (2)O8—C24—C25124.0 (2)
O3—C7—C6127.5 (2)O8—C24—C23119.7 (2)
N1—C7—C6108.69 (18)C25—C24—C23116.26 (18)
N1—C8—C9111.51 (18)C30—C25—C26116.9 (2)
N1—C8—H8A109.3C30—C25—C24119.42 (19)
C9—C8—H8A109.3C26—C25—C24123.6 (2)
N1—C8—H8B109.3C27—C26—C25120.8 (2)
C9—C8—H8B109.3C27—C26—Cl2116.34 (19)
H8A—C8—H8B108.0C25—C26—Cl2122.81 (19)
O4—C9—C10119.5 (2)C28—C27—C26120.3 (2)
O4—C9—C8119.5 (2)C28—C27—H27119.9
C10—C9—C8121.01 (19)C26—C27—H27119.9
C11—C10—C15117.4 (2)C29—C28—C27120.6 (2)
C11—C10—C9127.5 (2)C29—C28—H28119.7
C15—C10—C9115.1 (2)C27—C28—H28119.7
C12—C11—C10120.8 (2)C28—C29—C30119.1 (2)
C12—C11—Cl1116.29 (19)C28—C29—H29120.4
C10—C11—Cl1122.82 (18)C30—C29—H29120.4
C13—C12—C11120.2 (2)C29—C30—C25122.2 (2)
C13—C12—H12119.9C29—C30—H30118.9
C11—C12—H12119.9C25—C30—H30118.9
O1—S1—N1—C7111.31 (18)Cl1—C11—C12—C13177.3 (2)
O2—S1—N1—C7118.75 (18)C11—C12—C13—C140.3 (4)
C1—S1—N1—C73.62 (18)C12—C13—C14—C150.7 (4)
O1—S1—N1—C866.4 (2)C13—C14—C15—C100.5 (4)
O2—S1—N1—C863.5 (2)C11—C10—C15—C140.2 (3)
C1—S1—N1—C8178.64 (18)C9—C10—C15—C14179.0 (2)
O5—S2—N2—C22118.06 (16)O5—S2—C16—C1766.6 (2)
O6—S2—N2—C22111.76 (17)O6—S2—C16—C1768.2 (2)
C16—S2—N2—C222.52 (17)N2—S2—C16—C17179.3 (2)
O5—S2—N2—C2369.74 (19)O5—S2—C16—C21113.82 (16)
O6—S2—N2—C2360.45 (19)O6—S2—C16—C21111.35 (16)
C16—S2—N2—C23174.73 (17)N2—S2—C16—C211.08 (16)
O1—S1—C1—C268.9 (2)C21—C16—C17—C180.3 (3)
O2—S1—C1—C266.0 (2)S2—C16—C17—C18179.87 (17)
N1—S1—C1—C2178.2 (2)C16—C17—C18—C190.2 (3)
O1—S1—C1—C6110.06 (17)C17—C18—C19—C200.1 (3)
O2—S1—C1—C6115.04 (17)C18—C19—C20—C210.3 (3)
N1—S1—C1—C62.83 (17)C19—C20—C21—C160.2 (3)
C6—C1—C2—C30.2 (3)C19—C20—C21—C22179.4 (2)
S1—C1—C2—C3179.07 (18)C17—C16—C21—C200.1 (3)
C1—C2—C3—C40.9 (3)S2—C16—C21—C20179.73 (16)
C2—C3—C4—C50.6 (4)C17—C16—C21—C22179.13 (19)
C3—C4—C5—C60.3 (3)S2—C16—C21—C220.5 (2)
C4—C5—C6—C11.0 (3)C23—N2—C22—O74.3 (3)
C4—C5—C6—C7179.3 (2)S2—N2—C22—O7176.55 (18)
C2—C1—C6—C50.8 (3)C23—N2—C22—C21175.33 (18)
S1—C1—C6—C5178.28 (17)S2—N2—C22—C213.1 (2)
C2—C1—C6—C7179.5 (2)C20—C21—C22—O71.8 (4)
S1—C1—C6—C71.5 (2)C16—C21—C22—O7177.4 (2)
C8—N1—C7—O30.4 (4)C20—C21—C22—N2178.6 (2)
S1—N1—C7—O3178.06 (19)C16—C21—C22—N22.2 (2)
C8—N1—C7—C6179.05 (19)C22—N2—C23—C2484.0 (2)
S1—N1—C7—C63.3 (2)S2—N2—C23—C24104.3 (2)
C5—C6—C7—O30.7 (4)N2—C23—C24—O88.2 (3)
C1—C6—C7—O3179.6 (2)N2—C23—C24—C25171.35 (18)
C5—C6—C7—N1179.3 (2)O8—C24—C25—C30170.8 (2)
C1—C6—C7—N11.0 (3)C23—C24—C25—C309.7 (3)
C7—N1—C8—C990.5 (3)O8—C24—C25—C269.2 (4)
S1—N1—C8—C987.0 (2)C23—C24—C25—C26170.3 (2)
N1—C8—C9—O419.1 (3)C30—C25—C26—C271.2 (3)
N1—C8—C9—C10158.73 (19)C24—C25—C26—C27178.8 (2)
O4—C9—C10—C11157.7 (2)C30—C25—C26—Cl2178.03 (17)
C8—C9—C10—C1124.5 (3)C24—C25—C26—Cl22.0 (3)
O4—C9—C10—C1521.4 (3)C25—C26—C27—C282.2 (4)
C8—C9—C10—C15156.5 (2)Cl2—C26—C27—C28177.04 (19)
C15—C10—C11—C120.6 (3)C26—C27—C28—C291.3 (4)
C9—C10—C11—C12178.5 (2)C27—C28—C29—C300.7 (4)
C15—C10—C11—Cl1177.34 (17)C28—C29—C30—C251.7 (4)
C9—C10—C11—Cl11.7 (3)C26—C25—C30—C290.8 (3)
C10—C11—C12—C130.4 (4)C24—C25—C30—C29179.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O7i0.952.533.234 (3)131
C14—H14···O1ii0.952.393.284 (3)158
C17—H17···O5iii0.952.433.213 (3)139
C27—H27···O7iv0.952.273.133 (3)151
C30—H30···O2v0.952.513.219 (3)132
Symmetry codes: (i) x+2, y, z; (ii) x+2, y+1, z; (iii) x+1, y+1, z+1; (iv) x+2, y, z+1; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H10ClNO4S
Mr335.75
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)7.4933 (2), 13.9702 (3), 14.5844 (3)
α, β, γ (°)109.0462 (14), 96.5998 (14), 93.4671 (11)
V3)1425.77 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.16 × 0.14 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.934, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
12676, 6602, 5465
Rint0.031
(sin θ/λ)max1)0.654
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.105, 1.03
No. of reflections6602
No. of parameters397
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.46

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O7i0.952.533.234 (3)130.8
C14—H14···O1ii0.952.393.284 (3)157.6
C17—H17···O5iii0.952.433.213 (3)139.3
C27—H27···O7iv0.952.273.133 (3)150.8
C30—H30···O2v0.952.513.219 (3)131.9
Symmetry codes: (i) x+2, y, z; (ii) x+2, y+1, z; (iii) x+1, y+1, z+1; (iv) x+2, y, z+1; (v) x+1, y, z.
 

Acknowledgements

The authors are grateful to the Higher Education Commission, Pakistan, and the Institute of Chemistry, University of the Punjab, Lahore, Pakistan, for financial support.

References

First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
First citationMaliha, B., Hussain, I., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007). Acta Cryst. E63, o4728.  Web of Science CSD CrossRef IUCr Journals
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
First citationSattar, N., Siddiqui, H. L., Siddiqui, W. A., Akram, M. & Parvez, M. (2012). Acta Cryst. E68, o1889–o1890.  CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSiddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007). Acta Cryst. E63, o4001.  Web of Science CSD CrossRef IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds