supplementary materials


ng5284 scheme

Acta Cryst. (2012). E68, m1139    [ doi:10.1107/S1600536812033776 ]

Poly[aqua-[mu]-bromido-([mu]2-5-methylpyrazine-2-carboxylato-[kappa]4N1,O2:O2,O2')lead(II)]

P. Yang, Y. Liu, H. Y. Li and B. Ding

Abstract top

In the title coordination polymer, [PbBr(C6H5N2O2)(H2O)]n, the PbII atom is coordinated by one pyrazine N atom, two bridging Br atoms, a water molecule and three carboxylate O atoms. Bridging by the two anions generates a layer structure parallel to (001); the layers are linked by O-H...N and O-H...Br hydrogen bonds, forming a three-dimensional network. The lone pair is stereochemically active, resulting in a [Psi]-dodecahedral coordination environment for PbII.

Related literature top

For background, see: Ding et al. (2009).

Experimental top

Lead(II) bromide (73.4 mg, 0.2 mmol), 5-pyrazine-2-carboxylic acid (27.6 mg, 0.2 mmol) and water (15 ml) were sealed in a 25 ml Teflon-lined steel vessel. The mixture was heated heated to 393 K for 5 days . The autoclave was cooled to room temperature at a rate of 10 K h-1. Yellow block-shaped crystals were obtained in 60% yield based on Pb.

Refinement top

H atoms were placed in calculated positions as riding atoms attached to non-riding atoms with O—H es of 0.85 Å and C–H 0.93 to 0.96 Å, and with Uiso(H) = 1.2 to 1.5Ueq(O,C). The final difference Fourier map had a peak in the vicinity of Pb and a hole in the vicinty of the same atom.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP plot of a portion of the polymeric structure drawn at 30% probability displacement ellipsoids. Symmetry codes: i: -x + 1, y - 1/2, -z + 3/2; ii: -x, y - 1/2, -z + 3/2.
[Figure 2] Fig. 2. Layer structures.
[Figure 3] Fig. 3. Three-dimensional supramolecular structure. Dashed lines represent O—H···N and weak O—H···Br hydrogen bonds.
[Figure 4] Fig. 4. Ψ-Dodecahedral geometry of lead(II).
Poly[aqua-µ-bromido-(µ2-5-methylpyrazine-2-carboxylato- κ4N1,O2:O2,O2')lead(II)] top
Crystal data top
[PbBr(C6H5N2O2)(H2O)]F(000) = 792
Mr = 442.24Dx = 3.018 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3510 reflections
a = 7.5493 (10) Åθ = 3.3–28.2°
b = 6.6775 (9) ŵ = 21.41 mm1
c = 19.335 (3) ÅT = 296 K
β = 92.884 (2)°Block, colourless
V = 973.5 (2) Å30.15 × 0.14 × 0.13 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1904 independent reflections
Radiation source: fine-focus sealed tube1747 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
phi and ω scansθmax = 26.0°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 95
Tmin = 0.142, Tmax = 0.167k = 88
5123 measured reflectionsl = 2322
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0596P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.091(Δ/σ)max = 0.032
S = 1.05Δρmax = 2.26 e Å3
1904 reflectionsΔρmin = 2.20 e Å3
120 parameters
Crystal data top
[PbBr(C6H5N2O2)(H2O)]V = 973.5 (2) Å3
Mr = 442.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5493 (10) ŵ = 21.41 mm1
b = 6.6775 (9) ÅT = 296 K
c = 19.335 (3) Å0.15 × 0.14 × 0.13 mm
β = 92.884 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1904 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1747 reflections with I > 2σ(I)
Tmin = 0.142, Tmax = 0.167Rint = 0.039
5123 measured reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.091Δρmax = 2.26 e Å3
S = 1.05Δρmin = 2.20 e Å3
1904 reflectionsAbsolute structure: ?
120 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.29327 (3)0.20899 (3)0.782606 (12)0.02328 (17)
Br10.00888 (10)0.08548 (11)0.80760 (4)0.0386 (2)
O10.5113 (7)0.0867 (8)0.7933 (3)0.0351 (12)
O20.4664 (8)0.0254 (8)0.8984 (3)0.0427 (13)
O30.2211 (10)0.5006 (9)0.8682 (3)0.067 (2)
H3A0.24810.49630.91140.100*
H3B0.18280.61890.86080.100*
N10.6818 (7)0.4165 (8)0.8455 (3)0.0274 (12)
N20.7181 (8)0.4728 (9)0.9872 (3)0.0322 (13)
C10.6189 (9)0.2822 (9)0.8890 (4)0.0245 (15)
C20.6373 (10)0.3105 (10)0.9598 (4)0.0302 (16)
H20.59250.21460.98910.036*
C30.7783 (9)0.6113 (9)0.9431 (4)0.0298 (15)
C40.7588 (9)0.5805 (9)0.8721 (4)0.0285 (15)
H40.80060.67710.84230.034*
C50.5250 (9)0.0994 (10)0.8587 (4)0.0280 (15)
C60.8627 (14)0.7958 (11)0.9749 (6)0.049 (2)
H6A0.78590.85171.00790.073*
H6B0.88180.89240.93920.073*
H6C0.97430.76090.99770.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.0230 (2)0.0234 (2)0.0233 (2)0.00092 (7)0.00028 (12)0.00041 (8)
Br10.0362 (4)0.0338 (4)0.0451 (5)0.0095 (3)0.0054 (3)0.0001 (3)
O10.036 (3)0.042 (3)0.027 (3)0.017 (2)0.005 (2)0.004 (2)
O20.056 (4)0.038 (3)0.034 (3)0.015 (2)0.002 (2)0.009 (2)
O30.119 (7)0.049 (4)0.031 (3)0.039 (4)0.019 (3)0.008 (3)
N10.028 (3)0.026 (3)0.028 (3)0.001 (2)0.001 (2)0.002 (2)
N20.040 (4)0.030 (3)0.026 (3)0.004 (2)0.001 (2)0.005 (2)
C10.021 (3)0.026 (4)0.027 (4)0.000 (2)0.002 (3)0.000 (3)
C20.031 (4)0.031 (4)0.029 (4)0.001 (3)0.003 (3)0.001 (3)
C30.030 (4)0.024 (3)0.035 (4)0.000 (3)0.003 (3)0.003 (3)
C40.031 (4)0.023 (3)0.031 (4)0.002 (3)0.001 (3)0.001 (3)
C50.025 (3)0.030 (3)0.029 (4)0.006 (3)0.003 (3)0.003 (3)
C60.059 (6)0.033 (5)0.055 (6)0.011 (3)0.004 (5)0.008 (4)
Geometric parameters (Å, º) top
Pb1—O1i2.531 (5)N1—C11.334 (8)
Pb1—O12.572 (5)N1—Pb1iv2.631 (5)
Pb1—N1i2.631 (6)N2—C21.340 (9)
Pb1—O32.631 (6)N2—C31.353 (9)
Pb1—Br12.9688 (8)C1—C21.381 (11)
Pb1—Br1ii3.1190 (9)C1—C51.514 (9)
Br1—Pb1iii3.1190 (9)C2—H20.9300
O1—C51.268 (8)C3—C41.388 (10)
O1—Pb1iv2.531 (5)C3—C61.504 (10)
O2—C51.230 (8)C4—H40.9300
O3—H3A0.8501C6—H6A0.9600
O3—H3B0.8510C6—H6B0.9600
N1—C41.331 (9)C6—H6C0.9600
O1i—Pb1—O194.06 (8)C1—N1—Pb1iv115.1 (4)
O1i—Pb1—N1i63.56 (16)C2—N2—C3117.6 (6)
O1—Pb1—N1i75.81 (17)N1—C1—C2120.8 (6)
O1i—Pb1—O396.4 (2)N1—C1—C5118.2 (6)
O1—Pb1—O3132.06 (18)C2—C1—C5121.0 (6)
N1i—Pb1—O3148.79 (18)N2—C2—C1121.6 (6)
O1i—Pb1—Br1153.98 (12)N2—C2—H2119.2
O1—Pb1—Br186.76 (12)C1—C2—H2119.2
N1i—Pb1—Br191.65 (12)N2—C3—C4120.0 (6)
O3—Pb1—Br1102.33 (18)N2—C3—C6116.8 (7)
O1i—Pb1—Br1ii82.54 (13)C4—C3—C6123.2 (7)
O1—Pb1—Br1ii146.05 (12)N1—C4—C3121.8 (6)
N1i—Pb1—Br1ii72.46 (13)N1—C4—H4119.1
O3—Pb1—Br1ii81.80 (15)C3—C4—H4119.1
Br1—Pb1—Br1ii82.410 (17)O2—C5—O1124.3 (6)
Pb1—Br1—Pb1iii135.64 (3)O2—C5—C1118.7 (6)
C5—O1—Pb1iv121.4 (4)O1—C5—C1117.0 (5)
C5—O1—Pb198.7 (4)C3—C6—H6A109.5
Pb1iv—O1—Pb1139.2 (2)C3—C6—H6B109.5
Pb1—O3—H3A123.1H6A—C6—H6B109.5
Pb1—O3—H3B131.3C3—C6—H6C109.5
H3A—O3—H3B105.1H6A—C6—H6C109.5
C4—N1—C1118.2 (6)H6B—C6—H6C109.5
C4—N1—Pb1iv125.1 (4)
O1i—Pb1—Br1—Pb1iii13.5 (3)Pb1iv—N1—C1—C515.9 (7)
O1—Pb1—Br1—Pb1iii106.16 (12)C3—N2—C2—C11.4 (10)
N1i—Pb1—Br1—Pb1iii30.47 (13)N1—C1—C2—N20.1 (11)
O3—Pb1—Br1—Pb1iii121.43 (15)C5—C1—C2—N2179.1 (6)
Br1ii—Pb1—Br1—Pb1iii41.59 (4)C2—N2—C3—C41.4 (10)
O1i—Pb1—O1—C5126.3 (4)C2—N2—C3—C6177.8 (7)
N1i—Pb1—O1—C5172.3 (4)C1—N1—C4—C31.6 (10)
O3—Pb1—O1—C523.9 (5)Pb1iv—N1—C4—C3163.3 (5)
Br1—Pb1—O1—C579.8 (4)N2—C3—C4—N10.1 (10)
Br1ii—Pb1—O1—C5151.1 (3)C6—C3—C4—N1179.3 (7)
O1i—Pb1—O1—Pb1iv43.5 (3)Pb1iv—O1—C5—O2162.2 (6)
N1i—Pb1—O1—Pb1iv17.9 (3)Pb1—O1—C5—O210.0 (8)
O3—Pb1—O1—Pb1iv145.9 (4)Pb1iv—O1—C5—C118.3 (8)
Br1—Pb1—O1—Pb1iv110.4 (3)Pb1—O1—C5—C1169.5 (5)
Br1ii—Pb1—O1—Pb1iv39.1 (5)N1—C1—C5—O2179.9 (6)
C4—N1—C1—C21.5 (9)C2—C1—C5—O20.7 (10)
Pb1iv—N1—C1—C2164.8 (5)N1—C1—C5—O10.4 (9)
C4—N1—C1—C5177.7 (6)C2—C1—C5—O1178.8 (6)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y1/2, z+3/2; (iii) x, y+1/2, z+3/2; (iv) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N2v0.851.972.816 (9)173
O3—H3B···Br1vi0.852.563.378 (6)161
Symmetry codes: (v) x+1, y, z+2; (vi) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N2i0.851.972.816 (9)173.1
O3—H3B···Br1ii0.852.563.378 (6)161.3
Symmetry codes: (i) x+1, y, z+2; (ii) x, y1, z.
Acknowledgements top

This present work was supported by the Tianjin Educational Committee (20090504) and Tianjin Normal University (1E0402B).

references
References top

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Ding, B., Liu, Y. Y., Zhao, X. J., Yang, E. C. & Wang, X. G. (2009). Cryst. Growth Des. 9, 4176–4180.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.