organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Di­acetyl­pyridine–resorcinol (1/1)

aInstitut für Organische Chemie und Chemische Biologie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany, and bInstitut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
*Correspondence e-mail: bolte@chemie.uni-frankfurt.de

(Received 7 August 2012; accepted 8 August 2012; online 11 August 2012)

The title co-crystal, C9H9NO2·C6H6O2, is composed of one 2,6-diacetyl­pyridine mol­ecule and one resorcinol mol­ecule as the asymmetric unit. In the 2,6-diacetyl­pyridine mol­ecule, the two carbonyl groups are anti­periplanar to the pyridine N atom. In the crystal, the 2,6-diacetyl­pyridine and resorcinol mol­ecules are connected by two O—H⋯O hydrogen bonds, forming planar chains of alternating components running along [120].

Related literature

For background to 2,6-diacetyl­pyridine and resorcinol, see: Bacon & Lisher (1980[Bacon, G. E. & Lisher, E. J. (1980). Acta Cryst. B36, 1908-1916.]); MacGillivray et al. (2000[MacGillivray, L. R., Reid, J. L. & Ripmeester, J. A. (2000). J. Am. Chem. Soc. 122, 7817-7818.]); Boldog et al. (2004[Boldog, I., Rusanov, E. B., Sieler, J. & Domasevitch, K. V. (2004). New J. Chem. 28, 756-759.]); Matsumoto et al. (2006[Matsumoto, K., Harada, Y., Yamada, N., Kurata, H., Kawese, T. & Oda, M. (2006). Cryst. Growth Des. 6, 1083-1085.]); Anwar et al. (2007[Anwar, J., Chatchawalsaisin, J. & Kendrick, J. (2007). Angew. Chem. Int. Ed. Engl. 46, 5537-5540.]); Friščić & MacGillivray (2009[Friščić, T. & MacGillivray, L. R. (2009). Chem. Commun. pp. 773-775.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9NO2·C6H6O2

  • Mr = 273.28

  • Triclinic, [P \overline 1]

  • a = 7.346 (2) Å

  • b = 7.866 (2) Å

  • c = 12.342 (3) Å

  • α = 101.61 (3)°

  • β = 90.51 (3)°

  • γ = 98.72 (3)°

  • V = 689.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.30 × 0.30 × 0.23 mm

Data collection
  • Stoe IPDS II two-circle diffractometer

  • 9113 measured reflections

  • 2515 independent reflections

  • 1605 reflections with I > 2σ(I)

  • Rint = 0.094

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.130

  • S = 0.93

  • 2515 reflections

  • 185 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—HO3⋯O2 0.84 1.95 2.784 (2) 174
O4—HO4⋯O1i 0.84 1.96 2.802 (3) 177
Symmetry code: (i) x+1, y+2, z.

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The co-crystallization process between two components which possess either donor or acceptor hydrogen bond properties in order to obtain the AAA-DDD (A=Acceptor, D= Donor) hydrogen bond pattern containing two strong O—H···O hydrogen bonds and one weak C—H···O hydrogen bond (see Fig. 1, III) was the initial motivation of this research. Therefore, 2,6-diacetylpyridine, I, (CSD REFCODE: BARKAH) and resorcinol, II, (CSD REFCODE: RESORA03) have been chosen for this purpose. Compounds I and II can exist in three possible conformations (Anwar et al., 2007). Considering all possible hydrogen bonds between the two components, forming the complex as mentioned above is the most unfavourable constellation. The calculations of the three molecular conformations of 2,6-diacetylpyridine using quantum-mechanical calculations (Gaussian 03) predict that conformer Ia is the most stable, followed by Ib, and then Ic. The determination of the relative stability of resorcinol using quantum–mechanical density functional theory (DFT) said that conformer IIa is the most stable, followed by IIb, and then IIc. Two out of three conformers of resorcinol have been observed in neutron powder experiments (Bacon & Lisher, 1980). Beyond that all three conformations have been found in diverse multi-component-complexes (Boldog et al. 2004; MacGillivray et al. 2000; Friščić & MacGillivray, 2009; Matsumoto et al., 2006) where resorcinol showed these conformations. Another possibility of building a finite hydrogen bond network between the two components is highlighted as an example (V in Fig. 1), where different conformers are involved. The energy for the conversion of the relative stable conformers Ia and IIb to the least energetically favoured conformational states Ic and IIc is estimated to be approximately 60 kJ/mol. The co-crystal of the title compound (Fig. 2) in the constellation of Ia and IIb adopts a chain motif (IV in Fig. 1) (Fig. 3). The desired complex (III in Fig. 1) was not formed.

Related literature top

For background to 2,6-diacetylpyridine and resorcinol, see: Bacon & Lisher (1980); MacGillivray et al. (2000); Boldog et al. (2004); Matsumoto et al. (2006); Anwar et al. (2007); Friščić & MacGillivray (2009).

Experimental top

The starting compounds 2,6-diacetylpyridine and resorcinol were purchased from Aldrich and Alfa Aesar which were used for co-crystallization experiments without purification. The starting compounds were dissolved in a 1:1 molecular ratio in ether and setlaid aside at room temperature. After several weeks adequate single crystals were obtained.

Refinement top

All H atoms were refined using a riding model with fixed individual displacements parameters [Uiso(H) = 1.2 Ueq(C) or Uiso(H) = 1.5 Ueq(Cmethyl, O)] with Caromatic—H = 0.95 Å, Cmethyl = 0.98 Å, and O—H = 0.84 Å. The methyl and hydroxyl groups were allowed to rotate but not to tip.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-RED32 (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Scheme showing 2,6-diacetylpyridine (I) and resorcinol (II), their possible conformations (Ia, Ib, Ic, IIa, IIb, IIc) and hydrogen bonded complexes of them (III, IV, V).
[Figure 2] Fig. 2. A perspective view of the title complex, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. A partial packing diagram of the title complex. Dashed line indicate hydrogen bonds. Only the H atoms involved in hydrogen bonding are shown. [Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x, -y, -z + 1.]
1-(6-Acetylpyridin-2-yl)ethanone–benzene-1,3-diol (1/1) top
Crystal data top
C9H9NO2·C6H6O2Z = 2
Mr = 273.28F(000) = 288
Triclinic, P1Dx = 1.315 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.346 (2) ÅCell parameters from 9113 reflections
b = 7.866 (2) Åθ = 3.8–25.6°
c = 12.342 (3) ŵ = 0.10 mm1
α = 101.61 (3)°T = 173 K
β = 90.51 (3)°Block, colourless
γ = 98.72 (3)°0.30 × 0.30 × 0.23 mm
V = 689.9 (3) Å3
Data collection top
Stoe IPDS II two-circle
diffractometer
1605 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.094
Graphite monochromatorθmax = 25.4°, θmin = 3.2°
ω scansh = 88
9113 measured reflectionsk = 99
2515 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0671P)2]
where P = (Fo2 + 2Fc2)/3
2515 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C9H9NO2·C6H6O2γ = 98.72 (3)°
Mr = 273.28V = 689.9 (3) Å3
Triclinic, P1Z = 2
a = 7.346 (2) ÅMo Kα radiation
b = 7.866 (2) ŵ = 0.10 mm1
c = 12.342 (3) ÅT = 173 K
α = 101.61 (3)°0.30 × 0.30 × 0.23 mm
β = 90.51 (3)°
Data collection top
Stoe IPDS II two-circle
diffractometer
1605 reflections with I > 2σ(I)
9113 measured reflectionsRint = 0.094
2515 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 0.93Δρmax = 0.19 e Å3
2515 reflectionsΔρmin = 0.27 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2051 (2)0.1792 (2)0.23716 (14)0.0241 (4)
O10.0057 (2)0.2404 (2)0.27810 (15)0.0442 (5)
O20.4266 (2)0.6213 (2)0.27795 (14)0.0421 (5)
C10.2841 (2)0.3381 (3)0.29483 (18)0.0244 (5)
C20.3093 (3)0.3761 (3)0.40993 (19)0.0290 (5)
H20.36240.49060.44780.035*
C30.2559 (3)0.2451 (3)0.46820 (19)0.0323 (5)
H30.27230.26740.54650.039*
C40.1779 (3)0.0805 (3)0.40953 (19)0.0304 (5)
H40.14260.01310.44690.036*
C50.1518 (2)0.0537 (3)0.29475 (18)0.0243 (5)
C60.0608 (3)0.1218 (3)0.22941 (19)0.0283 (5)
C70.0371 (3)0.1447 (3)0.1066 (2)0.0385 (6)
H7A0.00460.27000.07340.058*
H7B0.15260.09710.07670.058*
H7C0.06140.08210.08920.058*
C80.3460 (3)0.4780 (3)0.22922 (19)0.0277 (5)
C90.3053 (3)0.4348 (3)0.1071 (2)0.0371 (6)
H9A0.35420.53610.07520.056*
H9B0.17170.40630.09240.056*
H9C0.36340.33360.07350.056*
O30.5190 (2)0.8749 (2)0.15119 (15)0.0440 (5)
HO30.49090.80490.19370.066*
O40.8147 (2)1.4495 (2)0.14755 (14)0.0437 (5)
HO40.86971.54130.18910.066*
C110.6121 (3)1.0305 (3)0.2107 (2)0.0292 (5)
C120.6507 (3)1.0573 (3)0.3241 (2)0.0335 (6)
H120.61190.96710.36350.040*
C130.7473 (3)1.2191 (3)0.3788 (2)0.0345 (6)
H130.77431.23850.45610.041*
C140.8046 (3)1.3522 (3)0.3220 (2)0.0331 (6)
H140.87051.46160.36000.040*
C150.7642 (3)1.3232 (3)0.2090 (2)0.0301 (5)
C160.6671 (3)1.1633 (3)0.1528 (2)0.0331 (5)
H160.63861.14480.07570.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0187 (8)0.0236 (10)0.0286 (10)0.0016 (7)0.0019 (7)0.0060 (8)
O10.0515 (10)0.0298 (9)0.0484 (11)0.0118 (8)0.0009 (8)0.0150 (8)
O20.0482 (9)0.0262 (9)0.0464 (11)0.0139 (7)0.0057 (8)0.0094 (8)
C10.0179 (9)0.0252 (11)0.0290 (13)0.0012 (8)0.0001 (8)0.0063 (9)
C20.0250 (10)0.0265 (12)0.0322 (13)0.0015 (9)0.0039 (9)0.0028 (10)
C30.0317 (11)0.0377 (13)0.0260 (13)0.0021 (10)0.0004 (9)0.0057 (10)
C40.0265 (11)0.0329 (12)0.0337 (14)0.0004 (9)0.0051 (9)0.0144 (11)
C50.0196 (10)0.0227 (11)0.0308 (13)0.0002 (8)0.0039 (9)0.0084 (9)
C60.0219 (10)0.0249 (12)0.0379 (14)0.0007 (8)0.0021 (9)0.0092 (10)
C70.0447 (13)0.0281 (12)0.0378 (15)0.0061 (10)0.0035 (11)0.0041 (11)
C80.0224 (10)0.0230 (11)0.0372 (14)0.0009 (8)0.0005 (9)0.0083 (10)
C90.0431 (13)0.0334 (13)0.0348 (14)0.0040 (10)0.0023 (11)0.0147 (11)
O30.0492 (10)0.0281 (9)0.0507 (11)0.0123 (7)0.0084 (8)0.0123 (8)
O40.0503 (10)0.0290 (9)0.0481 (11)0.0114 (8)0.0098 (8)0.0121 (8)
C110.0219 (10)0.0217 (11)0.0431 (15)0.0028 (8)0.0019 (9)0.0085 (10)
C120.0302 (11)0.0306 (13)0.0442 (16)0.0046 (9)0.0037 (10)0.0180 (11)
C130.0319 (12)0.0353 (13)0.0367 (14)0.0066 (10)0.0023 (10)0.0077 (11)
C140.0267 (11)0.0250 (12)0.0454 (16)0.0010 (9)0.0005 (10)0.0043 (11)
C150.0230 (10)0.0234 (11)0.0446 (15)0.0008 (8)0.0091 (10)0.0114 (10)
C160.0303 (11)0.0321 (13)0.0367 (14)0.0011 (9)0.0052 (10)0.0095 (11)
Geometric parameters (Å, º) top
N1—C51.343 (2)C9—H9A0.9800
N1—C11.349 (3)C9—H9B0.9800
O1—C61.229 (2)C9—H9C0.9800
O2—C81.226 (3)O3—C111.371 (3)
C1—C21.396 (3)O3—HO30.8400
C1—C81.512 (3)O4—C151.377 (2)
C2—C31.383 (3)O4—HO40.8400
C2—H20.9500C11—C121.392 (3)
C3—C41.385 (3)C11—C161.393 (3)
C3—H30.9500C12—C131.397 (3)
C4—C51.397 (3)C12—H120.9500
C4—H40.9500C13—C141.390 (3)
C5—C61.505 (3)C13—H130.9500
C6—C71.496 (3)C14—C151.389 (3)
C7—H7A0.9800C14—H140.9500
C7—H7B0.9800C15—C161.393 (3)
C7—H7C0.9800C16—H160.9500
C8—C91.494 (3)
C5—N1—C1117.35 (18)C9—C8—C1118.19 (19)
N1—C1—C2122.87 (19)C8—C9—H9A109.5
N1—C1—C8117.01 (19)C8—C9—H9B109.5
C2—C1—C8120.12 (19)H9A—C9—H9B109.5
C3—C2—C1119.2 (2)C8—C9—H9C109.5
C3—C2—H2120.4H9A—C9—H9C109.5
C1—C2—H2120.4H9B—C9—H9C109.5
C2—C3—C4118.4 (2)C11—O3—HO3109.5
C2—C3—H3120.8C15—O4—HO4109.5
C4—C3—H3120.8O3—C11—C12122.26 (19)
C3—C4—C5119.18 (19)O3—C11—C16117.1 (2)
C3—C4—H4120.4C12—C11—C16120.7 (2)
C5—C4—H4120.4C11—C12—C13118.9 (2)
N1—C5—C4122.97 (19)C11—C12—H12120.6
N1—C5—C6116.70 (19)C13—C12—H12120.6
C4—C5—C6120.33 (18)C14—C13—C12121.1 (2)
O1—C6—C7122.1 (2)C14—C13—H13119.4
O1—C6—C5119.5 (2)C12—C13—H13119.4
C7—C6—C5118.45 (18)C15—C14—C13119.2 (2)
C6—C7—H7A109.5C15—C14—H14120.4
C6—C7—H7B109.5C13—C14—H14120.4
H7A—C7—H7B109.5O4—C15—C14122.4 (2)
C6—C7—H7C109.5O4—C15—C16116.9 (2)
H7A—C7—H7C109.5C14—C15—C16120.7 (2)
H7B—C7—H7C109.5C15—C16—C11119.4 (2)
O2—C8—C9122.80 (19)C15—C16—H16120.3
O2—C8—C1119.0 (2)C11—C16—H16120.3
C5—N1—C1—C20.9 (3)N1—C1—C8—O2176.44 (19)
C5—N1—C1—C8179.22 (17)C2—C1—C8—O23.7 (3)
N1—C1—C2—C31.7 (3)N1—C1—C8—C93.7 (3)
C8—C1—C2—C3178.40 (19)C2—C1—C8—C9176.1 (2)
C1—C2—C3—C40.4 (3)O3—C11—C12—C13179.6 (2)
C2—C3—C4—C51.6 (3)C16—C11—C12—C130.7 (3)
C1—N1—C5—C41.2 (3)C11—C12—C13—C140.1 (3)
C1—N1—C5—C6178.93 (17)C12—C13—C14—C150.2 (3)
C3—C4—C5—N12.5 (3)C13—C14—C15—O4179.3 (2)
C3—C4—C5—C6177.67 (19)C13—C14—C15—C160.2 (3)
N1—C5—C6—O1178.45 (19)O4—C15—C16—C11179.94 (19)
C4—C5—C6—O11.7 (3)C14—C15—C16—C110.8 (3)
N1—C5—C6—C70.3 (3)O3—C11—C16—C15179.2 (2)
C4—C5—C6—C7179.55 (19)C12—C11—C16—C151.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—HO3···O20.841.952.784 (2)174
O4—HO4···O1i0.841.962.802 (3)177
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC9H9NO2·C6H6O2
Mr273.28
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.346 (2), 7.866 (2), 12.342 (3)
α, β, γ (°)101.61 (3), 90.51 (3), 98.72 (3)
V3)689.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.30 × 0.23
Data collection
DiffractometerStoe IPDS II two-circle
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9113, 2515, 1605
Rint0.094
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.130, 0.93
No. of reflections2515
No. of parameters185
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.27

Computer programs: X-AREA (Stoe & Cie, 2001), X-RED32 (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL-Plus (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—HO3···O20.841.952.784 (2)173.6
O4—HO4···O1i0.841.962.802 (3)176.5
Symmetry code: (i) x+1, y+2, z.
 

Acknowledgements

We thank Dr Guido Wagner for quantum-mechanical calculations of the relative stability of the 2,6-diacetyl­pyridine conformations and Professor Dr E. Egert for helpful discussions.

References

First citationAnwar, J., Chatchawalsaisin, J. & Kendrick, J. (2007). Angew. Chem. Int. Ed. Engl. 46, 5537–5540.  Web of Science CrossRef PubMed CAS
First citationBacon, G. E. & Lisher, E. J. (1980). Acta Cryst. B36, 1908–1916.  CSD CrossRef CAS IUCr Journals Web of Science
First citationBoldog, I., Rusanov, E. B., Sieler, J. & Domasevitch, K. V. (2004). New J. Chem. 28, 756–759.  Web of Science CSD CrossRef CAS
First citationFriščić, T. & MacGillivray, L. R. (2009). Chem. Commun. pp. 773–775.
First citationMacGillivray, L. R., Reid, J. L. & Ripmeester, J. A. (2000). J. Am. Chem. Soc. 122, 7817–7818.  Web of Science CSD CrossRef CAS
First citationMatsumoto, K., Harada, Y., Yamada, N., Kurata, H., Kawese, T. & Oda, M. (2006). Cryst. Growth Des. 6, 1083–1085.  Web of Science CSD CrossRef CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationStoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds