organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2795-o2796

2,5-Di­bromo­indan-1-ol

aDepartment of Physics, Faculty of Sciences, Cumhuriyet University, 58140 Sivas, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 39039 Kayseri, Turkey, cDuzce University, Faculty of Art and Science, Department of Chemistry, TR-81620 Duzce, Turkey, dSakarya University, Faculty of Art and Science, Department of Chemistry, TR-54187 Adapazarı, Turkey, eGaziosmanpasa University, Faculty of Art and Science, Department of Chemistry, TR-60240 Tokat, Turkey, and fDepartamento Química Física y Analítica, Facultad de Química, Universidad Oviedo, C/ Julián Clavería, 8, 33006 Oviedo (Asturias), Spain
*Correspondence e-mail: icelik@cumhuriyet.edu.tr

(Received 10 August 2012; accepted 14 August 2012; online 25 August 2012)

In the title compound, C9H8Br2O, the cyclo­pentene ring adopts an envelope conformation with the brominated C atom as the flap. In the crystal, mol­ecules are linked by strong O—H⋯O hydrogen bonds into zigzag C(4) chains along [010]. In addition, a C—H⋯π inter­action involving the benzene ring and the H atom attached to the hy­droxy­lated C atom is observed.

Related literature

For bromination of hydro­carbons, see: Cakmak et al. (2006[Cakmak, O., Erenler, R., Tutar, A. & Celik, N. (2006). J. Org. Chem. 71, 1795-1801.]); Erenler & Cakmak (2004[Erenler, R. & Cakmak, O. (2004). J. Chem. Res. pp. 566-569.]); Erenler et al. (2006[Erenler, R., Demirtas, I., Buyukkidan, B. & Cakmak, O. (2006). J. Chem. Res. pp. 753-757.]). For the pharmacological and medicinal proparties of indanes, see: Mitrochkine et al. (1995[Mitrochkine, A., Eydoux, F., Martres, M., Gil, G., Heumann, A. & Reglier, M. (1995). Tetrahedron Asymmetry, 6, 59-62.]); Catto et al. (2010[Catto, M., Aliano, R., Carotti, A., Cellamare, S., Palluotto, F., Purgatorio, R., Stradis, A. D. & Campagna, F. (2010). Eur. J. Med. Chem. 45, 1359-1366.]); Wu (2006[Wu, Y. J. (2006). Tetrahedron Lett. 47, 8459-8461.]); McClure et al. (2011[McClure, K. J., Maher, M., Wu, N., Chaplan, S. R., Erkert, W. A., Lee, D. H., Wickenden, A. D., Hermann, M., Allison, B., Hawryluk, N., Breitenbucher, G. J. & Grice, C. A. (2011). Bioorg. Med. Chem. Lett. 21, 5197-5201.]) and for their use in natural product chemistry, see: Snyder & Brill (2011[Snyder, S. A. & Brill, Z. G. (2011). Org. Lett. 13, 5524-5527.]). For a similar structure, see: Çelik et al. (2012[Çelik, Í., Akkurt, M., Yılmaz, M., Tutar, A., Erenler, R. & García-Granda, S. (2012). Acta Cryst. E68, o833.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8Br2O

  • Mr = 291.95

  • Monoclinic, P 21 /c

  • a = 9.5137 (10) Å

  • b = 4.8991 (7) Å

  • c = 20.249 (3) Å

  • β = 94.165 (10)°

  • V = 941.3 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 10.50 mm−1

  • T = 299 K

  • 0.17 × 0.01 × 0.01 mm

Data collection
  • Agilent Xcalibur Ruby Gemini diffractometer

  • Absorption correction: refined from ΔF (XABS2; Parkin et al., 1995[Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53-56.])Tmin = 0.882, Tmax = 0.900

  • 1777 measured reflections

  • 1777 independent reflections

  • 733 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.082

  • wR(F2) = 0.228

  • S = 1.00

  • 1777 reflections

  • 79 parameters

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.78 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1i 0.82 1.91 2.713 (14) 165
C9—H9⋯Cg2ii 0.98 2.67 3.629 (16) 166
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y-1, z.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: WinGX (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Bromination of hydrocarbons are important processes in synthetic chemistry (Cakmak et al., 2006; Erenler et al., 2006; Erenler & Cakmak, 2004). Indanes are an important class of molecules due to their pharmacological and medicinal proparties (Mitrochkine et al., 1995; Catto et al., 2010; Wu, 2006; McClure et al., 2011) as well as in natural product chemistry (Snyder & Brill, 2011).

In the title compound (I), (Fig. 1), the five-membered C1/C6–C9 cyclopentene ring exhibits an envelope conformation with C8 at the tip of the envelope [the puckering parameters (Cremer & Pople, 1975) are Q(2) = 0.289 (17) Å and ϕ(2) = 290 (3) °]. All bond lengths and bond angles in (I) are in the normal range and are in good agreement with those reported in a similar structure (Çelik et al., 2012).

In the crystal, pairs of strong O—H···O hydrogen bonds connect the molecules, forming zigzag C(4) chains propagating along the b axis (Bernstein et al., 1995; Table 1, Fig. 2). In addition, a C—H···π interaction with the benzene ring is also found (Table 1).

Related literature top

For bromination of hydrocarbons, see: Cakmak et al. (2006); Erenler & Cakmak (2004); Erenler et al. (2006). For the pharmacological and medicinal proparties of indanes, see: Mitrochkine et al. (1995); Catto et al. (2010); Wu (2006); McClure et al. (2011) and for their use in natural product chemistry, see: Snyder & Brill (2011). For a similar structure, see: Çelik et al. (2012). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

To a stirred solution of tribromide (1.0 g, 2.8 mmol) in THF (10 ml) was added a solution of AgClO4.H2O (0.82 g, 3.64 mmol) in aqueous THF (5 ml THF / 2 ml H2O). The resulting mixture was stirred at room temperature for 6 h. The precipitated AgBr was removed by filtration and then the solution was dried over calcium chloride. After removal of the solvent, the residue was purified by silica gel column chromatography. Elution with hexane/ethyl acetate (4:1) afforded the 2,5-dibromo-1-hdyroxylindane (0.59 g, 72%).

Refinement top

H-atoms were positioned geometrically and refined using a riding model with O—H = 0.82 Å, C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C,O).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999); software used to prepare material for publication: WinGX (Farrugia, 1997) and PLATON (Spek, 2009).

Figures top
An ORTEP plot of (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

View of the packing and hydrogen bonding of (I), along the a axis. H atoms not involved in hydrogen bonding are omitted for the sake of clarity.
2,5-Dibromoindan-1-ol top
Crystal data top
C9H8Br2OF(000) = 560
Mr = 291.95Dx = 2.060 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ybcCell parameters from 378 reflections
a = 9.5137 (10) Åθ = 4.4–70.4°
b = 4.8991 (7) ŵ = 10.50 mm1
c = 20.249 (3) ÅT = 299 K
β = 94.165 (10)°Prism, colourless
V = 941.3 (2) Å30.17 × 0.01 × 0.01 mm
Z = 4
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
1777 independent reflections
Radiation source: Enhance (Cu) X-ray Source733 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.0000
Detector resolution: 10.2673 pixels mm-1θmax = 70.6°, θmin = 4.4°
ω scansh = 1111
Absorption correction: part of the refinement model (ΔF)
(XABS2; Parkin et al., 1995)
k = 05
Tmin = 0.882, Tmax = 0.900l = 024
1777 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.082Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.228H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0341P)2]
where P = (Fo2 + 2Fc2)/3
1777 reflections(Δ/σ)max < 0.001
79 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.78 e Å3
Crystal data top
C9H8Br2OV = 941.3 (2) Å3
Mr = 291.95Z = 4
Monoclinic, P21/cCu Kα radiation
a = 9.5137 (10) ŵ = 10.50 mm1
b = 4.8991 (7) ÅT = 299 K
c = 20.249 (3) Å0.17 × 0.01 × 0.01 mm
β = 94.165 (10)°
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
1777 independent reflections
Absorption correction: part of the refinement model (ΔF)
(XABS2; Parkin et al., 1995)
733 reflections with I > 2σ(I)
Tmin = 0.882, Tmax = 0.900Rint = 0.0000
1777 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0820 restraints
wR(F2) = 0.228H-atom parameters constrained
S = 1.00Δρmax = 0.68 e Å3
1777 reflectionsΔρmin = 0.78 e Å3
79 parameters
Special details top

Experimental. Absorption correction: XABS2 (Parkin et al., 1995); Quadratic fit to sin(theta)/lambda - 18 parameters

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.4208 (2)0.8732 (4)0.60524 (11)0.0799 (7)
Br21.11644 (19)0.3412 (4)0.60918 (10)0.0766 (7)
O10.9808 (12)0.057 (2)0.7220 (5)0.069 (4)
C10.7790 (16)0.247 (3)0.6578 (8)0.062 (2)
C20.7029 (16)0.359 (3)0.7090 (8)0.062 (2)
C30.5983 (16)0.544 (3)0.6919 (8)0.062 (2)
C40.5687 (16)0.618 (3)0.6270 (7)0.062 (2)
C50.6461 (16)0.517 (3)0.5754 (8)0.062 (2)
C60.7444 (16)0.331 (3)0.5936 (8)0.062 (2)
C70.8485 (19)0.172 (3)0.5499 (7)0.067 (6)
C80.9613 (18)0.074 (3)0.5978 (7)0.063 (6)
C90.8931 (16)0.040 (3)0.6617 (7)0.057 (5)
H11.003900.097000.734300.1030*
H20.723300.308800.752900.0740*
H30.547100.620800.724700.0740*
H50.629900.575200.531900.0740*
H7A0.801000.020700.527000.0810*
H7B0.886300.292600.517500.0810*
H80.997300.102100.583300.0750*
H90.848200.140100.660600.0680*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0591 (11)0.0778 (13)0.1011 (14)0.0087 (10)0.0058 (10)0.0030 (11)
Br20.0611 (11)0.0755 (12)0.0942 (13)0.0033 (9)0.0123 (9)0.0108 (10)
O10.081 (8)0.052 (6)0.072 (7)0.005 (6)0.002 (6)0.004 (5)
C10.052 (4)0.069 (4)0.064 (4)0.007 (3)0.001 (3)0.001 (3)
C20.052 (4)0.069 (4)0.064 (4)0.007 (3)0.001 (3)0.001 (3)
C30.052 (4)0.069 (4)0.064 (4)0.007 (3)0.001 (3)0.001 (3)
C40.052 (4)0.069 (4)0.064 (4)0.007 (3)0.001 (3)0.001 (3)
C50.052 (4)0.069 (4)0.064 (4)0.007 (3)0.001 (3)0.001 (3)
C60.052 (4)0.069 (4)0.064 (4)0.007 (3)0.001 (3)0.001 (3)
C70.089 (12)0.058 (9)0.056 (8)0.007 (9)0.013 (8)0.005 (8)
C80.083 (12)0.046 (8)0.058 (9)0.008 (8)0.005 (8)0.004 (7)
C90.059 (9)0.048 (8)0.061 (9)0.003 (7)0.008 (8)0.010 (7)
Geometric parameters (Å, º) top
Br1—C41.910 (15)C6—C71.58 (2)
Br2—C81.974 (16)C7—C81.47 (2)
O1—C91.430 (18)C8—C91.50 (2)
O1—H10.8200C2—H20.9300
C1—C61.38 (2)C3—H30.9300
C1—C91.48 (2)C5—H50.9300
C1—C21.42 (2)C7—H7A0.9700
C2—C31.37 (2)C7—H7B0.9700
C3—C41.37 (2)C8—H80.9800
C4—C51.41 (2)C9—H90.9800
C5—C61.34 (2)
C9—O1—H1109.00O1—C9—C1112.6 (12)
C2—C1—C6118.3 (14)C1—C2—H2121.00
C6—C1—C9112.2 (13)C3—C2—H2121.00
C2—C1—C9129.5 (14)C2—C3—H3120.00
C1—C2—C3118.1 (15)C4—C3—H3120.00
C2—C3—C4120.7 (15)C4—C5—H5122.00
Br1—C4—C5118.3 (11)C6—C5—H5122.00
C3—C4—C5122.3 (14)C6—C7—H7A111.00
Br1—C4—C3119.4 (11)C6—C7—H7B111.00
C4—C5—C6115.3 (15)C8—C7—H7A111.00
C1—C6—C7105.3 (12)C8—C7—H7B111.00
C5—C6—C7129.4 (14)H7A—C7—H7B109.00
C1—C6—C5125.2 (15)Br2—C8—H8110.00
C6—C7—C8104.4 (12)C7—C8—H8110.00
Br2—C8—C9109.9 (10)C9—C8—H8110.00
C7—C8—C9105.3 (13)O1—C9—H9107.00
Br2—C8—C7111.3 (10)C1—C9—H9107.00
O1—C9—C8117.9 (13)C8—C9—H9107.00
C1—C9—C8103.8 (12)
C6—C1—C2—C30 (2)Br1—C4—C5—C6177.5 (11)
C9—C1—C2—C3178.1 (15)C3—C4—C5—C64 (2)
C2—C1—C6—C52 (2)C4—C5—C6—C14 (2)
C2—C1—C6—C7179.4 (13)C4—C5—C6—C7179.1 (14)
C9—C1—C6—C5179.5 (15)C1—C6—C7—C816.7 (16)
C9—C1—C6—C71.9 (17)C5—C6—C7—C8160.8 (16)
C2—C1—C9—O133 (2)C6—C7—C8—Br290.7 (12)
C2—C1—C9—C8162.1 (15)C6—C7—C8—C928.3 (15)
C6—C1—C9—O1148.1 (13)Br2—C8—C9—O134.8 (16)
C6—C1—C9—C819.4 (17)Br2—C8—C9—C190.6 (12)
C1—C2—C3—C40 (2)C7—C8—C9—O1154.8 (12)
C2—C3—C4—Br1179.3 (12)C7—C8—C9—C129.4 (15)
C2—C3—C4—C52 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···O1i0.821.912.713 (14)165
C9—H9···Cg2ii0.982.673.629 (16)166
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC9H8Br2O
Mr291.95
Crystal system, space groupMonoclinic, P21/c
Temperature (K)299
a, b, c (Å)9.5137 (10), 4.8991 (7), 20.249 (3)
β (°) 94.165 (10)
V3)941.3 (2)
Z4
Radiation typeCu Kα
µ (mm1)10.50
Crystal size (mm)0.17 × 0.01 × 0.01
Data collection
DiffractometerAgilent Xcalibur Ruby Gemini
diffractometer
Absorption correctionPart of the refinement model (ΔF)
(XABS2; Parkin et al., 1995)
Tmin, Tmax0.882, 0.900
No. of measured, independent and
observed [I > 2σ(I)] reflections
1777, 1777, 733
Rint0.0000
(sin θ/λ)max1)0.612
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.082, 0.228, 1.00
No. of reflections1777
No. of parameters79
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.78

Computer programs: CrysAlis PRO (Agilent, 2011), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1999), WinGX (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···O1i0.821.912.713 (14)165
C9—H9···Cg2ii0.982.673.629 (16)166
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x, y1, z.
 

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science
First citationCakmak, O., Erenler, R., Tutar, A. & Celik, N. (2006). J. Org. Chem. 71, 1795–1801.  Web of Science CrossRef PubMed CAS
First citationCatto, M., Aliano, R., Carotti, A., Cellamare, S., Palluotto, F., Purgatorio, R., Stradis, A. D. & Campagna, F. (2010). Eur. J. Med. Chem. 45, 1359–1366.  Web of Science CrossRef CAS PubMed
First citationÇelik, Í., Akkurt, M., Yılmaz, M., Tutar, A., Erenler, R. & García-Granda, S. (2012). Acta Cryst. E68, o833.  CSD CrossRef IUCr Journals
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science
First citationErenler, R. & Cakmak, O. (2004). J. Chem. Res. pp. 566–569.  CrossRef
First citationErenler, R., Demirtas, I., Buyukkidan, B. & Cakmak, O. (2006). J. Chem. Res. pp. 753–757.  CrossRef
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals
First citationMcClure, K. J., Maher, M., Wu, N., Chaplan, S. R., Erkert, W. A., Lee, D. H., Wickenden, A. D., Hermann, M., Allison, B., Hawryluk, N., Breitenbucher, G. J. & Grice, C. A. (2011). Bioorg. Med. Chem. Lett. 21, 5197–5201.  Web of Science CrossRef CAS PubMed
First citationMitrochkine, A., Eydoux, F., Martres, M., Gil, G., Heumann, A. & Reglier, M. (1995). Tetrahedron Asymmetry, 6, 59–62.  CrossRef CAS Web of Science
First citationParkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56.  CrossRef CAS Web of Science IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSnyder, S. A. & Brill, Z. G. (2011). Org. Lett. 13, 5524–5527.  Web of Science CSD CrossRef CAS PubMed
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationWu, Y. J. (2006). Tetrahedron Lett. 47, 8459–8461.  Web of Science CrossRef CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2795-o2796
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds