supplementary materials


pv2574 scheme

Acta Cryst. (2012). E68, m1173    [ doi:10.1107/S1600536812034538 ]

catena-Poly[[[(5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane-[kappa]4N)nickel(II)]-[mu]-oxido-[dioxidotungstate(VI)]-[mu]-oxido] tetrahydrate]

G.-C. Ou, X.-Y. Yuan and Z.-Z. Li

Abstract top

In the title compound, {[NiWO4(C16H36N4)]·4H2O}n, the NiII ion lies on an inversion center and is octahedrally coordinated by four N atoms of the tetradentate macrocyclic 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane (L) ligand in the equatorial plane and two O atoms of [WO4]2- anions in axial positions. Each [WO4]2- anion bridges two adjacent [NiL]2+ cations, forming a chain along [001]. The chains are further connected via N-H...O, O-H...O and C-H...O hydrogen-bonding interactions, generating a three-dimensional structure.

Comment top

Continuing our research (Ou et al., 2011), we now report the crystal structure of the title complex. The asymmetric unit of the title complex contains one cation [NiL]2+, one anion [WO4]2-, and four water molecules of hydration. Each NiII ion displays a distorted octahedral coordination geometry by coordination with four nitrogen atoms of L in in the equatorial plane, and two oxygen atoms of [WO4]2- anions in the axial positions. Each [WO4]2- anion bridges two adjacent [NiL]2+ cations to form a one-dimensional chain. The one-dimensional chains are further connected through O···O (2.720 (8)–2.900 (8) Å) and N···O (3.040 (8) and 3.253 (7) Å) hydrogen bonding interactions between the oxygen atoms of [WO4]2- anions, free water molecules and the secondary amine of [NiL]2+, forming a three-dimensional supramolecular structure (Tab. 2, Figs. 2, 3).

Related literature top

For a related structure, see: Ou et al. (2011).

Experimental top

A glass tube was charged with an aqueous solution of K2WO4 (0.033 g, 0.1 mmol) in water (20 ml), and a mixture of methanol and H2O (1/1, 20 ml) was gently added as an upper layer. A solution of NiL (ClO4)2 (0.054 g, 0.1 mmol) (L = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane) in methanol (20 ml) was added carefully as a third layer, and then the tube was sealed. After several weeks, yellow prism-shaped crystals were obtained.

Refinement top

The H atoms bound to N and C atoms were positioned geometrically and refined using the riding model with N—H = 0.93 Å and C—H = 0.98 to 1.00 Å. The hydrogen atoms of the water molecules were located from a difference Fourier map and were constrained at distances O—H = 0.86 (2) Å. Uiso(H) were set to 1.5 × Ueq(methyl C) and 1.2 × Ueq(the rest of the parent atoms).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, with atom labels and 50% probability displacement ellipsoids for non-H atoms. Symmetry codes for the generated atoms: A: 2 - x, 2 - y, 1 - z; B: 2 - x, 2 - y, 2 - z.
[Figure 2] Fig. 2. A view of the hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen- bonding were omitted for clarity.
[Figure 3] Fig. 3. Hydrogen bonding (dashed lines) in the title compound. Symmetry codes for the generated atoms: A: 1 - x, 1 - y, 1 - z; B: -1 + x, y, z; C: - x, 1 - y, 1 - z.
catena-Poly[[[(5,5,7,12,12,14-hexamethyl-1,4,8,11- tetraazacyclotetradecane-κ4N)nickel(II)]-µ-oxido- [dioxidotungstate(VI)]-µ-oxido] tetrahydrate] top
Crystal data top
[NiWO4(C16H36N4)]·4H2OZ = 2
Mr = 663.11F(000) = 668
Triclinic, P1Dx = 1.737 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8402 (14) ÅCell parameters from 3766 reflections
b = 11.7653 (18) Åθ = 1.9–27.1°
c = 13.931 (2) ŵ = 5.32 mm1
α = 107.163 (2)°T = 173 K
β = 102.529 (3)°Prism, yellow
γ = 104.984 (3)°0.31 × 0.11 × 0.02 mm
V = 1268.1 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
5397 independent reflections
Radiation source: fine-focus sealed tube4330 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 27.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 114
Tmin = 0.289, Tmax = 0.901k = 1415
7631 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0498P)2]
where P = (Fo2 + 2Fc2)/3
5397 reflections(Δ/σ)max = 0.001
304 parametersΔρmax = 2.33 e Å3
13 restraintsΔρmin = 1.48 e Å3
Crystal data top
[NiWO4(C16H36N4)]·4H2Oγ = 104.984 (3)°
Mr = 663.11V = 1268.1 (3) Å3
Triclinic, P1Z = 2
a = 8.8402 (14) ÅMo Kα radiation
b = 11.7653 (18) ŵ = 5.32 mm1
c = 13.931 (2) ÅT = 173 K
α = 107.163 (2)°0.31 × 0.11 × 0.02 mm
β = 102.529 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5397 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4330 reflections with I > 2σ(I)
Tmin = 0.289, Tmax = 0.901Rint = 0.030
7631 measured reflectionsθmax = 27.1°
Refinement top
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096Δρmax = 2.33 e Å3
S = 1.02Δρmin = 1.48 e Å3
5397 reflectionsAbsolute structure: ?
304 parametersFlack parameter: ?
13 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W10.86432 (3)0.90496 (2)0.70182 (2)0.01423 (9)
O40.9085 (5)0.9844 (4)0.8399 (3)0.0187 (9)
O10.9900 (5)0.9988 (4)0.6505 (3)0.0201 (10)
O30.6535 (5)0.8719 (4)0.6342 (4)0.0231 (10)
O20.9049 (6)0.7611 (4)0.6806 (4)0.0258 (11)
Ni11.00001.00001.00000.0130 (2)
Ni21.00001.00000.50000.0139 (2)
N10.9427 (7)1.1622 (5)1.0653 (4)0.0170 (11)
H1C0.98601.18421.13800.020*
N21.2351 (6)1.1000 (5)1.0097 (4)0.0158 (11)
H2C1.30281.12271.07850.019*
N40.7426 (6)0.9212 (5)0.4386 (4)0.0183 (11)
H4D0.70430.90480.49200.022*
N31.0343 (7)0.8257 (5)0.4733 (4)0.0195 (12)
H3A1.02580.80880.53340.023*
C61.0127 (9)1.2828 (6)1.0490 (5)0.0219 (15)
C110.6783 (9)0.7997 (7)0.3458 (6)0.0298 (17)
H110.72260.81480.28870.036*
C51.1979 (9)1.3084 (6)1.0670 (6)0.0264 (16)
H5A1.24661.30841.13800.032*
H5B1.24771.39531.06940.032*
C91.2125 (8)0.8541 (7)0.4833 (6)0.0271 (16)
H9A1.23210.86520.41880.033*
H9B1.24740.78330.49220.033*
C100.6896 (9)1.0242 (7)0.4200 (6)0.0295 (17)
H10A0.56981.00360.40950.035*
H10B0.71091.03490.35580.035*
C140.9159 (9)0.7086 (6)0.3836 (6)0.0266 (16)
C160.9464 (10)0.7001 (7)0.2778 (6)0.0359 (19)
H16A0.94460.77730.26490.054*
H16B0.85970.62630.22040.054*
H16C1.05430.69120.28050.054*
C130.7386 (9)0.7023 (6)0.3763 (6)0.0313 (18)
H13A0.66400.61750.32450.038*
H13B0.72520.70780.44610.038*
C150.9397 (11)0.5905 (7)0.4055 (7)0.041 (2)
H15A0.86270.51290.34690.061*
H15B0.91800.59110.47170.061*
H15C1.05330.59340.41170.061*
C120.4873 (10)0.7496 (8)0.3017 (7)0.045 (2)
H12A0.44160.73440.35680.068*
H12B0.44950.67010.24030.068*
H12C0.44990.81250.28030.068*
C31.2531 (9)1.2195 (6)0.9881 (6)0.0256 (16)
H31.17851.19690.91500.031*
C80.9959 (10)1.3946 (6)1.1322 (6)0.0283 (16)
H8A0.87871.38131.12270.042*
H8B1.04771.47361.12330.042*
H8C1.05061.40001.20340.042*
C70.9231 (9)1.2735 (7)0.9384 (6)0.0298 (17)
H7A0.91791.19500.88540.045*
H7B0.98321.34640.92460.045*
H7C0.81091.27310.93430.045*
C41.4286 (10)1.2865 (8)0.9937 (8)0.051 (3)
H4A1.50071.32201.06740.077*
H4B1.43041.35500.96710.077*
H4C1.46771.22570.95040.077*
C10.7623 (8)1.1146 (6)1.0442 (5)0.0213 (14)
H1A0.70471.10090.97020.026*
H1B0.73011.17801.09190.026*
C21.2872 (8)1.0076 (6)0.9384 (5)0.0188 (14)
H2A1.40841.04070.95390.023*
H2B1.23360.99360.86360.023*
O2W0.3988 (7)0.6388 (5)0.5720 (5)0.0422 (14)
H2WA0.389 (10)0.589 (5)0.510 (3)0.051*
H2WB0.458 (9)0.714 (3)0.582 (5)0.051*
O4W0.5200 (7)0.9166 (6)0.8089 (4)0.0441 (15)
H4WB0.461 (7)0.842 (3)0.797 (4)0.053*
H4WA0.564 (9)0.915 (6)0.759 (5)0.053*
O1W0.6501 (8)0.5326 (5)0.6291 (5)0.0447 (15)
H1WA0.729 (5)0.599 (5)0.639 (7)0.054*
H1WB0.560 (4)0.547 (7)0.617 (7)0.054*
O3W0.2150 (7)0.7401 (6)0.6956 (5)0.0504 (17)
H3WA0.109 (3)0.714 (8)0.681 (5)0.061*
H3WB0.234 (7)0.706 (8)0.638 (3)0.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.01641 (14)0.01438 (14)0.01496 (14)0.00471 (10)0.00913 (10)0.00725 (10)
O40.021 (2)0.019 (2)0.017 (2)0.0070 (19)0.0074 (19)0.0073 (19)
O10.014 (2)0.023 (2)0.021 (3)0.0006 (19)0.0067 (19)0.010 (2)
O30.015 (2)0.028 (3)0.022 (3)0.003 (2)0.007 (2)0.004 (2)
O20.029 (3)0.018 (2)0.034 (3)0.012 (2)0.010 (2)0.011 (2)
Ni10.0154 (6)0.0136 (5)0.0142 (6)0.0060 (4)0.0092 (5)0.0070 (4)
Ni20.0161 (6)0.0127 (5)0.0161 (6)0.0038 (4)0.0092 (5)0.0077 (4)
N10.027 (3)0.016 (3)0.019 (3)0.011 (2)0.016 (2)0.012 (2)
N20.020 (3)0.016 (3)0.017 (3)0.008 (2)0.009 (2)0.011 (2)
N40.019 (3)0.021 (3)0.018 (3)0.006 (2)0.008 (2)0.010 (2)
N30.023 (3)0.021 (3)0.021 (3)0.010 (2)0.010 (2)0.012 (2)
C60.039 (4)0.015 (3)0.021 (4)0.016 (3)0.017 (3)0.010 (3)
C110.020 (4)0.031 (4)0.029 (4)0.001 (3)0.007 (3)0.008 (3)
C50.036 (4)0.016 (3)0.032 (4)0.008 (3)0.022 (3)0.010 (3)
C90.024 (4)0.038 (4)0.030 (4)0.020 (3)0.013 (3)0.017 (3)
C100.026 (4)0.032 (4)0.045 (5)0.015 (3)0.019 (4)0.023 (4)
C140.042 (5)0.015 (3)0.024 (4)0.007 (3)0.020 (3)0.007 (3)
C160.047 (5)0.029 (4)0.028 (4)0.010 (4)0.018 (4)0.005 (3)
C130.042 (5)0.013 (3)0.029 (4)0.004 (3)0.012 (4)0.004 (3)
C150.059 (6)0.018 (4)0.046 (5)0.013 (4)0.024 (4)0.010 (4)
C120.038 (5)0.032 (5)0.045 (5)0.002 (4)0.001 (4)0.004 (4)
C30.028 (4)0.017 (3)0.041 (5)0.009 (3)0.024 (3)0.015 (3)
C80.044 (5)0.019 (4)0.032 (4)0.017 (3)0.021 (4)0.011 (3)
C70.044 (5)0.032 (4)0.027 (4)0.021 (4)0.016 (4)0.020 (3)
C40.039 (5)0.029 (5)0.098 (8)0.008 (4)0.041 (5)0.032 (5)
C10.024 (4)0.021 (3)0.025 (4)0.012 (3)0.013 (3)0.010 (3)
C20.016 (3)0.019 (3)0.025 (4)0.007 (3)0.015 (3)0.006 (3)
O2W0.031 (3)0.029 (3)0.055 (4)0.001 (3)0.020 (3)0.003 (3)
O4W0.027 (3)0.071 (4)0.029 (3)0.012 (3)0.015 (3)0.012 (3)
O1W0.041 (3)0.027 (3)0.048 (4)0.003 (3)0.000 (3)0.011 (3)
O3W0.032 (3)0.044 (4)0.060 (4)0.007 (3)0.025 (3)0.005 (3)
Geometric parameters (Å, º) top
W1—O11.772 (4)C10—H10A0.9900
W1—O21.773 (4)C10—H10B0.9900
W1—O41.775 (4)C14—C131.529 (10)
W1—O31.778 (4)C14—C161.534 (9)
O4—Ni12.135 (4)C14—C151.563 (9)
O1—Ni22.121 (4)C16—H16A0.9800
Ni1—N22.059 (5)C16—H16B0.9800
Ni1—N2i2.059 (5)C16—H16C0.9800
Ni1—N1i2.098 (5)C13—H13A0.9900
Ni1—N12.098 (5)C13—H13B0.9900
Ni1—O4i2.135 (4)C15—H15A0.9800
Ni2—N3ii2.087 (5)C15—H15B0.9800
Ni2—N32.087 (5)C15—H15C0.9800
Ni2—N4ii2.089 (5)C12—H12A0.9800
Ni2—N42.089 (5)C12—H12B0.9800
Ni2—O1ii2.121 (4)C12—H12C0.9800
N1—C11.477 (8)C3—C41.521 (10)
N1—C61.498 (8)C3—H31.0000
N1—H1C0.9300C8—H8A0.9800
N2—C21.484 (7)C8—H8B0.9800
N2—C31.499 (8)C8—H8C0.9800
N2—H2C0.9300C7—H7A0.9800
N4—C101.478 (8)C7—H7B0.9800
N4—C111.486 (8)C7—H7C0.9800
N4—H4D0.9300C4—H4A0.9800
N3—C91.490 (8)C4—H4B0.9800
N3—C141.492 (8)C4—H4C0.9800
N3—H3A0.9300C1—C2i1.498 (8)
C6—C71.530 (9)C1—H1A0.9900
C6—C51.535 (10)C1—H1B0.9900
C6—C81.539 (9)C2—C1i1.498 (8)
C11—C131.511 (10)C2—H2A0.9900
C11—C121.548 (10)C2—H2B0.9900
C11—H111.0000O2W—H2WA0.85 (2)
C5—C31.536 (9)O2W—H2WB0.86 (2)
C5—H5A0.9900O4W—H4WB0.845 (19)
C5—H5B0.9900O4W—H4WA0.86 (2)
C9—C10ii1.526 (10)O1W—H1WA0.86 (2)
C9—H9A0.9900O1W—H1WB0.85 (2)
C9—H9B0.9900O3W—H3WA0.87 (2)
C10—C9ii1.526 (10)O3W—H3WB0.863 (19)
O1—W1—O2108.7 (2)N3—C9—H9A110.2
O1—W1—O4110.9 (2)C10ii—C9—H9A110.2
O2—W1—O4108.7 (2)N3—C9—H9B110.2
O1—W1—O3108.9 (2)C10ii—C9—H9B110.2
O2—W1—O3109.7 (2)H9A—C9—H9B108.5
O4—W1—O3109.9 (2)N4—C10—C9ii108.0 (6)
W1—O4—Ni1151.1 (2)N4—C10—H10A110.1
W1—O1—Ni2137.9 (2)C9ii—C10—H10A110.1
N2—Ni1—N2i180.000 (1)N4—C10—H10B110.1
N2—Ni1—N1i85.46 (19)C9ii—C10—H10B110.1
N2i—Ni1—N1i94.5 (2)H10A—C10—H10B108.4
N2—Ni1—N194.5 (2)N3—C14—C13109.8 (5)
N2i—Ni1—N185.46 (19)N3—C14—C16112.3 (6)
N1i—Ni1—N1180.000 (3)C13—C14—C16110.8 (6)
N2—Ni1—O490.57 (18)N3—C14—C15108.7 (6)
N2i—Ni1—O489.43 (18)C13—C14—C15108.1 (6)
N1i—Ni1—O485.20 (18)C16—C14—C15106.9 (6)
N1—Ni1—O494.80 (18)C14—C16—H16A109.5
N2—Ni1—O4i89.43 (18)C14—C16—H16B109.5
N2i—Ni1—O4i90.57 (18)H16A—C16—H16B109.5
N1i—Ni1—O4i94.80 (18)C14—C16—H16C109.5
N1—Ni1—O4i85.20 (18)H16A—C16—H16C109.5
O4—Ni1—O4i180.000 (2)H16B—C16—H16C109.5
N3ii—Ni2—N3180.000 (2)C11—C13—C14118.9 (6)
N3ii—Ni2—N4ii94.6 (2)C11—C13—H13A107.6
N3—Ni2—N4ii85.4 (2)C14—C13—H13A107.6
N3ii—Ni2—N485.4 (2)C11—C13—H13B107.6
N3—Ni2—N494.6 (2)C14—C13—H13B107.6
N4ii—Ni2—N4180.000 (1)H13A—C13—H13B107.0
N3ii—Ni2—O1ii86.13 (19)C14—C15—H15A109.5
N3—Ni2—O1ii93.87 (19)C14—C15—H15B109.5
N4ii—Ni2—O1ii90.23 (18)H15A—C15—H15B109.5
N4—Ni2—O1ii89.77 (18)C14—C15—H15C109.5
N3ii—Ni2—O193.87 (19)H15A—C15—H15C109.5
N3—Ni2—O186.13 (19)H15B—C15—H15C109.5
N4ii—Ni2—O189.77 (18)C11—C12—H12A109.5
N4—Ni2—O190.23 (18)C11—C12—H12B109.5
O1ii—Ni2—O1180.000 (2)H12A—C12—H12B109.5
C1—N1—C6116.7 (5)C11—C12—H12C109.5
C1—N1—Ni1104.6 (4)H12A—C12—H12C109.5
C6—N1—Ni1122.1 (4)H12B—C12—H12C109.5
C1—N1—H1C103.7N2—C3—C4112.5 (6)
C6—N1—H1C103.7N2—C3—C5109.4 (5)
Ni1—N1—H1C103.7C4—C3—C5110.3 (6)
C2—N2—C3113.8 (5)N2—C3—H3108.2
C2—N2—Ni1105.4 (4)C4—C3—H3108.2
C3—N2—Ni1115.3 (4)C5—C3—H3108.2
C2—N2—H2C107.3C6—C8—H8A109.5
C3—N2—H2C107.3C6—C8—H8B109.5
Ni1—N2—H2C107.3H8A—C8—H8B109.5
C10—N4—C11115.2 (5)C6—C8—H8C109.5
C10—N4—Ni2104.7 (4)H8A—C8—H8C109.5
C11—N4—Ni2114.5 (4)H8B—C8—H8C109.5
C10—N4—H4D107.3C6—C7—H7A109.5
C11—N4—H4D107.3C6—C7—H7B109.5
Ni2—N4—H4D107.3H7A—C7—H7B109.5
C9—N3—C14116.5 (5)C6—C7—H7C109.5
C9—N3—Ni2104.7 (4)H7A—C7—H7C109.5
C14—N3—Ni2121.3 (4)H7B—C7—H7C109.5
C9—N3—H3A104.1C3—C4—H4A109.5
C14—N3—H3A104.1C3—C4—H4B109.5
Ni2—N3—H3A104.1H4A—C4—H4B109.5
N1—C6—C7110.9 (6)C3—C4—H4C109.5
N1—C6—C5107.7 (5)H4A—C4—H4C109.5
C7—C6—C5111.8 (6)H4B—C4—H4C109.5
N1—C6—C8110.2 (5)N1—C1—C2i109.7 (5)
C7—C6—C8108.9 (5)N1—C1—H1A109.7
C5—C6—C8107.4 (6)C2i—C1—H1A109.7
N4—C11—C13109.7 (6)N1—C1—H1B109.7
N4—C11—C12111.8 (6)C2i—C1—H1B109.7
C13—C11—C12110.3 (6)H1A—C1—H1B108.2
N4—C11—H11108.3N2—C2—C1i108.5 (5)
C13—C11—H11108.3N2—C2—H2A110.0
C12—C11—H11108.3C1i—C2—H2A110.0
C6—C5—C3119.3 (6)N2—C2—H2B110.0
C6—C5—H5A107.5C1i—C2—H2B110.0
C3—C5—H5A107.5H2A—C2—H2B108.4
C6—C5—H5B107.5H2WA—O2W—H2WB109 (3)
C3—C5—H5B107.5H4WB—O4W—H4WA109 (3)
H5A—C5—H5B107.0H3WA—O3W—H3WB107 (3)
N3—C9—C10ii107.7 (5)
O1—W1—O4—Ni1113.9 (5)N4ii—Ni2—N3—C14149.8 (5)
O2—W1—O4—Ni15.5 (6)N4—Ni2—N3—C1430.2 (5)
O3—W1—O4—Ni1125.6 (5)O1ii—Ni2—N3—C1459.9 (5)
O2—W1—O1—Ni273.4 (4)O1—Ni2—N3—C14120.1 (5)
O4—W1—O1—Ni2167.2 (3)C1—N1—C6—C753.1 (7)
O3—W1—O1—Ni246.1 (4)Ni1—N1—C6—C777.3 (6)
W1—O4—Ni1—N287.9 (5)C1—N1—C6—C5175.7 (5)
W1—O4—Ni1—N2i92.1 (5)Ni1—N1—C6—C545.2 (7)
W1—O4—Ni1—N1i2.5 (5)C1—N1—C6—C867.5 (7)
W1—O4—Ni1—N1177.5 (5)Ni1—N1—C6—C8162.1 (5)
W1—O1—Ni2—N3ii117.7 (4)C10—N4—C11—C13178.8 (5)
W1—O1—Ni2—N362.3 (4)Ni2—N4—C11—C1359.7 (6)
W1—O1—Ni2—N4ii147.8 (4)C10—N4—C11—C1256.2 (8)
W1—O1—Ni2—N432.2 (4)Ni2—N4—C11—C12177.7 (5)
N2—Ni1—N1—C1167.3 (4)N1—C6—C5—C367.8 (7)
N2i—Ni1—N1—C112.7 (4)C7—C6—C5—C354.3 (8)
O4—Ni1—N1—C176.4 (4)C8—C6—C5—C3173.6 (6)
O4i—Ni1—N1—C1103.6 (4)C14—N3—C9—C10ii179.4 (5)
N2—Ni1—N1—C632.0 (5)Ni2—N3—C9—C10ii43.7 (6)
N2i—Ni1—N1—C6148.0 (5)C11—N4—C10—C9ii171.2 (5)
O4—Ni1—N1—C658.9 (5)Ni2—N4—C10—C9ii44.5 (6)
O4i—Ni1—N1—C6121.1 (5)C9—N3—C14—C13172.9 (5)
N1i—Ni1—N2—C216.8 (4)Ni2—N3—C14—C1343.5 (7)
N1—Ni1—N2—C2163.2 (4)C9—N3—C14—C1649.2 (8)
O4—Ni1—N2—C268.4 (4)Ni2—N3—C14—C1680.2 (7)
O4i—Ni1—N2—C2111.6 (4)C9—N3—C14—C1569.0 (7)
N1i—Ni1—N2—C3143.2 (5)Ni2—N3—C14—C15161.6 (5)
N1—Ni1—N2—C336.8 (5)N4—C11—C13—C1478.2 (8)
O4—Ni1—N2—C358.0 (4)C12—C11—C13—C14158.4 (6)
O4i—Ni1—N2—C3122.0 (4)N3—C14—C13—C1166.9 (8)
N3ii—Ni2—N4—C1016.1 (4)C16—C14—C13—C1157.8 (8)
N3—Ni2—N4—C10163.9 (4)C15—C14—C13—C11174.6 (6)
O1ii—Ni2—N4—C1070.1 (4)C2—N2—C3—C456.5 (8)
O1—Ni2—N4—C10109.9 (4)Ni1—N2—C3—C4178.5 (5)
N3ii—Ni2—N4—C11143.2 (5)C2—N2—C3—C5179.3 (5)
N3—Ni2—N4—C1136.8 (5)Ni1—N2—C3—C558.7 (7)
O1ii—Ni2—N4—C1157.1 (4)C6—C5—C3—N277.9 (8)
O1—Ni2—N4—C11122.9 (4)C6—C5—C3—C4157.9 (6)
N4ii—Ni2—N3—C915.4 (4)C6—N1—C1—C2i178.6 (5)
N4—Ni2—N3—C9164.6 (4)Ni1—N1—C1—C2i40.5 (6)
O1ii—Ni2—N3—C974.5 (4)C3—N2—C2—C1i170.8 (6)
O1—Ni2—N3—C9105.5 (4)Ni1—N2—C2—C1i43.5 (6)
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O2i0.932.323.253 (7)180
N2—H2C···O4Wi0.932.213.040 (8)149
O4W—H4WB···O3W0.85 (2)2.12 (5)2.720 (8)128 (6)
O4W—H4WA···O30.86 (2)2.05 (3)2.900 (7)168 (6)
O2W—H2WA···O1Wiii0.85 (2)1.94 (2)2.790 (8)175 (7)
O3W—H3WA···O2iv0.87 (2)2.01 (5)2.784 (7)148 (8)
O1W—H1WA···O20.86 (2)1.95 (2)2.801 (7)172 (8)
O2W—H2WB···O30.86 (2)1.99 (3)2.811 (7)160 (8)
O3W—H3WB···O2W0.86 (2)2.08 (4)2.834 (8)145 (6)
O1W—H1WB···O2W0.85 (2)2.10 (4)2.895 (9)157 (7)
C16—H16A···O1ii0.982.403.241 (9)144
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+2, y+2, z+1; (iii) x+1, y+1, z+1; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O2i0.932.323.253 (7)179.7
N2—H2C···O4Wi0.932.213.040 (8)149.0
O4W—H4WB···O3W0.845 (19)2.12 (5)2.720 (8)128 (6)
O4W—H4WA···O30.86 (2)2.05 (3)2.900 (7)168 (6)
O2W—H2WA···O1Wii0.85 (2)1.94 (2)2.790 (8)175 (7)
O3W—H3WA···O2iii0.87 (2)2.01 (5)2.784 (7)148 (8)
O1W—H1WA···O20.86 (2)1.95 (2)2.801 (7)172 (8)
O2W—H2WB···O30.86 (2)1.99 (3)2.811 (7)160 (8)
O3W—H3WB···O2W0.863 (19)2.08 (4)2.834 (8)145 (6)
O1W—H1WB···O2W0.85 (2)2.10 (4)2.895 (9)157 (7)
C16—H16A···O1iv0.982.403.241 (9)143.8
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+1, y+1, z+1; (iii) x1, y, z; (iv) x+2, y+2, z+1.
Acknowledgements top

The authors thank the Science and Technology Planning Project of Hunan Province (2012 F J3050, 2012 N K3067), the Construct Program of the Key Discipline in Hunan Province (2011–76) and the Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province (2012–318) for financial support.

references
References top

Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc, Madison, Wisconsin, USA.

Ou, G. C., Zou, L. S. & Yuan, Z. H. (2011). Z. Kristallogr. New Cryst. Struct. 226, 543–544.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.