organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(pyrrolidin-1-yl)phosphinic (2,4-di­fluoro­benzo­yl)amide

aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad, Iran, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: pourayoubi@um.ac.ir

(Received 27 July 2012; accepted 5 August 2012; online 11 August 2012)

The P atom in the title mol­ecule, C15H20F2N3O2P, is in a distorted tetra­hedral P(O)(N)(N)2 environment. The phosphoryl group and the NH unit adopt a syn orientation with respect to each other. An F atom at position 2 and an H atom at position 6 are found to occupy similar sites in a 0.70:0.30 ratio and were refined with fixed occupancies. The pyrrolidin-1-yl rings are disordered over two sets of sites, with site occupancies of 0.566 (6) and 0.434 (6), and were refined using a two-part model. In the crystal, hydrogen-bonded dimers linked by pairs of N—H⋯O(P) hydrogen bonds generate an R22(8) ring motif.

Related literature

For background and related crystal structures, see: Pourayoubi et al. (2011[Pourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265-o272.], 2012[Pourayoubi, M., Shoghpour, S., Torre-Fernández, L. & García-Granda, S. (2012). Acta Cryst. E68, o270-o271.]). For the preparation of the starting compound, see: Pourayoubi et al. (2012[Pourayoubi, M., Shoghpour, S., Torre-Fernández, L. & García-Granda, S. (2012). Acta Cryst. E68, o270-o271.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H20F2N3O2P

  • Mr = 343.31

  • Monoclinic, P 21 /n

  • a = 9.1028 (3) Å

  • b = 9.9477 (2) Å

  • c = 18.5465 (5) Å

  • β = 92.268 (3)°

  • V = 1678.11 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 173 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.926, Tmax = 0.962

  • 17134 measured reflections

  • 4339 independent reflections

  • 3828 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.108

  • S = 1.03

  • 4339 reflections

  • 300 parameters

  • 25 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.84 (1) 1.95 (1) 2.7845 (14) 170 (2)
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

Following the previous work in our research group on phosphoric triamides (Pourayoubi et al., 2011; 2012), herein, we report the synthesis and crystal structure of the title compound.

In the C(O)NHP(O) skeleton of the title phosphoric triamide (Fig. 1), the phosphoryl group adopts an anti orientation with respect to the carbonyl group; whereas it is in a syn position relative to the N—H unit. The phosphorus atom has a distorted tetrahedral configuration and the P—N bonds in the P(O)[NC4H8]2 fragment are shorter than the other P—N bond in the molecule. The PO and CO bond lengths, and P—N—C bond angles are within the expected values (Pourayoubi et al., 2012). The atoms F1/H1A and F1A/H1 are found to occupy similar sites in the ratio of 70/30 and are refined with fixed occupancies. Both pyrrolidine substituents (rings N2, C8—C11 and N3, C12—C15) are disordered over two sets of sites, with site occupancies of 0.566 (6) and 0.434 (6) and are refined using a two part model.

In the crystal structure, pairs of intermolecular PO···H—N hydrogen bonds (Table 1 and Fig. 2) form hydrogen-bonded dimers as R22(8) ring (Bernstein et al., 1995).

Related literature top

For background, the preparation of the starting compound and related crystal structures, see: Pourayoubi et al. (2011; 2012). For graph-set motifs, see: Bernstein et al. (1995).

Experimental top

2,4-F2—C6H3C(O)NHP(O)Cl2 was prepared according to the literature method (Pourayoubi et al., 2012). To a solution of 2,4-F2–C6H3C(O)NHP(O)Cl2 (2 mmol) in CHCl3 (20 ml), a solution of pyrrolidine (8 mmol) in CHCl3 (10 ml) was added dropwise at 273 K. After 4 h of stirring, the solvent was evaporated at room temperature and the solid was washed with distilled water. Single crystals of the title compound were obtained from a mixture of methanol/acetonitrile (1:1) after slow evaporation at room temperature.

Refinement top

Fluorine atom F1 and hydrogen atom H1A (and F1A and H1) were found to occupy similar sites in the ratio of 70/30 and were refined with fixed occupancies. Rings N2, C8—C11 and N3, C12—C15 were disordered and were refined using a two part model. Hydrogen atom H1N was found from a Fourier difference map and was refined with N—H distance of 0.87 Å and 1.20 × Ueq of N atom. All other hydrogen atoms were placed in calculated positions, CH2 0.99 Å, C(Ar)—H 0.95 Å with 1.20 Ueq of the parent carbon atoms.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. An ORTEP drawing and atom labeling scheme for the title compound. Displacement ellipsoids are given at 50% probability level. Dashed lines indicate disordered (N2, C8—C11 and N3, C12—C15) rings. H1N and H1A atoms are drawn as small spheres of arbitrary radii and other H atoms are omitted for clarity.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the a axis. Dashed lines indicate inversion dimers linked by pairs of N—H···O(P) hydrogen bonds generating R22(8) motif rings. H atoms non-participating in hydrogen-bonding and the minor component of both disordered pyrrolidine substituents (C8A—C11A and C12A—C15A) have been removed for clarity.
Bis(pyrrolidin-1-yl)phosphinic (2,4-difluorobenzoyl)amide top
Crystal data top
C15H20F2N3O2PF(000) = 720
Mr = 343.31Dx = 1.359 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7108 reflections
a = 9.1028 (3) Åθ = 3.3–32.3°
b = 9.9477 (2) ŵ = 0.20 mm1
c = 18.5465 (5) ÅT = 173 K
β = 92.268 (3)°Block, colorless
V = 1678.11 (8) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
4339 independent reflections
Radiation source: Enhance (Mo) X-ray Source3828 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 16.1500 pixels mm-1θmax = 28.7°, θmin = 3.3°
ω scansh = 127
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 1213
Tmin = 0.926, Tmax = 0.962l = 2425
17134 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0515P)2 + 0.7979P]
where P = (Fo2 + 2Fc2)/3
4339 reflections(Δ/σ)max = 0.001
300 parametersΔρmax = 0.38 e Å3
25 restraintsΔρmin = 0.30 e Å3
Crystal data top
C15H20F2N3O2PV = 1678.11 (8) Å3
Mr = 343.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.1028 (3) ŵ = 0.20 mm1
b = 9.9477 (2) ÅT = 173 K
c = 18.5465 (5) Å0.40 × 0.30 × 0.20 mm
β = 92.268 (3)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
4339 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
3828 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.962Rint = 0.017
17134 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04025 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.38 e Å3
4339 reflectionsΔρmin = 0.30 e Å3
300 parameters
Special details top

Experimental. IR (KBr, ν, cm-1): 3067, 2973, 2892, 1685, 1623, 1457, 1258, 1220, 1177, 1129, 1087, 1011, 968, 859, 811. 1H NMR (400.22 MHz, DMSO-d6, 293.9 K, TMS): 1.57 (m, 8H), 3.14 (m, 8H), 7.19 (t, 1H, Ar—H), 7.36 (t, 3J[(H,H),(H,F)] = 10.0 Hz, 1H, Ar—H), 7.66 (m, 1H, Ar—H), 9.26 p.p.m. (s, 1H, N—H). 13C NMR (100.64 MHz, DMSO-d6, 293.9 K, TMS): 26.38 (d, 3J(C,P) = 9.1 Hz, 4C), 46.34 (d, 2J(C,P) = 5.0 Hz, 4C), 105.03 (t, 2J(C,F) = 26.2 Hz, 1C, Ar—C), 112.16 (dd, 2J(C,F) = 21.6 Hz, 4J(C,F) = 3.5 Hz, 1C, Ar—C), 121.61 (m, 1C, Ar—C), 132.22 (dd, 3J(C,F) = 4.0 Hz and 11.1 Hz, 1C, Ar—C), 160.29 (d, 3J(C,F) = 13.6, 1J(C,F) = 252.1 Hz, 1C, Ar—C), 164.06 (d, 3J(C,F) = 12.1, 1J(C,F) = 251.1 Hz, 1C, Ar—C), 165.37 p.p.m. (s, 1C, C(O)). 31P{1H} NMR (162.01 MHz, DMSO-d6, 293.9 K, 85% H3PO4): 5.66 p.p.m. (s).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.59836 (4)0.47159 (3)0.114620 (16)0.02308 (10)
F10.59877 (19)1.01499 (17)0.13543 (9)0.0434 (4)0.70
F1A0.2448 (4)0.6940 (3)0.0502 (2)0.0405 (8)0.30
F20.17516 (14)1.14989 (11)0.00596 (7)0.0617 (3)
O10.53714 (12)0.37387 (9)0.06124 (5)0.0316 (2)
O30.57983 (14)0.75048 (11)0.18642 (6)0.0425 (3)
N10.53996 (13)0.62346 (11)0.08554 (6)0.0264 (2)
H1N0.5064 (18)0.6275 (17)0.0427 (7)0.032*
N20.54212 (13)0.44054 (13)0.19479 (6)0.0317 (3)
N30.77636 (14)0.47924 (12)0.12213 (7)0.0326 (3)
C10.47337 (16)0.98082 (14)0.09944 (7)0.0289 (3)
H1A0.571 (4)1.003 (9)0.117 (4)0.035*0.30
C20.38927 (18)1.08460 (14)0.07115 (8)0.0351 (3)
H2A0.41841.17580.07700.042*
C30.26117 (18)1.05011 (15)0.03401 (9)0.0365 (3)
C40.21545 (16)0.91998 (16)0.02352 (8)0.0354 (3)
H4A0.12600.90000.00240.042*
C50.30424 (15)0.81899 (14)0.05208 (7)0.0285 (3)
H10.278 (4)0.7283 (15)0.0411 (18)0.034*0.70
C60.43458 (14)0.84645 (12)0.09091 (6)0.0239 (2)
C70.52591 (15)0.73730 (13)0.12577 (7)0.0264 (3)
C80.6225 (6)0.4742 (8)0.2636 (3)0.0272 (17)0.566 (6)
H8A0.68060.55770.25910.033*0.566 (6)
H8B0.68880.40020.27960.033*0.566 (6)
C90.4996 (10)0.4928 (11)0.3144 (4)0.065 (2)0.566 (6)
H9A0.46660.58770.31460.078*0.566 (6)
H9B0.53140.46670.36410.078*0.566 (6)
C100.3769 (6)0.4013 (8)0.2855 (2)0.0748 (16)0.566 (6)
H10A0.28040.43040.30280.090*0.566 (6)
H10B0.39480.30690.30030.090*0.566 (6)
C110.3829 (8)0.4168 (11)0.2035 (4)0.0489 (19)0.566 (6)
H11A0.34910.33410.17810.059*0.566 (6)
H11B0.32310.49400.18580.059*0.566 (6)
C8A0.6167 (14)0.4736 (16)0.2641 (6)0.063 (5)0.434 (6)
H8AA0.65650.56620.26320.076*0.434 (6)
H8AB0.69870.41030.27470.076*0.434 (6)
C9A0.5017 (15)0.4612 (18)0.3196 (8)0.085 (5)0.434 (6)
H9AA0.51800.52740.35890.102*0.434 (6)
H9AB0.50030.36960.34040.102*0.434 (6)
C10A0.3614 (6)0.4907 (8)0.2760 (3)0.0644 (17)0.434 (6)
H10C0.35060.58750.26460.077*0.434 (6)
H10D0.27310.45830.30030.077*0.434 (6)
C11A0.3941 (13)0.4072 (19)0.2095 (7)0.079 (5)0.434 (6)
H11C0.38420.30990.21960.095*0.434 (6)
H11D0.32670.43130.16830.095*0.434 (6)
C120.8722 (3)0.5949 (3)0.1329 (3)0.0476 (10)0.566 (6)
H12A0.83060.65920.16730.057*0.566 (6)
H12B0.88730.64170.08660.057*0.566 (6)
C131.0112 (5)0.5376 (5)0.1622 (6)0.118 (3)0.566 (6)
H13A1.09490.58340.14020.142*0.566 (6)
H13B1.01910.55320.21500.142*0.566 (6)
C141.0185 (4)0.3994 (5)0.1484 (3)0.0579 (11)0.566 (6)
H14A1.06500.35060.18980.069*0.566 (6)
H14B1.07400.38100.10470.069*0.566 (6)
C150.8656 (9)0.3626 (9)0.1378 (6)0.065 (3)0.566 (6)
H15A0.85490.29790.09730.078*0.566 (6)
H15B0.83140.31810.18180.078*0.566 (6)
C12A0.8614 (5)0.5743 (6)0.0805 (4)0.0635 (17)0.434 (6)
H12C0.85120.66700.09910.076*0.434 (6)
H12D0.82990.57250.02880.076*0.434 (6)
C13A1.0174 (6)0.5242 (7)0.0916 (6)0.081 (2)0.434 (6)
H13C1.07570.54180.04870.098*0.434 (6)
H13D1.06680.56670.13430.098*0.434 (6)
C14A0.9971 (6)0.3782 (7)0.1029 (6)0.082 (2)0.434 (6)
H14C1.08030.34330.13350.099*0.434 (6)
H14D0.99820.33160.05580.099*0.434 (6)
C15A0.8561 (9)0.3470 (9)0.1381 (4)0.0336 (18)0.434 (6)
H15C0.87100.33100.19060.040*0.434 (6)
H15D0.80460.26940.11530.040*0.434 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.02981 (18)0.02096 (16)0.01801 (16)0.00199 (12)0.00475 (11)0.00008 (11)
F10.0477 (8)0.0307 (7)0.0504 (10)0.0092 (6)0.0175 (6)0.0046 (6)
F1A0.0350 (18)0.0305 (16)0.055 (2)0.0053 (12)0.0065 (14)0.0031 (14)
F20.0686 (7)0.0373 (6)0.0781 (8)0.0235 (5)0.0103 (6)0.0113 (5)
O10.0503 (6)0.0211 (4)0.0227 (4)0.0007 (4)0.0091 (4)0.0013 (3)
O30.0668 (8)0.0314 (5)0.0276 (5)0.0033 (5)0.0184 (5)0.0070 (4)
N10.0376 (6)0.0214 (5)0.0193 (5)0.0052 (4)0.0090 (4)0.0025 (4)
N20.0337 (6)0.0406 (7)0.0205 (5)0.0028 (5)0.0027 (4)0.0009 (5)
N30.0317 (6)0.0307 (6)0.0349 (6)0.0038 (5)0.0034 (5)0.0060 (5)
C10.0343 (7)0.0247 (6)0.0277 (6)0.0036 (5)0.0024 (5)0.0037 (5)
C20.0492 (9)0.0203 (6)0.0365 (7)0.0001 (6)0.0090 (6)0.0004 (5)
C30.0420 (8)0.0285 (7)0.0393 (8)0.0126 (6)0.0042 (6)0.0053 (6)
C40.0319 (7)0.0350 (7)0.0388 (8)0.0057 (6)0.0031 (6)0.0000 (6)
C50.0308 (7)0.0235 (6)0.0310 (6)0.0001 (5)0.0001 (5)0.0020 (5)
C60.0300 (6)0.0206 (6)0.0213 (5)0.0015 (5)0.0021 (5)0.0020 (4)
C70.0334 (7)0.0222 (6)0.0232 (6)0.0002 (5)0.0038 (5)0.0023 (5)
C80.031 (2)0.040 (5)0.011 (3)0.004 (2)0.002 (2)0.001 (3)
C90.073 (5)0.094 (4)0.029 (3)0.020 (3)0.015 (3)0.026 (3)
C100.073 (3)0.108 (5)0.045 (2)0.016 (3)0.023 (2)0.007 (3)
C110.027 (2)0.085 (5)0.035 (3)0.010 (2)0.014 (2)0.001 (3)
C8A0.096 (8)0.054 (9)0.038 (7)0.004 (6)0.025 (6)0.005 (6)
C9A0.073 (7)0.150 (12)0.033 (4)0.011 (6)0.008 (4)0.025 (6)
C10A0.057 (3)0.091 (5)0.047 (3)0.014 (3)0.020 (2)0.007 (3)
C11A0.065 (6)0.134 (12)0.037 (4)0.022 (6)0.017 (4)0.003 (5)
C120.0330 (15)0.0340 (15)0.076 (3)0.0070 (11)0.0001 (15)0.0075 (16)
C130.038 (2)0.063 (3)0.249 (10)0.003 (2)0.038 (4)0.015 (4)
C140.0310 (16)0.061 (2)0.080 (3)0.0046 (15)0.0115 (18)0.014 (2)
C150.048 (4)0.052 (4)0.095 (5)0.010 (3)0.002 (3)0.036 (3)
C12A0.043 (2)0.053 (3)0.095 (5)0.009 (2)0.004 (3)0.019 (3)
C13A0.031 (2)0.074 (4)0.139 (7)0.005 (2)0.009 (3)0.024 (4)
C14A0.030 (2)0.069 (4)0.148 (8)0.013 (2)0.000 (4)0.003 (5)
C15A0.029 (3)0.033 (3)0.037 (3)0.015 (2)0.014 (2)0.009 (3)
Geometric parameters (Å, º) top
P1—O11.4805 (10)C10—H10A0.9900
P1—N21.6213 (12)C10—H10B0.9900
P1—N31.6226 (13)C11—H11A0.9900
P1—N11.6832 (11)C11—H11B0.9900
F1—C11.3431 (19)C8A—C9A1.502 (14)
F1—H1A0.43 (5)C8A—H8AA0.9900
F1A—C51.356 (3)C8A—H8AB0.9900
F1A—H10.49 (2)C9A—C10A1.513 (14)
F2—C31.3552 (17)C9A—H9AA0.9900
O3—C71.2165 (16)C9A—H9AB0.9900
N1—C71.3649 (16)C10A—C11A1.526 (13)
N1—H1N0.841 (13)C10A—H10C0.9900
N2—C11A1.425 (11)C10A—H10D0.9900
N2—C8A1.467 (11)C11A—H11C0.9900
N2—C111.484 (6)C11A—H11D0.9900
N2—C81.484 (6)C12—C131.472 (5)
N3—C151.440 (9)C12—H12A0.9900
N3—C121.453 (3)C12—H12B0.9900
N3—C12A1.462 (5)C13—C141.400 (7)
N3—C15A1.526 (8)C13—H13A0.9900
C1—C21.377 (2)C13—H13B0.9900
C1—C61.3900 (18)C14—C151.445 (9)
C1—H1A0.957 (10)C14—H14A0.9900
C2—C31.374 (2)C14—H14B0.9900
C2—H2A0.9500C15—H15A0.9900
C3—C41.371 (2)C15—H15B0.9900
C4—C51.3817 (19)C12A—C13A1.512 (7)
C4—H4A0.9500C12A—H12C0.9900
C5—C61.3905 (18)C12A—H12D0.9900
C5—H10.953 (10)C13A—C14A1.480 (8)
C6—C71.4985 (17)C13A—H13C0.9900
C8—C91.503 (8)C13A—H13D0.9900
C8—H8A0.9900C14A—C15A1.495 (10)
C8—H8B0.9900C14A—H14C0.9900
C9—C101.521 (9)C14A—H14D0.9900
C9—H9A0.9900C15A—H15C0.9900
C9—H9B0.9900C15A—H15D0.9900
C10—C111.532 (9)
O1—P1—N2111.35 (6)H11A—C11—H11B109.3
O1—P1—N3115.87 (7)N2—C8A—C9A105.7 (10)
N2—P1—N3106.30 (6)N2—C8A—H8AA110.6
O1—P1—N1105.63 (5)C9A—C8A—H8AA110.6
N2—P1—N1110.96 (6)N2—C8A—H8AB110.6
N3—P1—N1106.68 (6)C9A—C8A—H8AB110.6
C7—N1—P1127.22 (9)H8AA—C8A—H8AB108.7
C7—N1—H1N116.0 (12)C8A—C9A—C10A102.4 (10)
P1—N1—H1N116.3 (12)C8A—C9A—H9AA111.3
C11A—N2—C8A107.0 (7)C10A—C9A—H9AA111.3
C8A—N2—C11111.2 (6)C8A—C9A—H9AB111.3
C11A—N2—C8109.0 (6)C10A—C9A—H9AB111.3
C11—N2—C8113.1 (4)H9AA—C9A—H9AB109.2
C11A—N2—P1123.8 (6)C9A—C10A—C11A98.0 (9)
C8A—N2—P1127.5 (5)C9A—C10A—H10C112.2
C11—N2—P1118.4 (3)C11A—C10A—H10C112.2
C8—N2—P1125.6 (2)C9A—C10A—H10D112.2
C15—N3—C12106.2 (4)C11A—C10A—H10D112.2
C15—N3—C12A108.8 (4)H10C—C10A—H10D109.8
C12—N3—C15A112.2 (3)N2—C11A—C10A104.1 (9)
C12A—N3—C15A113.7 (4)N2—C11A—H11C110.9
C15—N3—P1122.2 (4)C10A—C11A—H11C110.9
C12—N3—P1129.90 (15)N2—C11A—H11D110.9
C12A—N3—P1122.2 (2)C10A—C11A—H11D110.9
C15A—N3—P1116.2 (3)H11C—C11A—H11D108.9
F1—C1—C2116.64 (14)N3—C12—C13104.3 (3)
F1—C1—C6120.47 (14)N3—C12—H12A110.9
C2—C1—C6122.88 (13)C13—C12—H12A110.9
C2—C1—H1A117 (5)N3—C12—H12B110.9
C6—C1—H1A119 (5)C13—C12—H12B110.9
C3—C2—C1116.86 (13)H12A—C12—H12B108.9
C3—C2—H2A121.6C14—C13—C12111.0 (4)
C1—C2—H2A121.6C14—C13—H13A109.4
F2—C3—C4118.00 (15)C12—C13—H13A109.4
F2—C3—C2118.39 (14)C14—C13—H13B109.4
C4—C3—C2123.62 (13)C12—C13—H13B109.4
C3—C4—C5117.54 (14)H13A—C13—H13B108.0
C3—C4—H4A121.2C13—C14—C15102.8 (5)
C5—C4—H4A121.2C13—C14—H14A111.2
F1A—C5—C4115.48 (19)C15—C14—H14A111.2
F1A—C5—C6121.66 (19)C13—C14—H14B111.2
C4—C5—C6122.00 (13)C15—C14—H14B111.2
C4—C5—H1118 (2)H14A—C14—H14B109.1
C6—C5—H1120 (2)N3—C15—C14110.8 (6)
C1—C6—C5117.10 (12)N3—C15—H15A109.5
C1—C6—C7120.90 (12)C14—C15—H15A109.5
C5—C6—C7121.91 (11)N3—C15—H15B109.5
O3—C7—N1123.49 (12)C14—C15—H15B109.5
O3—C7—C6121.16 (12)H15A—C15—H15B108.1
N1—C7—C6115.32 (11)N3—C12A—C13A103.2 (4)
N2—C8—C9102.3 (5)N3—C12A—H12C111.1
N2—C8—H8A111.3C13A—C12A—H12C111.1
C9—C8—H8A111.3N3—C12A—H12D111.1
N2—C8—H8B111.3C13A—C12A—H12D111.1
C9—C8—H8B111.3H12C—C12A—H12D109.1
H8A—C8—H8B109.2C14A—C13A—C12A102.8 (4)
C8—C9—C10105.1 (6)C14A—C13A—H13C111.2
C8—C9—H9A110.7C12A—C13A—H13C111.2
C10—C9—H9A110.7C14A—C13A—H13D111.2
C8—C9—H9B110.7C12A—C13A—H13D111.2
C10—C9—H9B110.7H13C—C13A—H13D109.1
H9A—C9—H9B108.8C13A—C14A—C15A112.3 (5)
C9—C10—C11103.6 (5)C13A—C14A—H14C109.1
C9—C10—H10A111.0C15A—C14A—H14C109.1
C11—C10—H10A111.0C13A—C14A—H14D109.1
C9—C10—H10B111.0C15A—C14A—H14D109.1
C11—C10—H10B111.0H14C—C14A—H14D107.9
H10A—C10—H10B109.0C14A—C15A—N398.4 (6)
N2—C11—C10101.4 (6)C14A—C15A—H15C112.1
N2—C11—H11A111.5N3—C15A—H15C112.1
C10—C11—H11A111.5C14A—C15A—H15D112.1
N2—C11—H11B111.5N3—C15A—H15D112.1
C10—C11—H11B111.5H15C—C15A—H15D109.7
O1—P1—N1—C7157.09 (12)C5—C6—C7—O3137.01 (15)
N2—P1—N1—C736.30 (14)C1—C6—C7—N1142.04 (13)
N3—P1—N1—C779.07 (13)C5—C6—C7—N141.38 (18)
O1—P1—N2—C11A43.6 (9)C11A—N2—C8—C914.5 (11)
N3—P1—N2—C11A170.6 (9)C8A—N2—C8—C98 (27)
N1—P1—N2—C11A73.7 (9)C11—N2—C8—C99.0 (9)
O1—P1—N2—C8A153.3 (8)P1—N2—C8—C9151.5 (5)
N3—P1—N2—C8A26.3 (8)N2—C8—C9—C1029.3 (9)
N1—P1—N2—C8A89.3 (8)C8—C9—C10—C1139.2 (10)
O1—P1—N2—C1148.0 (5)C11A—N2—C11—C1037 (7)
N3—P1—N2—C11175.0 (5)C8A—N2—C11—C1014.5 (10)
N1—P1—N2—C1169.4 (5)C8—N2—C11—C1014.4 (8)
O1—P1—N2—C8152.4 (4)P1—N2—C11—C10176.5 (4)
N3—P1—N2—C825.4 (4)C9—C10—C11—N231.8 (9)
N1—P1—N2—C890.2 (4)C11A—N2—C8A—C9A1.6 (15)
O1—P1—N3—C1555.4 (5)C11—N2—C8A—C9A3.8 (13)
N2—P1—N3—C1568.9 (5)C8—N2—C8A—C9A175 (28)
N1—P1—N3—C15172.6 (5)P1—N2—C8A—C9A163.7 (8)
O1—P1—N3—C12141.4 (3)N2—C8A—C9A—C10A27.4 (14)
N2—P1—N3—C1294.3 (3)C8A—C9A—C10A—C11A43.4 (14)
N1—P1—N3—C1224.2 (3)C8A—N2—C11A—C10A30.0 (14)
O1—P1—N3—C12A92.4 (4)C11—N2—C11A—C10A100 (8)
N2—P1—N3—C12A143.3 (4)C8—N2—C11A—C10A30.2 (13)
N1—P1—N3—C12A24.8 (4)P1—N2—C11A—C10A136.0 (7)
O1—P1—N3—C15A54.8 (3)C9A—C10A—C11A—N245.7 (14)
N2—P1—N3—C15A69.5 (3)C15—N3—C12—C135.9 (7)
N1—P1—N3—C15A172.0 (3)C12A—N3—C12—C13105.9 (6)
F1—C1—C2—C3179.74 (15)C15A—N3—C12—C135.0 (6)
C6—C1—C2—C30.9 (2)P1—N3—C12—C13159.3 (5)
C1—C2—C3—F2179.47 (13)N3—C12—C13—C1418.5 (8)
C1—C2—C3—C40.7 (2)C12—C13—C14—C1522.6 (9)
F2—C3—C4—C5179.73 (14)C12—N3—C15—C147.8 (8)
C2—C3—C4—C50.1 (2)C12A—N3—C15—C1434.0 (8)
C3—C4—C5—F1A170.3 (2)P1—N3—C15—C14174.4 (4)
C3—C4—C5—C60.8 (2)C13—C14—C15—N318.6 (9)
F1—C1—C6—C5179.07 (14)C15—N3—C12A—C13A15.8 (7)
C2—C1—C6—C50.2 (2)C12—N3—C12A—C13A77.2 (6)
F1—C1—C6—C74.2 (2)C15A—N3—C12A—C13A19.4 (7)
C2—C1—C6—C7176.98 (13)P1—N3—C12A—C13A167.4 (4)
F1A—C5—C6—C1169.5 (2)N3—C12A—C13A—C14A28.8 (8)
C4—C5—C6—C10.6 (2)C12A—C13A—C14A—C15A30.9 (10)
F1A—C5—C6—C77.2 (3)C13A—C14A—C15A—N318.5 (8)
C4—C5—C6—C7176.09 (13)C15—N3—C15A—C14A33 (6)
P1—N1—C7—O314.1 (2)C12—N3—C15A—C14A42.0 (5)
P1—N1—C7—C6164.21 (10)C12A—N3—C15A—C14A1.4 (6)
C1—C6—C7—O339.6 (2)P1—N3—C15A—C14A151.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (1)1.95 (1)2.7845 (14)170 (2)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H20F2N3O2P
Mr343.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)9.1028 (3), 9.9477 (2), 18.5465 (5)
β (°) 92.268 (3)
V3)1678.11 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.926, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
17134, 4339, 3828
Rint0.017
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.108, 1.03
No. of reflections4339
No. of parameters300
No. of restraints25
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.30

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.841 (13)1.953 (14)2.7845 (14)169.9 (16)
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPourayoubi, M., Shoghpour, S., Torre-Fernández, L. & García-Granda, S. (2012). Acta Cryst. E68, o270–o271.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265–o272.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds