organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2702-o2703

N-(2-Benzoyl­eth­yl)propan-2-aminium chloride

aDepartment of Science Education, Faculty of Education, Kastamonu University, 37200 Kastamonu, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Atatürk University, 25240 Erzurum, Turkey, and dDepartment of Chemistry, Faculty of Sciences, Atatürk University, 25240 Erzurum, Turkey
*Correspondence e-mail: aaydin@kastamonu.edu.tr

(Received 31 July 2012; accepted 8 August 2012; online 11 August 2012)

In the title salt, C12H18NO+·Cl, N—H⋯Cl inter­actions between the free chloride anions and the organic cations connect the mol­ecules into hydrogen-bond dimers, forming a R22(8) motif. The dimers are linked by C—H⋯O hydrogen bonds into chains extending along [301]. The carbonyl group is co-planar with the phenyl ring [C—C—C=O torsion angle = −3.3 (7)°]. The side chain has an E conformation.

Related literature

For the details of the pharmacological effects of Mannich bases and for their synthesis, see: Dimmock & Kumar (1997[Dimmock, J. R. & Kumar, P. (1997). Curr. Med. Chem. 4, 1-22.]); Gul et al. (2004[Gul, H. I., Calis, U. & Vepsalainen, J. (2004). Arzneim. Forsch. 54, 359-364.], 2005a[Gul, M., Atalay, M., Gul, H. I., Nakao, C., Lappalainen, J. & Hanninen, O. (2005a). Toxicol. Vitro, 19, 573-580.],b[Gul, H. I., Sahin, F., Gul, M., Ozturk, S. & Yerdelen, K. O. (2005b). Arch. Pharm. 338, 335-338.], 2009[Gul, H. I., Suleyman, H. & Gul, M. (2009). Pharm. Biol. 47, 968-972.]); Mete et al. (2011a[Mete, E., Gul, H. I., Bilginer, S., Algul, O., Topaloglu, M. E., Gulluce, M. & Kazaz, C. (2011a). Molecules, 16, 4660-4671.],b[Mete, E., Gul, H. I., Cetin-Atalay, R., Das, U., Sahin, E., Gul, M., Kazaz, C. & Dimmock, J. R. (2011b). Arch. Pharm. Chem. Life Sci. 344, 333-339.]); Kucuk­oglu et al. (2011[Kucukoglu, K., Gul, M., Atalay, M., Mete, E., Kazaz, C., Hanninen, O. & Gul, H. I. (2011). Arzneim. Forsch. Drug Res. 61, 366-371.]); Canturk et al. (2008[Canturk, P., Kucukoglu, K., Topcu, Z., Gul, M. & Gul, H. I. (2008). Arzneim. Forsch. 58, 686-691.]); Chen et al. (1991[Chen, H. T., Jing, Y. K., Ji, Z. Z. & Zhang, B. F. (1991). YaoXueXueBao, 26, 183-192.]); Gul (2005[Gul, M. (2005). PhD thesis, Kuopio University, Finland.]); Suleyman et al. (2007[Suleyman, H., Gul, H. I., Gul, M., Alkan, M. & Gocer, F. (2007). Biol. Pharm. Bull. 30, 63-67.]); Plati et al. (1949[Plati, J. T., Schmidt, R. A. & Wenner, W. (1949). J. Org. Chem. 14, 873-878..]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]). For some related structures, see: Abonia et al. (2011[Abonia, R., Schollmeyer, D. & Arteaga, D. (2011). Acta Cryst. E67, o2969.]); Tuzina et al. (2006[Tuzina, P., Fischer, A. & Somfai, P. (2006). Acta Cryst. E62, o2971-o2972.]).

[Scheme 1]

Experimental

Crystal data
  • C12H18NO+·Cl

  • Mr = 227.72

  • Monoclinic, P 21 /n

  • a = 8.036 (5) Å

  • b = 8.656 (5) Å

  • c = 18.403 (5) Å

  • β = 97.174 (5)°

  • V = 1270.1 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 294 K

  • 0.16 × 0.13 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.958, Tmax = 0.967

  • 15799 measured reflections

  • 2334 independent reflections

  • 1204 reflections with I > 2σ(I)

  • Rint = 0.116

Refinement
  • R[F2 > 2σ(F2)] = 0.075

  • wR(F2) = 0.224

  • S = 1.05

  • 2334 reflections

  • 145 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Cl1i 0.87 (4) 2.30 (4) 3.141 (4) 163 (4)
N1—H2N⋯Cl1 0.87 (3) 2.27 (3) 3.131 (4) 169 (4)
C10—H10⋯O1ii 0.98 2.56 3.284 (7) 130
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+2.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Mannich bases are generally formed by the reaction between formaldehyde, a secondary amine and a compound containing reactive hydrogen atoms. On occasion, aldehydes other than formaldehyde may be employed and the secondary amine may be replaced by ammonia and primary amines. This process is known as the Mannich reaction (Dimmock & Kumar, 1997).

Mannich bases display varied biological activities such as antimicrobial (Gul et al., 2005; Mete et al., 2011a), cytotoxic (Gul et al., 2005; Mete et al., 2011b; Kucukoglu et al., 2011; Canturk et al., 2008), anticancer (Dimmock & Kumar, 1997; Chen et al., 1991; Gul, 2005), antiinflammatory (Suleyman et al., 2007; Gul et al., 2009), anticonvulsant (Gul et al., 2004) and DNA topoisomerase I inhibiting properties (Canturk et al., 2008).

The geometric parameters of the title salt (I) in Fig. 1 are within the range of expected values for this type of compound (Allen et al.,1987; Abonia et al., 2011; Tuzina et al., 2006).

The N—H···Cl hydrogen-bonding interactions between the free chloride anion and the organic cation link the molecules into hydrogen-bond dimers, forming an R22(8) motif (Bernstein et al., 1995; Etter, 1990). The dimers are linked by C—H···O hydrogen bonds, into chains extended along the [301] direction (Table 1, Fig. 2).

Related literature top

For the details of the pharmacological effects of Mannich bases and for their synthesis, see: Dimmock & Kumar (1997); Gul et al. (2004, 2005a,b, 2009); Mete et al. (2011a,b); Kucukoglu et al. (2011); Canturk et al. (2008); Chen et al. (1991); Gul (2005); Suleyman et al. (2007); Plati et al. (1949). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter (1990). For some related structures, see: Abonia et al. (2011); Tuzina et al. (2006).

Experimental top

A mixture of the appropriate ketone (50 mmol), paraformaldehyde (50 mmol), and isopropylamine hydrochloride (27 mmol) was heated in an oil bath at 403 K. The reaction vessel was then removed from the oil bath and when the temperature of the mixture dropped to 338 K, ethyl acetate (40–80 ml) was added. The mixture was stirred at room temperature for 24 h and the resultant precipitate was collected and recrystallized from ether/methanol. The melting point was 445–447 K (lit. Plati et al., 1949 m.p. 447–449 K) and the yield was 55% (Mete et al., 2011b).

1H-NMR δ 1.49 (d, J = 6.6 Hz, 6H, CH(CH3)2), 3.36–3.42 (m, 3H, CH(CH3)2 and 2 x H-2), 3.77 (t, J = 7.5 Hz, 2H, 2 x H-3), 7.36 (t, J = 7.3 Hz, 2H, H-3'/5'), 7.51 (t, J = 7.3 Hz, 1H, H-4'), 7.90 (d, J = 7.3 Hz, 2H, H-2'/6'), 9.56 (brs, 2H, NH2+); 13C-NMR δ 19.4 (CH(CH3)2), 35.2, 40.3, 51.2, 128.3, 128.9, 134.0, 136.0, 196.9; MS (EI) m/z (%): 176.2 (M–CH3)+, 192.1 (M+H)+. IR (KBr, cm-1): 2453 (NH2+), 1678 (CO). Calcd for C12H18ClNO (227.73): C, 63.29; H, 7.97; N, 6.15. Found: C, 63.26; H, 8.18; N, 6.23.

Refinement top

H atoms of the NH2 group were located in a difference Fourier map. Their positions refined with restraints on the N—H bond lengths of 0.86 (2) Å, while their thermal parameters were refined as riding with Uiso(H) = 1.2Ueq(N). H atoms bound to C atoms were positioned geometrically, with C—H = 0.93(aromatic), 0.97(methylene) and 0.98 Å (methine), and refined as riding with Uiso(H) = 1.5Ueq(O) for methyl H and 1.2Ueq(C) for the others.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing and hydrogen bonding of (I) viewed down the b axis. H atoms not involved in hydrogen bondings are omitted for the sake of clarity.
N-(2-Benzoylethyl)propan-2-aminium chloride top
Crystal data top
C12H18NO+·ClF(000) = 488
Mr = 227.72Dx = 1.191 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3090 reflections
a = 8.036 (5) Åθ = 2.2–26.4°
b = 8.656 (5) ŵ = 0.28 mm1
c = 18.403 (5) ÅT = 294 K
β = 97.174 (5)°Block, white
V = 1270.1 (11) Å30.16 × 0.13 × 0.12 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
2334 independent reflections
Radiation source: Sealed Tube1204 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.116
Detector resolution: 10.0000 pixels mm-1θmax = 25.5°, θmin = 2.2°
dtprofit.ref scansh = 99
Absorption correction: multi-scan
(Blessing, 1995)
k = 910
Tmin = 0.958, Tmax = 0.967l = 2222
15799 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.075Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.224H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0971P)2 + 0.2008P]
where P = (Fo2 + 2Fc2)/3
2334 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.49 e Å3
2 restraintsΔρmin = 0.19 e Å3
Crystal data top
C12H18NO+·ClV = 1270.1 (11) Å3
Mr = 227.72Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.036 (5) ŵ = 0.28 mm1
b = 8.656 (5) ÅT = 294 K
c = 18.403 (5) Å0.16 × 0.13 × 0.12 mm
β = 97.174 (5)°
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
2334 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
1204 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.967Rint = 0.116
15799 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0752 restraints
wR(F2) = 0.224H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.49 e Å3
2334 reflectionsΔρmin = 0.19 e Å3
145 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2324 (5)0.4012 (5)1.02649 (18)0.1262 (18)
N10.3982 (4)0.4236 (4)0.8222 (2)0.0689 (14)
C10.1184 (6)0.1831 (6)0.9398 (3)0.090 (2)
C20.2586 (7)0.1067 (7)0.9575 (4)0.114 (3)
C30.2887 (7)0.0999 (7)1.0303 (4)0.110 (3)
C40.1824 (7)0.1686 (8)1.0833 (3)0.103 (3)
C50.0433 (7)0.2458 (6)1.0658 (3)0.088 (2)
C60.0099 (6)0.2528 (5)0.9940 (2)0.0722 (17)
C70.1440 (6)0.3359 (6)0.9778 (3)0.0828 (19)
C80.1897 (5)0.3369 (5)0.9007 (2)0.0749 (17)
C90.3548 (5)0.4217 (5)0.8982 (2)0.0772 (17)
C100.5624 (6)0.5009 (5)0.8146 (3)0.0850 (19)
C110.6181 (8)0.4545 (7)0.7460 (4)0.133 (3)
C120.5461 (6)0.6727 (6)0.8219 (3)0.109 (3)
Cl10.40593 (14)0.07597 (13)0.77578 (6)0.0828 (5)
H10.097000.187700.891300.1080*
H1N0.321 (5)0.453 (5)0.788 (2)0.0990*
H20.332400.060200.921000.1370*
H2N0.402 (6)0.332 (3)0.803 (2)0.0990*
H30.382600.047801.042500.1320*
H40.203500.163701.131800.1240*
H50.028800.293501.102400.1060*
H8A0.101700.387500.868300.0900*
H8B0.199800.231600.883800.0900*
H9A0.345100.526800.915500.0930*
H9B0.443100.370500.930100.0930*
H100.645300.464600.854600.1020*
H11A0.535800.484400.706100.1990*
H11B0.632600.344400.745600.1990*
H11C0.722900.504000.740800.1990*
H12A0.650500.721100.815000.1630*
H12B0.518000.697200.869700.1630*
H12C0.459300.709800.785400.1630*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.151 (3)0.161 (4)0.065 (2)0.063 (3)0.007 (2)0.016 (2)
N10.065 (2)0.066 (2)0.076 (3)0.0063 (19)0.0105 (16)0.0006 (18)
C10.093 (4)0.099 (4)0.083 (3)0.006 (3)0.027 (3)0.010 (3)
C20.082 (4)0.143 (6)0.119 (5)0.017 (3)0.022 (3)0.019 (4)
C30.087 (4)0.138 (5)0.113 (5)0.003 (3)0.039 (4)0.015 (4)
C40.091 (4)0.136 (5)0.086 (4)0.025 (4)0.028 (3)0.020 (3)
C50.094 (4)0.102 (4)0.069 (3)0.013 (3)0.012 (3)0.003 (3)
C60.078 (3)0.072 (3)0.068 (3)0.009 (2)0.015 (2)0.002 (2)
C70.097 (4)0.086 (3)0.065 (3)0.002 (3)0.009 (2)0.003 (2)
C80.084 (3)0.075 (3)0.067 (3)0.007 (2)0.015 (2)0.001 (2)
C90.081 (3)0.078 (3)0.072 (3)0.004 (2)0.007 (2)0.002 (2)
C100.069 (3)0.069 (3)0.118 (4)0.005 (2)0.016 (3)0.003 (3)
C110.127 (5)0.131 (5)0.151 (6)0.037 (4)0.061 (4)0.027 (4)
C120.090 (4)0.069 (3)0.168 (6)0.015 (3)0.021 (3)0.002 (3)
Cl10.0792 (8)0.0703 (8)0.0974 (9)0.0004 (6)0.0050 (6)0.0080 (6)
Geometric parameters (Å, º) top
O1—C71.212 (6)C1—H10.9300
N1—C91.483 (5)C2—H20.9300
N1—C101.502 (6)C3—H30.9300
N1—H1N0.87 (4)C4—H40.9300
N1—H2N0.87 (3)C5—H50.9300
C1—C21.380 (8)C8—H8A0.9700
C1—C61.379 (7)C8—H8B0.9700
C2—C31.392 (10)C9—H9A0.9700
C3—C41.352 (9)C9—H9B0.9700
C4—C51.375 (8)C10—H100.9800
C5—C61.382 (7)C11—H11A0.9600
C6—C71.493 (7)C11—H11B0.9600
C7—C81.509 (7)C11—H11C0.9600
C8—C91.522 (6)C12—H12A0.9600
C10—C121.500 (7)C12—H12B0.9600
C10—C111.448 (9)C12—H12C0.9600
C9—N1—C10113.9 (3)C5—C4—H4120.00
C10—N1—H1N111 (3)C4—C5—H5120.00
C9—N1—H1N117 (3)C6—C5—H5120.00
C9—N1—H2N113 (2)C7—C8—H8A110.00
C10—N1—H2N107 (3)C7—C8—H8B110.00
H1N—N1—H2N92 (4)C9—C8—H8A110.00
C2—C1—C6120.0 (5)C9—C8—H8B110.00
C1—C2—C3119.5 (6)H8A—C8—H8B108.00
C2—C3—C4120.4 (5)N1—C9—H9A110.00
C3—C4—C5120.3 (5)N1—C9—H9B110.00
C4—C5—C6120.4 (5)C8—C9—H9A110.00
C5—C6—C7118.5 (4)C8—C9—H9B110.00
C1—C6—C7122.1 (4)H9A—C9—H9B108.00
C1—C6—C5119.4 (5)N1—C10—H10108.00
O1—C7—C6120.1 (5)C11—C10—H10108.00
C6—C7—C8119.7 (4)C12—C10—H10108.00
O1—C7—C8120.2 (4)C10—C11—H11A109.00
C7—C8—C9110.3 (3)C10—C11—H11B109.00
N1—C9—C8110.0 (3)C10—C11—H11C109.00
N1—C10—C12110.2 (4)H11A—C11—H11B110.00
C11—C10—C12113.1 (5)H11A—C11—H11C109.00
N1—C10—C11109.2 (4)H11B—C11—H11C109.00
C2—C1—H1120.00C10—C12—H12A109.00
C6—C1—H1120.00C10—C12—H12B110.00
C1—C2—H2120.00C10—C12—H12C109.00
C3—C2—H2120.00H12A—C12—H12B110.00
C2—C3—H3120.00H12A—C12—H12C109.00
C4—C3—H3120.00H12B—C12—H12C109.00
C3—C4—H4120.00
C10—N1—C9—C8178.2 (3)C4—C5—C6—C10.7 (8)
C9—N1—C10—C11161.9 (4)C4—C5—C6—C7179.1 (5)
C9—N1—C10—C1273.3 (5)C5—C6—C7—C8176.1 (4)
C2—C1—C6—C7179.6 (5)C1—C6—C7—O1176.9 (5)
C6—C1—C2—C30.4 (8)C1—C6—C7—C83.7 (7)
C2—C1—C6—C50.2 (8)C5—C6—C7—O13.3 (7)
C1—C2—C3—C40.6 (9)O1—C7—C8—C92.1 (6)
C2—C3—C4—C50.1 (10)C6—C7—C8—C9177.3 (4)
C3—C4—C5—C60.6 (9)C7—C8—C9—N1179.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl1i0.87 (4)2.30 (4)3.141 (4)163 (4)
N1—H2N···Cl10.87 (3)2.27 (3)3.131 (4)169 (4)
C10—H10···O1ii0.982.563.284 (7)130
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC12H18NO+·Cl
Mr227.72
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)8.036 (5), 8.656 (5), 18.403 (5)
β (°) 97.174 (5)
V3)1270.1 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.16 × 0.13 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID-S
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.958, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
15799, 2334, 1204
Rint0.116
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.224, 1.05
No. of reflections2334
No. of parameters145
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.19

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl1i0.87 (4)2.30 (4)3.141 (4)163 (4)
N1—H2N···Cl10.87 (3)2.27 (3)3.131 (4)169 (4)
C10—H10···O1ii0.982.563.284 (7)130.
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1, y+1, z+2.
 

Acknowledgements

The authors are indebted to the Department of Chemistry, Atatürk University, Erzurum, Turkey, for use of the X-ray diffractometer purchased under grant No. 2003/219 of the University Research Fund.

References

First citationAbonia, R., Schollmeyer, D. & Arteaga, D. (2011). Acta Cryst. E67, o2969.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCanturk, P., Kucukoglu, K., Topcu, Z., Gul, M. & Gul, H. I. (2008). Arzneim. Forsch. 58, 686–691.  CAS Google Scholar
First citationChen, H. T., Jing, Y. K., Ji, Z. Z. & Zhang, B. F. (1991). YaoXueXueBao, 26, 183–192.  CAS Google Scholar
First citationDimmock, J. R. & Kumar, P. (1997). Curr. Med. Chem. 4, 1–22.  CAS Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGul, M. (2005). PhD thesis, Kuopio University, Finland.  Google Scholar
First citationGul, M., Atalay, M., Gul, H. I., Nakao, C., Lappalainen, J. & Hanninen, O. (2005a). Toxicol. Vitro, 19, 573–580.  Web of Science CrossRef CAS Google Scholar
First citationGul, H. I., Calis, U. & Vepsalainen, J. (2004). Arzneim. Forsch. 54, 359–364.  CAS Google Scholar
First citationGul, H. I., Sahin, F., Gul, M., Ozturk, S. & Yerdelen, K. O. (2005b). Arch. Pharm. 338, 335–338.  Web of Science CrossRef CAS Google Scholar
First citationGul, H. I., Suleyman, H. & Gul, M. (2009). Pharm. Biol. 47, 968–972.  Web of Science CrossRef CAS Google Scholar
First citationKucukoglu, K., Gul, M., Atalay, M., Mete, E., Kazaz, C., Hanninen, O. & Gul, H. I. (2011). Arzneim. Forsch. Drug Res. 61, 366–371.  CAS Google Scholar
First citationMete, E., Gul, H. I., Bilginer, S., Algul, O., Topaloglu, M. E., Gulluce, M. & Kazaz, C. (2011a). Molecules, 16, 4660–4671.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMete, E., Gul, H. I., Cetin-Atalay, R., Das, U., Sahin, E., Gul, M., Kazaz, C. & Dimmock, J. R. (2011b). Arch. Pharm. Chem. Life Sci. 344, 333–339.  CrossRef CAS Google Scholar
First citationPlati, J. T., Schmidt, R. A. & Wenner, W. (1949). J. Org. Chem. 14, 873–878..  CrossRef CAS Web of Science Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuleyman, H., Gul, H. I., Gul, M., Alkan, M. & Gocer, F. (2007). Biol. Pharm. Bull. 30, 63–67.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTuzina, P., Fischer, A. & Somfai, P. (2006). Acta Cryst. E62, o2971–o2972.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2702-o2703
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds