supplementary materials


qm2080 scheme

Acta Cryst. (2012). E68, m1228    [ doi:10.1107/S1600536812036379 ]

Dilithium 1,2,5-thiadiazolidine-3,4-dione 1,1-dioxide dihydrate

D. W. McOwen, S. A. Delp, P. D. Boyle and W. A. Henderson

Abstract top

The title compound, poly[[mu]-aqua-aqua-[mu]6-(1,1-dioxo-1[lambda]6,2,5-thiadiazolidine-3,4-diolato)-dilithium], [Li2(C2N2O4S)(H2O)2]n or (H2O)2:Li2TDD, forms an infinite three-dimensional structure containing five-coordinate (Li/5) and six-coordinate (Li/6) Li+ cations. Li/5 is coordinated by three water molecules, one carbonyl O atom and one sulfuryl O atom while Li/6 is coordinated by one water molecule, three carbonyl O atoms, and two sulfuryl O atoms. Each water molecule bridges two Li+ cations, while also hydrogen bonding to either one endocyclic N atom and one sulfuryl O atom or two endocyclic N atoms. While the endocyclic N atoms in the anion do not coordinate the Li+ cations, the carbonyl and sulfuryl groups each coordinate three Li+ cations, which gives rise to the infinite three-dimensional structure.

Comment top

Dilithium 1,2,5-thiadiazolidine-3,4-dione 1,1-dioxide (Li2TDD) was synthesized following methods reported in the literature for the anion (Lee et al., Wen et al.). The salt forms a dihydrate in which the carbonyl and sulfuryl oxygen atoms each coordinate multiple Li+ cations forming a highly aggregated structure. In addition, each water molecule bridges two Li+ cations. The endocyclic nitrogen atoms, however, are not coordinated to the Li+ cations, indicating that the O atoms atoms exhibit the greatest Lewis basicity.

Related literature top

For Na salt synthesis, see: Lee et al. (1990). For Na salt, K salt, and acid form synthesis procedures, see: Wen et al. (1975).

Experimental top

Sulfamide (1.00 eq.) was dissolved in methanol and slowly added to a solution of LiMeO (2.10 eq.) at room temperature, resulting in a cloudy white solution. After addition of diethyl oxalate (1.05 eq.), the solution became clear. After gently refluxing for 20 h, the solvent was removed under vacuum and a clear viscous solution was obtained. Upon addition of deionized water, crystals suitable for characterization formed.

Refinement top

The structure was solved by direct methods using the XS program. All non-hydrogen atoms were obtained from the i nitial solution. The hydrogen atoms were introduced at idealized positions and were allowed to refine isotropically. The structural model was fit to the data using full matrix least-squares based on F2. The calculated structure factors included corrections for anomalous dispersion from the usual tabulation. The structure was refined using the XL program from SHELXTL, graphic plots were produced using the ORTEP-3 crystallographic program suite.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the Li2TDD dihydrate crystal structure. Thermal ellipsoids are at 50% probability (Li-purple, O-red, S-yellow, N-blue).
[Figure 2] Fig. 2. Packing diagram for the Li2TDD dihydrate crystal structure (Li-purple, O-red, S-yellow, N-blue).
Poly[µ-aqua-aqua-µ6-(1,1-dioxo-1λ6,2,5-thiadiazolidine-3,4-diolato)- dilithium] top
Crystal data top
[Li2(C2N2O4S)(H2O2)]F(000) = 400
Mr = 198.01Dx = 2.008 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.239 (3) ÅCell parameters from 9851 reflections
b = 11.185 (3) Åθ = 3.1–42.4°
c = 9.786 (4) ŵ = 0.49 mm1
β = 124.27 (2)°T = 110 K
V = 654.8 (4) Å3Prism, colourless
Z = 40.41 × 0.24 × 0.24 mm
Data collection top
Bruker–Nonius Kappa X8 APEXII
diffractometer
3899 independent reflections
Radiation source: fine-focus sealed tube3575 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω and φ scansθmax = 42.7°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1312
Tmin = 0.825, Tmax = 0.894k = 1819
34710 measured reflectionsl = 1618
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0343P)2 + 0.1822P]
where P = (Fo2 + 2Fc2)/3
3899 reflections(Δ/σ)max = 0.001
134 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Li2(C2N2O4S)(H2O2)]V = 654.8 (4) Å3
Mr = 198.01Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.239 (3) ŵ = 0.49 mm1
b = 11.185 (3) ÅT = 110 K
c = 9.786 (4) Å0.41 × 0.24 × 0.24 mm
β = 124.27 (2)°
Data collection top
Bruker–Nonius Kappa X8 APEXII
diffractometer
3575 reflections with I > 2σ(I)
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
Rint = 0.022
Tmin = 0.825, Tmax = 0.894θmax = 42.7°
34710 measured reflectionsStandard reflections: ?
3899 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.022All H-atom parameters refined
wR(F2) = 0.065Δρmax = 0.62 e Å3
S = 1.06Δρmin = 0.40 e Å3
3899 reflectionsAbsolute structure: ?
134 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li10.7137 (2)0.01566 (12)0.50356 (15)0.0135 (2)
Li20.7135 (2)0.05125 (12)0.18236 (17)0.0149 (2)
S10.89112 (2)0.223295 (11)0.983764 (16)0.00633 (4)
O10.79819 (8)0.19195 (4)1.07658 (6)0.01045 (7)
O20.84435 (8)0.34610 (4)0.92528 (6)0.01025 (7)
N10.79993 (8)0.13338 (4)0.82836 (6)0.00815 (8)
N21.16044 (8)0.19981 (5)1.09118 (6)0.00814 (7)
C10.97800 (9)0.08981 (5)0.83782 (7)0.00681 (8)
C21.19895 (9)0.12853 (5)0.99882 (7)0.00704 (8)
O30.97919 (7)0.02518 (4)0.73492 (5)0.00883 (7)
O41.38036 (7)0.09387 (4)1.02912 (6)0.01080 (8)
O1W0.56092 (8)0.12147 (4)0.56167 (6)0.01060 (7)
H1WA0.642 (3)0.1436 (15)0.654 (2)0.038 (4)*
H1WB0.497 (3)0.1828 (15)0.504 (2)0.037 (4)*
O2W0.64205 (7)0.06718 (4)0.30255 (6)0.00860 (7)
H2WA0.702 (2)0.1334 (14)0.3304 (18)0.030 (3)*
H2WB0.512 (3)0.0804 (14)0.2543 (19)0.032 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li10.0127 (5)0.0155 (5)0.0110 (5)0.0009 (4)0.0059 (4)0.0018 (4)
Li20.0120 (5)0.0169 (5)0.0176 (5)0.0033 (4)0.0094 (5)0.0054 (4)
S10.00648 (6)0.00602 (6)0.00737 (6)0.00044 (3)0.00444 (5)0.00002 (3)
O10.01270 (18)0.01092 (17)0.01269 (18)0.00098 (14)0.01016 (16)0.00139 (13)
O20.01357 (18)0.00648 (15)0.01303 (18)0.00244 (13)0.00890 (16)0.00195 (13)
N10.00613 (17)0.00947 (17)0.00851 (17)0.00019 (13)0.00391 (15)0.00189 (14)
N20.00659 (17)0.00924 (17)0.00772 (17)0.00007 (14)0.00350 (15)0.00125 (14)
C10.00696 (19)0.00660 (18)0.00715 (18)0.00008 (14)0.00413 (16)0.00011 (14)
C20.00620 (18)0.00760 (18)0.00714 (18)0.00043 (14)0.00365 (16)0.00069 (14)
O30.00976 (17)0.00902 (16)0.00814 (16)0.00060 (13)0.00530 (14)0.00166 (12)
O40.00685 (16)0.01436 (18)0.01147 (17)0.00300 (13)0.00532 (15)0.00209 (14)
O1W0.01054 (17)0.01104 (17)0.00911 (17)0.00189 (13)0.00487 (15)0.00023 (13)
O2W0.00740 (16)0.00840 (15)0.00953 (16)0.00014 (12)0.00449 (14)0.00025 (12)
Geometric parameters (Å, º) top
Li1—O2W1.9615 (15)S1—N21.6331 (9)
Li1—O31.9825 (16)O1—Li2vii2.1539 (14)
Li1—O1Wi2.0814 (16)O2—Li1viii2.1650 (14)
Li1—O1W2.1468 (15)O2—Li2viii2.3088 (17)
Li1—O2ii2.1650 (14)N1—C11.3317 (9)
Li1—Li1i3.076 (3)N2—C21.3469 (8)
Li1—Li23.167 (2)C1—O31.2435 (7)
Li1—H2WB2.286 (16)C1—C21.5460 (10)
Li2—O2W2.0226 (14)C2—O41.2346 (8)
Li2—O4iii2.0539 (17)O3—Li2iv2.0755 (16)
Li2—O3iv2.0755 (16)O4—Li2ix2.0539 (17)
Li2—O1v2.1539 (14)O4—Li2iv2.4075 (17)
Li2—O2ii2.3088 (17)O1W—Li1i2.0814 (16)
Li2—O4iv2.4075 (17)O1W—H1WA0.792 (17)
Li2—Li2vi3.344 (3)O1W—H1WB0.840 (17)
S1—O11.4453 (6)O2W—H2WA0.824 (16)
S1—O21.4529 (6)O2W—H2WB0.794 (16)
S1—N11.6216 (7)
O2W—Li1—O3135.20 (8)O1v—Li2—Li1136.68 (7)
O2W—Li1—O1Wi107.07 (7)O2ii—Li2—Li143.12 (4)
O3—Li1—O1Wi117.64 (7)O4iv—Li2—Li1127.63 (6)
O2W—Li1—O1W92.49 (6)O2W—Li2—Li2vi90.62 (7)
O3—Li1—O1W92.78 (6)O4iii—Li2—Li2vi45.64 (4)
O1Wi—Li1—O1W86.66 (6)O3iv—Li2—Li2vi114.74 (8)
O2W—Li1—O2ii84.50 (6)O1v—Li2—Li2vi94.57 (7)
O3—Li1—O2ii91.73 (6)O2ii—Li2—Li2vi150.02 (7)
O1Wi—Li1—O2ii91.01 (6)O4iv—Li2—Li2vi37.58 (4)
O1W—Li1—O2ii175.48 (7)Li1—Li2—Li2vi119.99 (7)
O2W—Li1—Li1i103.23 (7)O1—S1—O2112.91 (3)
O3—Li1—Li1i110.35 (8)O1—S1—N1110.57 (4)
O1Wi—Li1—Li1i44.16 (4)O2—S1—N1109.60 (4)
O1W—Li1—Li1i42.49 (4)O1—S1—N2111.47 (4)
O2ii—Li1—Li1i135.04 (8)O2—S1—N2109.54 (3)
O2W—Li1—Li238.02 (4)N1—S1—N2102.23 (3)
O3—Li1—Li2125.81 (7)S1—O1—Li2vii146.99 (5)
O1Wi—Li1—Li299.07 (6)S1—O2—Li1viii125.95 (5)
O1W—Li1—Li2129.81 (6)S1—O2—Li2viii138.18 (4)
O2ii—Li1—Li246.80 (4)Li1viii—O2—Li2viii90.08 (5)
Li1i—Li1—Li2123.61 (7)C1—N1—S1107.15 (5)
O2W—Li1—H2WB19.7 (4)C2—N2—S1106.65 (5)
O3—Li1—H2WB150.4 (4)O3—C1—N1127.18 (6)
O1Wi—Li1—H2WB90.8 (4)O3—C1—C2120.88 (5)
O1W—Li1—H2WB80.3 (4)N1—C1—C2111.95 (5)
O2ii—Li1—H2WB95.9 (4)O4—C2—N2128.23 (6)
Li1i—Li1—H2WB83.8 (4)O4—C2—C1120.46 (6)
Li2—Li1—H2WB50.0 (4)N2—C2—C1111.31 (5)
O2W—Li2—O4iii89.83 (6)C1—O3—Li1120.78 (6)
O2W—Li2—O3iv94.15 (6)C1—O3—Li2iv114.73 (6)
O4iii—Li2—O3iv160.11 (8)Li1—O3—Li2iv124.06 (6)
O2W—Li2—O1v173.35 (8)C2—O4—Li2ix154.29 (6)
O4iii—Li2—O1v90.83 (6)C2—O4—Li2iv104.96 (5)
O3iv—Li2—O1v87.46 (5)Li2ix—O4—Li2iv96.78 (6)
O2W—Li2—O2ii79.51 (6)Li1i—O1W—Li193.34 (6)
O4iii—Li2—O2ii105.58 (6)Li1i—O1W—H1WA119.4 (12)
O3iv—Li2—O2ii94.31 (6)Li1—O1W—H1WA111.6 (12)
O1v—Li2—O2ii93.94 (6)Li1i—O1W—H1WB100.8 (11)
O2W—Li2—O4iv91.01 (6)Li1—O1W—H1WB125.3 (11)
O4iii—Li2—O4iv83.22 (6)H1WA—O1W—H1WB106.4 (16)
O3iv—Li2—O4iv77.24 (5)Li1—O2W—Li2105.30 (7)
O1v—Li2—O4iv95.64 (6)Li1—O2W—H2WA107.5 (10)
O2ii—Li2—O4iv166.89 (6)Li2—O2W—H2WA121.4 (10)
O2W—Li2—Li136.68 (4)Li1—O2W—H2WB103.9 (11)
O4iii—Li2—Li195.63 (6)Li2—O2W—H2WB112.5 (11)
O3iv—Li2—Li199.19 (6)H2WA—O2W—H2WB104.9 (15)
O3—Li1—Li2—O2W119.85 (9)O2—S1—N1—C1107.86 (4)
O1Wi—Li1—Li2—O2W106.16 (7)N2—S1—N1—C18.27 (4)
O1W—Li1—Li2—O2W12.94 (6)O1—S1—N2—C2125.58 (5)
O2ii—Li1—Li2—O2W171.05 (8)O2—S1—N2—C2108.72 (5)
Li1i—Li1—Li2—O2W66.17 (8)N1—S1—N2—C27.45 (4)
O2W—Li1—Li2—O4iii82.11 (7)S1—N1—C1—O3173.88 (5)
O3—Li1—Li2—O4iii158.04 (7)S1—N1—C1—C26.29 (5)
O1Wi—Li1—Li2—O4iii24.05 (6)S1—N2—C2—O4175.91 (5)
O1W—Li1—Li2—O4iii69.17 (9)S1—N2—C2—C14.32 (5)
O2ii—Li1—Li2—O4iii106.84 (7)O3—C1—C2—O41.36 (8)
Li1i—Li1—Li2—O4iii15.94 (10)N1—C1—C2—O4178.47 (5)
O2W—Li1—Li2—O3iv84.58 (7)O3—C1—C2—N2178.85 (5)
O3—Li1—Li2—O3iv35.28 (9)N1—C1—C2—N21.32 (6)
O1Wi—Li1—Li2—O3iv169.26 (6)N1—C1—O3—Li119.12 (9)
O1W—Li1—Li2—O3iv97.52 (9)C2—C1—O3—Li1161.08 (6)
O2ii—Li1—Li2—O3iv86.47 (6)N1—C1—O3—Li2iv168.10 (6)
Li1i—Li1—Li2—O3iv150.75 (8)C2—C1—O3—Li2iv11.71 (7)
O2W—Li1—Li2—O1v179.33 (11)O2W—Li1—O3—C1177.90 (8)
O3—Li1—Li2—O1v60.82 (12)O1Wi—Li1—O3—C11.93 (10)
O1Wi—Li1—Li2—O1v73.17 (10)O1W—Li1—O3—C185.75 (7)
O1W—Li1—Li2—O1v166.39 (7)O2ii—Li1—O3—C193.97 (6)
O2ii—Li1—Li2—O1v9.62 (8)Li1i—Li1—O3—C146.05 (10)
Li1i—Li1—Li2—O1v113.16 (10)Li2—Li1—O3—C1128.60 (7)
O2W—Li1—Li2—O2ii171.05 (8)O2W—Li1—O3—Li2iv5.82 (13)
O3—Li1—Li2—O2ii51.20 (7)O1Wi—Li1—O3—Li2iv170.16 (6)
O1Wi—Li1—Li2—O2ii82.79 (6)O1W—Li1—O3—Li2iv102.16 (7)
O1W—Li1—Li2—O2ii176.01 (9)O2ii—Li1—O3—Li2iv78.11 (7)
Li1i—Li1—Li2—O2ii122.78 (10)Li1i—Li1—O3—Li2iv141.87 (7)
O2W—Li1—Li2—O4iv3.65 (6)Li2—Li1—O3—Li2iv43.48 (11)
O3—Li1—Li2—O4iv116.20 (8)N2—C2—O4—Li2ix25.13 (16)
O1Wi—Li1—Li2—O4iv109.82 (7)C1—C2—O4—Li2ix154.62 (11)
O1W—Li1—Li2—O4iv16.60 (11)N2—C2—O4—Li2iv171.92 (6)
O2ii—Li1—Li2—O4iv167.39 (8)C1—C2—O4—Li2iv7.83 (7)
Li1i—Li1—Li2—O4iv69.83 (10)O2W—Li1—O1W—Li1i106.96 (7)
O2W—Li1—Li2—Li2vi41.08 (7)O3—Li1—O1W—Li1i117.54 (7)
O3—Li1—Li2—Li2vi160.93 (7)O1Wi—Li1—O1W—Li1i0.0
O1Wi—Li1—Li2—Li2vi65.09 (9)O2ii—Li1—O1W—Li1i58.9 (9)
O1W—Li1—Li2—Li2vi28.13 (11)Li2—Li1—O1W—Li1i99.03 (8)
O2ii—Li1—Li2—Li2vi147.88 (9)O3—Li1—O2W—Li293.45 (11)
Li1i—Li1—Li2—Li2vi25.09 (12)O1Wi—Li1—O2W—Li282.82 (7)
O2—S1—O1—Li2vii166.26 (8)O1W—Li1—O2W—Li2170.08 (5)
N1—S1—O1—Li2vii43.06 (9)O2ii—Li1—O2W—Li26.54 (6)
N2—S1—O1—Li2vii69.93 (9)Li1i—Li1—O2W—Li2128.50 (7)
O1—S1—O2—Li1viii12.38 (6)O4iii—Li2—O2W—Li199.68 (6)
N1—S1—O2—Li1viii136.11 (6)O3iv—Li2—O2W—Li199.83 (7)
N2—S1—O2—Li1viii112.48 (6)O1v—Li2—O2W—Li14.0 (6)
O1—S1—O2—Li2viii132.04 (7)O2ii—Li2—O2W—Li16.21 (6)
N1—S1—O2—Li2viii8.31 (7)O4iv—Li2—O2W—Li1177.11 (5)
N2—S1—O2—Li2viii103.09 (7)Li2vi—Li2—O2W—Li1145.31 (6)
O1—S1—N1—C1127.04 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z1/2; (iii) x1, y, z1; (iv) x+2, y, z+1; (v) x, y, z1; (vi) x+1, y, z; (vii) x, y, z+1; (viii) x, y+1/2, z+1/2; (ix) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N2x0.791 (16)2.155 (16)2.9428 (14)175 (2)
O1W—H1WB···O1xi0.842 (17)2.29 (2)2.9971 (15)142 (2)
O2W—H2WA···N2xii0.823 (16)2.049 (16)2.8712 (14)175.7 (16)
O2W—H2WB···N1i0.79 (2)2.01 (2)2.7947 (14)168.7 (17)
Symmetry codes: (i) x+1, y, z+1; (x) x+2, y, z+2; (xi) x+1, y1/2, z+3/2; (xii) x+2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N2i0.791 (16)2.155 (16)2.9428 (14)175 (2)
O1W—H1WB···O1ii0.842 (17)2.29 (2)2.9971 (15)142 (2)
O2W—H2WA···N2iii0.823 (16)2.049 (16)2.8712 (14)175.7 (16)
O2W—H2WB···N1iv0.79 (2)2.01 (2)2.7947 (14)168.7 (17)
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y1/2, z+3/2; (iii) x+2, y1/2, z+3/2; (iv) x+1, y, z+1.
Acknowledgements top

This work is funded by the US DOE BATT Program (contract DE—AC02–05-CH11231). PDB would like to thank the Department of Chemistry of North Carolina State University and the State of North Carolina for funding the purchase of the APEXII diffractometer.

references
References top

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Lee, C.-H. & Kohn, H. (1990). J. Am. Chem. Soc. 55, 6098–6104.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wen, R., Komin, A., Street, R. & Carmack, M. (1975). J. Org. Chem. 40, 2743–2748.