supplementary materials


rk2368 scheme

Acta Cryst. (2012). E68, m1179    [ doi:10.1107/S160053681203526X ]

Dichloridobis{1-[(2-methylbenzimidazol-1-yl-[kappa]N3)methyl]benzotriazole}zinc

L. Song, M. Zhao, G. Cui, J. Gao and L. Lin

Abstract top

The title mononuclear ZnII complex, [ZnCl2(C15H13N5)2], is isotypic with the previously reported HgII complex. The ZnII atom is located on a twofold rotation axis and has a distorted tetrahedral environment of two Cl atoms and two N atoms from two heterocyclic ligands. In the crystal, complex molecules are extended by intermolecular [pi]-[pi] interactions [centroid-centroid distance = 3.792 (2) Å] into a three-dimensional supramolecular network.

Comment top

Multidentate organic ligands have received extensive attention in supramolecular chemistry due to their abilities in constructing novel architectures with interesting properties (Liu et al., 2012; Bondar et al., 2012). Among them, the ligands bearing benzotriazole or benzimidazole groups are good candidates because of their various coordiantion modes and biological activities (Shao et al., 2008; Su et al., 2003). The 1-(2-methylbenzoimidazol-3-yl-methyl)-benzotriazole, simultaneously has the benzotriazole group and the benzoimidazole group, which can be an excellent ligand to form new structures. In this work, we selected this ligand as linker to self-assemble with ZnCl2 and obtained the title mononuclear complex, ZnCl2(C15H13N5)2, which is isostructural with the previously reported HgII complex (Wu et al., 2009). The Zn atom placed on twofold axis. As shown in Fig. 1, the ZnII is in a distorted tetrahedral geometry and coordinated by two Cl atoms and two N atoms from two 1-(2-methylbenzimidazol-1-yl-methyl)benzotriazole ligands. Because the 2-position substituent methyl of benzimidazole ring is an electrondonating group, the N atom of benzimidazole ring has higher electron density than others. Therefore, the N atom of benzimidazole ring is prior to coordinate with metal ions, which leads to the ligand adopting a monodentate fashion. In addition, intramolecular ππ interactions between the imidazole rings and phenyl rings of benzimidazole rings (centroid-to-centroid separation: 3.631 (19)Å), intermolecular ππ interactions between phenyl rings of benzotriazole rings (centroid-to-centroid separation: 3.792 (2)Å) consolidate the crystal packing, as depicted in Fig. 2.

Related literature top

For background information on complexes constructed from N-heterocyclic ligands, see: Liu et al. (2012); Bondar et al. (2012); Shao et al. (2008); Su et al. (2003). For the isotypic HgII complex, see: Wu et al. (2009).

Experimental top

Synthesis of ZnCl2(C15H13N5)2: a methanol solution (4 ml) of ligand 1-(2-methyl-benzoimidazol-3-yl-methyl)-benzotriazole (26.3 mg, 0.1 mmol) was added dropwise to the methanol solution (5 ml) of ZnCl2 (13.6 mg, 0.1 mmol) to give a clear solution. After one week, colorless needle crystals were obtained by slow evaporation of the solvents at room temperature.

Refinement top

The H atoms were generated geometrically and refined as riding atoms, with C–H = 0.93Å for aromatic H, C–H = 0.97Å for methylene H and C–H = 0.96Å for methyl H. The Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title complex with the atom numbering scheme. Displacement ellipsolids are drawn at 30% probability level. Symmetry code: (i) -x, y, 1/2-z.
[Figure 2] Fig. 2. View of the crystal packing of the title complex, showing the three-dimensional supramolecular structure.
Dichloridobis{1-[(2-methylbenzimidazol-1-yl- κN3)methyl]benzotriazole}zinc top
Crystal data top
[ZnCl2(C15H13N5)2]F(000) = 1360
Mr = 662.90Dx = 1.527 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3926 reflections
a = 15.721 (4) Åθ = 2.1–27.9°
b = 12.617 (4) ŵ = 1.08 mm1
c = 14.728 (3) ÅT = 295 K
β = 99.13 (3)°Needle, colourless
V = 2884.3 (13) Å30.22 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku Saturn CCD
diffractometer
3423 independent reflections
Radiation source: fine-focus sealed tube2977 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 28.5714 pixels mm-1θmax = 27.9°, θmin = 2.4°
ω scansh = 2020
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2006)
k = 1616
Tmin = 0.797, Tmax = 0.813l = 1919
17560 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0749P)2 + 0.7625P]
where P = (Fo2 + 2Fc2)/3
3423 reflections(Δ/σ)max < 0.001
196 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[ZnCl2(C15H13N5)2]V = 2884.3 (13) Å3
Mr = 662.90Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.721 (4) ŵ = 1.08 mm1
b = 12.617 (4) ÅT = 295 K
c = 14.728 (3) Å0.22 × 0.20 × 0.20 mm
β = 99.13 (3)°
Data collection top
Rigaku Saturn CCD
diffractometer
3423 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2006)
2977 reflections with I > 2σ(I)
Tmin = 0.797, Tmax = 0.813Rint = 0.041
17560 measured reflectionsθmax = 27.9°
Refinement top
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.137Δρmax = 0.25 e Å3
S = 1.07Δρmin = 0.30 e Å3
3423 reflectionsAbsolute structure: ?
196 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.58999 (3)0.25000.04555 (17)
N10.02430 (13)0.48160 (16)0.15242 (14)0.0412 (5)
N20.08873 (13)0.35668 (17)0.08201 (15)0.0421 (5)
N30.14451 (15)0.18031 (19)0.08324 (15)0.0489 (5)
N40.14628 (19)0.1031 (2)0.01911 (17)0.0623 (7)
N50.13466 (19)0.0122 (2)0.05545 (18)0.0653 (7)
C10.03854 (16)0.42678 (18)0.09166 (16)0.0379 (5)
C20.12745 (17)0.4407 (2)0.07150 (18)0.0472 (6)
H20.15500.49340.10000.057*
C30.17295 (18)0.3735 (3)0.0079 (2)0.0525 (7)
H30.23250.38050.00620.063*
C40.13169 (19)0.2953 (2)0.0360 (2)0.0567 (7)
H40.16460.25150.07870.068*
C50.04384 (19)0.2807 (2)0.01797 (18)0.0493 (6)
H50.01630.22880.04750.059*
C60.00111 (16)0.34824 (19)0.04711 (16)0.0387 (5)
C70.09879 (16)0.4373 (2)0.14406 (17)0.0417 (6)
C80.18438 (18)0.4695 (3)0.1936 (2)0.0620 (8)
H8A0.17870.53400.22680.093*
H8B0.22300.48080.15020.093*
H8C0.20680.41470.23600.093*
C90.15636 (18)0.2894 (2)0.0572 (2)0.0509 (7)
H9A0.15600.29340.00860.061*
H9B0.21190.31460.08780.061*
C100.13101 (16)0.1366 (2)0.16454 (17)0.0454 (6)
C110.1241 (2)0.1776 (3)0.25161 (19)0.0562 (7)
H110.12920.24970.26440.067*
C120.1096 (2)0.1053 (3)0.3164 (2)0.0637 (9)
H120.10460.12930.37500.076*
C130.10205 (19)0.0044 (3)0.2980 (2)0.0668 (9)
H130.09230.05080.34440.080*
C140.1089 (2)0.0433 (3)0.2129 (2)0.0633 (8)
H140.10340.11540.20020.076*
C150.12426 (18)0.0289 (2)0.14573 (19)0.0512 (7)
Cl10.11365 (6)0.69095 (6)0.19298 (5)0.0643 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0627 (3)0.0303 (2)0.0417 (3)0.0000.0021 (2)0.000
N10.0454 (11)0.0342 (10)0.0424 (11)0.0021 (9)0.0020 (9)0.0038 (9)
N20.0410 (11)0.0413 (11)0.0447 (12)0.0035 (9)0.0089 (9)0.0003 (9)
N30.0578 (14)0.0496 (13)0.0404 (12)0.0149 (11)0.0118 (10)0.0014 (10)
N40.0825 (19)0.0610 (16)0.0442 (13)0.0202 (14)0.0125 (13)0.0077 (11)
N50.0884 (19)0.0519 (15)0.0553 (15)0.0168 (14)0.0102 (13)0.0051 (12)
C10.0421 (13)0.0353 (11)0.0356 (12)0.0016 (10)0.0043 (10)0.0002 (9)
C20.0445 (14)0.0487 (14)0.0481 (15)0.0018 (11)0.0065 (11)0.0033 (12)
C30.0403 (14)0.0606 (17)0.0552 (16)0.0069 (13)0.0038 (12)0.0026 (14)
C40.0582 (18)0.0581 (17)0.0518 (16)0.0180 (14)0.0024 (13)0.0129 (13)
C50.0578 (17)0.0447 (14)0.0461 (14)0.0049 (12)0.0108 (12)0.0100 (11)
C60.0444 (13)0.0355 (12)0.0367 (12)0.0022 (10)0.0078 (10)0.0021 (9)
C70.0410 (13)0.0404 (13)0.0427 (13)0.0014 (10)0.0039 (10)0.0008 (11)
C80.0474 (16)0.070 (2)0.0648 (19)0.0058 (14)0.0036 (14)0.0091 (16)
C90.0498 (15)0.0562 (16)0.0497 (15)0.0084 (13)0.0172 (12)0.0017 (13)
C100.0432 (13)0.0531 (15)0.0397 (13)0.0127 (12)0.0062 (11)0.0013 (11)
C110.0612 (18)0.0644 (18)0.0431 (15)0.0068 (14)0.0089 (13)0.0028 (13)
C120.0542 (17)0.098 (3)0.0389 (15)0.0078 (17)0.0077 (13)0.0052 (16)
C130.0517 (17)0.084 (2)0.063 (2)0.0022 (16)0.0031 (14)0.0250 (18)
C140.0589 (18)0.0569 (18)0.071 (2)0.0042 (15)0.0001 (15)0.0115 (16)
C150.0485 (15)0.0522 (16)0.0514 (15)0.0120 (12)0.0033 (12)0.0016 (13)
Cl10.0925 (6)0.0456 (4)0.0524 (4)0.0254 (4)0.0040 (4)0.0033 (3)
Geometric parameters (Å, º) top
Zn1—N1i2.063 (2)C4—C51.377 (4)
Zn1—N12.063 (2)C4—H40.9300
Zn1—Cl1i2.2458 (9)C5—C61.389 (3)
Zn1—Cl12.2458 (9)C5—H50.9300
N1—C71.321 (3)C7—C81.482 (4)
N1—C11.405 (3)C8—H8A0.9600
N2—C71.359 (3)C8—H8B0.9600
N2—C61.396 (3)C8—H8C0.9600
N2—C91.451 (3)C9—H9A0.9700
N3—N41.360 (3)C9—H9B0.9700
N3—C101.365 (3)C10—C151.388 (4)
N3—C91.449 (3)C10—C111.403 (4)
N4—N51.290 (4)C11—C121.366 (4)
N5—C151.381 (4)C11—H110.9300
C1—C61.390 (3)C12—C131.412 (5)
C1—C21.393 (4)C12—H120.9300
C2—C31.376 (4)C13—C141.366 (5)
C2—H20.9300C13—H130.9300
C3—C41.395 (4)C14—C151.395 (4)
C3—H30.9300C14—H140.9300
N1i—Zn1—N196.95 (12)C1—C6—N2105.2 (2)
N1i—Zn1—Cl1i109.86 (6)N1—C7—N2111.7 (2)
N1—Zn1—Cl1i114.34 (6)N1—C7—C8125.9 (2)
N1i—Zn1—Cl1114.34 (6)N2—C7—C8122.4 (2)
N1—Zn1—Cl1109.86 (6)C7—C8—H8A109.5
Cl1i—Zn1—Cl1110.89 (5)C7—C8—H8B109.5
C7—N1—C1106.0 (2)H8A—C8—H8B109.5
C7—N1—Zn1127.62 (17)C7—C8—H8C109.5
C1—N1—Zn1125.50 (16)H8A—C8—H8C109.5
C7—N2—C6107.9 (2)H8B—C8—H8C109.5
C7—N2—C9126.5 (2)N3—C9—N2111.0 (2)
C6—N2—C9125.6 (2)N3—C9—H9A109.4
N4—N3—C10110.1 (2)N2—C9—H9A109.4
N4—N3—C9118.6 (2)N3—C9—H9B109.4
C10—N3—C9131.3 (2)N2—C9—H9B109.4
N5—N4—N3109.2 (2)H9A—C9—H9B108.0
N4—N5—C15108.1 (2)N3—C10—C15103.8 (2)
C6—C1—C2119.9 (2)N3—C10—C11134.3 (3)
C6—C1—N1109.2 (2)C15—C10—C11121.9 (3)
C2—C1—N1130.8 (2)C12—C11—C10116.0 (3)
C3—C2—C1117.6 (3)C12—C11—H11122.0
C3—C2—H2121.2C10—C11—H11122.0
C1—C2—H2121.2C11—C12—C13122.7 (3)
C2—C3—C4121.4 (3)C11—C12—H12118.7
C2—C3—H3119.3C13—C12—H12118.7
C4—C3—H3119.3C14—C13—C12120.7 (3)
C5—C4—C3122.1 (3)C14—C13—H13119.6
C5—C4—H4119.0C12—C13—H13119.6
C3—C4—H4119.0C13—C14—C15117.7 (3)
C4—C5—C6115.8 (3)C13—C14—H14121.2
C4—C5—H5122.1C15—C14—H14121.2
C6—C5—H5122.1N5—C15—C10108.9 (2)
C5—C6—C1123.1 (2)N5—C15—C14130.1 (3)
C5—C6—N2131.7 (2)C10—C15—C14121.0 (3)
N1i—Zn1—N1—C788.2 (2)Zn1—N1—C7—N2169.67 (16)
Cl1i—Zn1—N1—C727.3 (2)C1—N1—C7—C8178.9 (3)
Cl1—Zn1—N1—C7152.8 (2)Zn1—N1—C7—C811.2 (4)
N1i—Zn1—N1—C179.87 (19)C6—N2—C7—N10.2 (3)
Cl1i—Zn1—N1—C1164.61 (17)C9—N2—C7—N1178.6 (2)
Cl1—Zn1—N1—C139.2 (2)C6—N2—C7—C8179.0 (3)
C10—N3—N4—N50.1 (3)C9—N2—C7—C82.2 (4)
C9—N3—N4—N5180.0 (3)N4—N3—C9—N2129.2 (3)
N3—N4—N5—C150.4 (4)C10—N3—C9—N250.8 (4)
C7—N1—C1—C60.1 (3)C7—N2—C9—N3115.7 (3)
Zn1—N1—C1—C6170.04 (15)C6—N2—C9—N362.9 (3)
C7—N1—C1—C2179.1 (3)N4—N3—C10—C150.3 (3)
Zn1—N1—C1—C210.7 (4)C9—N3—C10—C15179.7 (3)
C6—C1—C2—C30.9 (4)N4—N3—C10—C11179.5 (3)
N1—C1—C2—C3179.9 (3)C9—N3—C10—C110.6 (5)
C1—C2—C3—C40.9 (4)N3—C10—C11—C12179.7 (3)
C2—C3—C4—C50.2 (5)C15—C10—C11—C120.6 (4)
C3—C4—C5—C60.5 (4)C10—C11—C12—C130.1 (4)
C4—C5—C6—C10.5 (4)C11—C12—C13—C140.2 (5)
C4—C5—C6—N2179.9 (3)C12—C13—C14—C150.6 (4)
C2—C1—C6—C50.2 (4)N4—N5—C15—C100.6 (3)
N1—C1—C6—C5179.5 (2)N4—N5—C15—C14179.0 (3)
C2—C1—C6—N2179.4 (2)N3—C10—C15—N50.6 (3)
N1—C1—C6—N20.0 (3)C11—C10—C15—N5179.3 (3)
C7—N2—C6—C5179.3 (3)N3—C10—C15—C14179.1 (3)
C9—N2—C6—C51.8 (4)C11—C10—C15—C141.1 (4)
C7—N2—C6—C10.1 (3)C13—C14—C15—N5179.4 (3)
C9—N2—C6—C1178.7 (2)C13—C14—C15—C101.0 (4)
C1—N1—C7—N20.2 (3)
Symmetry code: (i) x, y, z+1/2.
Acknowledgements top

We gratefully acknowledge financial support by Henan Institute of Education.

references
References top

Bondar, O. A., Lukashuk, L. V., Lysenko, A. B., Krautscheid, H., Rusanov, E. B., Chernegac, A. N. & Domasevitch, K. V. (2012). CrystEngComm, 10, 1216–1226.

Liu, W. T., Li, J. Y., Ni, Z. P., Bao, X., Ou, Y. C., Leng, J. D., Liu, J. L. & Tong, M. L. (2012). Cryst. Growth Des. 12, 1482–1488.

Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.

Shao, K. Z., Zhao, Y. H., Xing, Y., Lan, Y. Q., Wang, X. L., Su, Z. M. & Wang, R. S. (2008). Cryst. Growth Des. 8, 2986–2989.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Su, C. Y., Cai, Y. P., Chen, C. L., Smith, M. D., Kaim, W. & zur Loye, H. C. (2003). J. Am. Chem. Soc. 125, 8595–8613.

Wu, J., Yang, J. & Pan, F. (2009). Acta Cryst. E65, m829.